Brought to you by:

Focus on Tree Mortality in a Warming World: Causes, Patterns, and Implications

Figure
Picture taken on 16 November 2016, showing extensive mortality of Pinus cembroides in the Chisos Mts. in the heart of Big Bend National Park, Texas. The National Park Service estimates that about 25% of these piñon trees in Big Bend NP died in 2011, associated with the extreme hotter drought event that year, as part of the major statewide tree mortality (an estimated 6.2 % of all trees in TX, 301 million trees) that year in Texas (Moore et al 2015 Ecol. Appl.). Copyright Craig D Allen.

Guest Editors

Nate McDowell Pacific Northwest National Lab
Craig D Allen U.S. Geological Survey
George Hendrey Queens College of the City University of New York
Shuli Niu Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences
Chuixiang Yi Queens College of the City University of New York


Scope

Spatially aggregated climate data indicate a global expansion of areas subject to warmer climate and prolonged drought. In these drought-prone areas tree mortality and forest die-off have increased markedly in recent decades. Climate warming appears to be the main driver for widespread tree mortality acting through various mechanisms including drought, fire, weakened resistance to pest attack, and changing community competition. This increasing vulnerability of forests to climate-induced tree mortality is of concern globally.

This focus issue will collect the latest research related to all aspects of climate-induced tree mortality, using various approaches (e.g. sap flows measurements, tree-ring data, remote sensing image, physiological modelling, forest-climate modelling), in particular focussing on:

  • Tree mortality caused by persistent drought or extreme weather events
  • Tree mortality due to insects and pathogens driven by warming climate
  • Physiological understanding of tree mortality from field observations or laboratory experiments
  • Identifying tree mortality by remote sensing techniques and maps
  • Identifying historical tree mortality events by synthetic analyses of tree-ring data and forest Inventory data
  • Modelling historical/current/future tree mortality
  • Theoretical studies, like forest resilience/tipping point, threshold identifications

Editorial

Open access
Tree mortality in a warming world: causes, patterns, and implications

Chuixiang Yi et al 2022 Environ. Res. Lett. 17 030201

This ERL focus collection has published 17 papers that have advanced our understanding of different dimensions of warming-induced tree mortality. Here we summarize these focus collection papers, organized by four topics related to tree mortality: pathogens, droughts/heat waves, fire/bark beetles, and teleconnections/air pollution. This focus collection illustrates a variety of methods in measuring and modeling tree-mortality, and adds significant new research findings into the scientific literature on tree mortality from hotter droughts. Some of these results also are useful for policymakers and forest managers in addressing amplified forest stress and tree mortality as a result of increasingly severe warming-induced climate and weather extremes.

Letters

Open access
In ecoregions across western USA streamflow increases during post-wildfire recovery

Michael L Wine et al 2018 Environ. Res. Lett. 13 014010

Continued growth of the human population on Earth will increase pressure on already stressed terrestrial water resources required for drinking water, agriculture, and industry. This stress demands improved understanding of critical controls on water resource availability, particularly in water-limited regions. Mechanistic predictions of future water resource availability are needed because non-stationary conditions exist in the form of changing climatic conditions, land management paradigms, and ecological disturbance regimes. While historically ecological disturbances have been small and could be neglected relative to climatic effects, evidence is accumulating that ecological disturbances, particularly wildfire, can increase regional water availability. However, wildfire hydrologic impacts are typically estimated locally and at small spatial scales, via disparate measurement methods and analysis techniques, and outside the context of climate change projections. Consequently, the relative importance of climate change driven versus wildfire driven impacts on streamflow remains unknown across the western USA. Here we show that considering wildfire in modeling streamflow significantly improves model predictions. Mixed effects modeling attributed 2%−14% of long-term annual streamflow to wildfire effects. The importance of this wildfire-linked streamflow relative to predicted climate change-induced streamflow reductions ranged from 20%−370% of the streamflow decrease predicted to occur by 2050. The rate of post-wildfire vegetation recovery and the proportion of watershed area burned controlled the wildfire effect. Our results demonstrate that in large areas of the western USA affected by wildfire, regional predictions of future water availability are subject to greater structural uncertainty than previously thought. These results suggest that future streamflows may be underestimated in areas affected by increased prevalence of hydrologically relevant ecological disturbances such as wildfire.

