This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Phase Stability and Electronic Structure of In-Free Photovoltaic Materials: Cu2ZnSiSe4, Cu2ZnGeSe4, and Cu2ZnSnSe4

, and

Published 20 December 2010 Copyright (c) 2010 The Japan Society of Applied Physics
, , Citation Satoshi Nakamura et al 2010 Jpn. J. Appl. Phys. 49 121203 DOI 10.1143/JJAP.49.121203

1347-4065/49/12R/121203

Abstract

We have theoretically evaluated phase stability and electronic structure of Cu2ZnSiSe4 and Cu2ZnGeSe4 and compared the results with those of Cu2ZnSnSe4. The enthalpies of formation for kesterite (KS), stannite (ST), and wurtz-stannite (WST) phases of Cu2ZnSiSe4, Cu2ZnGeSe4, and Cu2ZnSnSe4 (CZTSe) were calculated by first-principles calculations. In these three compounds, the KS phase is more stable than the ST and WST phases. The theoretical band gaps of KS-type Cu2ZnSiSe4 (1.48 eV) and Cu2ZnGeSe4 (1.10 eV) are wider than that of KS-type Cu2ZnSnSe4 (0.63 eV). The valence band maximum (VBM) of KS-type Cu2ZnIVSe4 consists of antibonding orbital of Cu 3d and Se 4p, while the conduction band minimum (CBM) consist of antibonding orbital of IV ns and Se 4p. The VBMs of Cu 3d + Se 4p in Cu2ZnSiSe4 and Cu2ZnGeSe4 are similar to that in Cu2ZnSnSe4. Therefore, the energy levels of VBMs in Cu2ZnIVSe4 (IV = Si, Ge) do not change so much compared with that of CZTSe. On the other hand, the energy levels of CBMs of IV ns + Se 4p in Cu2ZnSiSe4 and Cu2ZnGeSe4 become higher than that in Cu2ZnSnSe4. These trends in the electronic structures are explained by the schematic molecular orbital diagrams of tetrahedral CuSe47-, ZnSe46-, and IVSe44- (IV = Si, Ge, Sn) clusters.

Export citation and abstract BibTeX RIS

10.1143/JJAP.49.121203