Paper The following article is Open access

Numerical Simulation of the Effect of Repeated Load and Waste Polypropylene on the Behavior of Asphalt Layers

, and

Published under licence by IOP Publishing Ltd
, , Citation Hind A Akram et al 2022 IOP Conf. Ser.: Earth Environ. Sci. 961 012039 DOI 10.1088/1755-1315/961/1/012039

1755-1315/961/1/012039

Abstract

Roads are utilized by many vehicle kinds and heavy vehicles among these may be seen as the most essential for cargo loading, causing paving failure and increasing expenses for rehabilitation and maintenance. In this study, in analyzing a finite element employing Abaqus 6.14, composite effects for wheel loads and temperature were addressed. The asphalt layer was designed as an elastic material, while the base and sub-bases were modeled according to the Mohr coulomb model like an elastic material. And studying the impact of wheel loads on flexible pavement settlement and the main output of analyzing pavement structure is almost represented by the vertical stresses and the surface deformation which are considered as the critical response point. A truck type 2S-2 was tried with two thicknesses of asphalt layer 140 mm and 250 mm and considering that base and subbase layer thicknesses remained constant so it does not affect the variation of displacement. It was found that the increase of asphalt layer thickness from 140 mm to 250 mm leads to a decrease in the vertical displacement of about 0.59% and studied the effect of modified asphalt with polymer and how it effect pavement vertical displacement with an obvious reduction from 0.590 mm to 0.265 mm under the repeated load of 36 ton and The vertical stress decreased from 5.036 kPa to 1.899 kPa

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1755-1315/961/1/012039