Paper The following article is Open access

Research on Consistency of Transient Response Characteristics of Current Transformers for DC application in DC Engineering

, , , and

Published under licence by IOP Publishing Ltd
, , Citation Xiaopin Deng et al 2021 J. Phys.: Conf. Ser. 2087 012024 DOI 10.1088/1742-6596/2087/1/012024

1742-6596/2087/1/012024

Abstract

In ultra high voltage(UHV) DC system, the transient characteristics for fault current monitoring of current transformers for DC application (DCCTs) and the consistency of response characteristics when different types of DCCTs are used for differential protection have become important factors affecting the safe and stable operation of DC system. In this paper, transient characteristics of all-fiber DCCTs and shunt DCCTs mainly used in DC system were studied, the main parameters of the transient characteristics including delay time and maximum peak instantaneous error were tested, and the key parameters influencing the response consistency of DCCTs were analyzed. The results show that the maximum peak instantaneous errors of all-fiber DCCTs and shunt DCCTs can meet ±5% limit requirement, meeting the demand for protection application in DC system. The delay time is the main factors affecting the maximum peak instantaneous error of DCCT. The longer the delay time is, the greater the maximum peak instantaneous error is, which may even exceed the limit value of ±5%. If necessary, the delay time of DCCTs participating in differential protection can be compensated. The research results provide a theoretical basis for preventing the malfunction of protection device caused by the inconsistent response characteristics of DCCTs in DC system.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/2087/1/012024