This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Paper The following article is Open access

Quench characteristics of 6 T conduction-cooled NbTi magnet system

, , , , and

Published under licence by IOP Publishing Ltd
, , Citation S Kar et al 2015 IOP Conf. Ser.: Mater. Sci. Eng. 101 012077 DOI 10.1088/1757-899X/101/1/012077

1757-899X/101/1/012077

Abstract

Conduction-cooled superconducting magnets are cooled by cryocooler alone through the conductive thermal links. The limited refrigeration capacity and conductive cooling make the magnets more prone to quench. We have studied the quench characteristics of a 6 T conduction-cooled NbTi magnet system in detail in this paper. The NbTi magnet has been designed for 102 A with 31% current margin to achieve 0.8 K temperature margin. During a training quench at 101.2 A, the outer surface of the NbTi magnet reached 53.25 K and the temperature of the 2nd stage cold head of the cryocooler reached 15.8 K. Conductive cooling by the cryocooler makes the post-quench recovery of the NbTi magnet in 40 minutes. The maximum sweep rate is 6 A/min for thermally stable operation of this conduction-cooled NbTi magnet. We have done an intentional quench at a sweep rate of 8 A/min. The maximum hot-spot temperature and the post-quench current decay have been simulated using a finite element analysis (FEA) code. Post-quench distribution of the dumped energy in the different components of the magnet system is also presented.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.