Open access
Xylem heating increases vulnerability to cavitation in longleaf pine

Alexandra G Lodge et al 2018 Environ. Res. Lett. 13 055007

Improved understanding of the physiological mechanisms of tree mortality following fires is important with the predicted increase in wildfires under climate change, as well as continued use of prescribed fire for forest management. Disruption of water transport in the xylem from exposure to the heat plume of a fire has been hypothesized as a mechanism of delayed tree mortality. This heat plume rapidly increases vapor pressure deficit in the canopy, increasing transpiration and tension on the xylem causing cavitation, thus reducing water transport and leading to eventual tree death. We aimed to increase understanding of the mechanisms behind such unintended mortality by determining whether branches and roots of longleaf pine are more vulnerable to cavitation when exposed to temperatures expected to occur during prescribed or wild fires. Additionally, we modeled expected branch cavitation under fire conditions based on measured cavitation vulnerability. We heated branch and root segments in a water bath to 41 °C and 54 °C and simulated the negative xylem water potentials experienced during exposure to a heat plume using a double-ended pressure chamber. When branches and roots were pressurized under elevated temperatures, xylem in both organs was more vulnerable to cavitation. In branches, as temperature was increased from 23 °C–54 °C, the pressure at which 50% conductivity was lost (P50) increased from −3.55 MPa to −2.79 MPa, while in roots, P50 increased from −2.08 MPa to −1.36 MPa. When the P50 values measured under elevated temperatures were included in plume and hydraulic models, branches were predicted to experience conditions leading to 50% loss of conductivity up to two meters higher into the canopy than under ambient temperatures. Overall, these results suggest that heating of branches and roots during fires can increase vulnerability to xylem cavitation, potentially leading to hydraulic disruption and delayed tree mortality.

Open access
Tree mortality from fires, bark beetles, and timber harvest during a hot and dry decade in the western United States (2003–2012)

Logan T Berner et al 2017 Environ. Res. Lett. 12 065005

High temperatures and severe drought contributed to extensive tree mortality from fires and bark beetles during the 2000s in parts of the western continental United States. Several states in this region have greenhouse gas (GHG) emission targets and would benefit from information on the amount of carbon stored in tree biomass killed by disturbance. We quantified mean annual tree mortality from fires, bark beetles, and timber harvest from 2003–2012 for each state in this region. We estimated tree mortality from fires and beetles using tree aboveground carbon (AGC) stock and disturbance data sets derived largely from remote sensing. We quantified tree mortality from harvest using data from US Forest Service reports. In both cases, we used Monte Carlo analyses to track uncertainty associated with parameter error and temporal variability. Regional tree mortality from harvest, beetles, and fires (MORTH+B+F) together averaged 45.8 ± 16.0 Tg AGC yr−1 (±95% confidence interval), indicating a mortality rate of 1.10 ± 0.38% yr−1. Harvest accounted for the largest percentage of MORTH+B+F (∼50%), followed by beetles (∼32%), and fires (∼18%). Tree mortality from harvest was concentrated in Washington and Oregon, where harvest accounted for ∼80% of MORTH+B+F in each state. Tree mortality from beetles occurred widely at low levels across the region, yet beetles had pronounced impacts in Colorado and Montana, where they accounted for ∼80% of MORTH+B+F. Tree mortality from fires was highest in California, though fires accounted for the largest percentage of MORTH+B+F in Arizona and New Mexico (∼50%). Drought and human activities shaped regional variation in tree mortality, highlighting opportunities and challenges to managing GHG emissions from forests. Rising temperatures and greater risk of drought will likely increase tree mortality from fires and bark beetles during coming decades in this region. Thus, sustained monitoring and mapping of tree mortality is necessary to inform forest and GHG management.

Open access
Mistletoe, friend and foe: synthesizing ecosystem implications of mistletoe infection

Anne Griebel et al 2017 Environ. Res. Lett. 12 115012

Biotic disturbances are affecting a wide range of tree species in all climates, and their occurrence is contributing to increasing rates of tree mortality globally. Mistletoe is a widespread group of parasitic plants that establishes long-lasting relationships with a diverse range of host tree species. With climate change, ecophysiological stress is increasing, potentially making trees more susceptible to mistletoe infection, which in turn leads to higher forest mortality rates.

The perception of mistletoe presence in individual trees and forest stands is divided within the scientific community, leading to an ongoing debate regarding its impacts. Forest managers concerned about stand health and carbon sequestration may view mistletoe as a foe that leads to reduced productivity. In contrast, ecologists may see mistletoe as a friend, in light of the wildlife habitat, biodiversity and nutrient cycling it promotes. However, individual studies typically focus on isolated effects of mistletoe presence within their respective research area and lack a balanced, interdisciplinary perspective of mistletoe disturbance.

With this conceptual paper we aim to bring together the positive and negative impacts of mistletoe presence on tree physiology, soil nutrient cycling as well as stand health and stand dynamics. We focus on the role of mistletoe-induced tree mortality in ecosystem succession and biodiversity. In addition, we present potential modifications of mistletoe presence on the energy budget and on forest vulnerability to climate change, which could feed back into stand dynamics and disturbance patterns. Lastly, we will identify the most pressing remaining knowledge gaps and highlight priorities for future research on this widespread agent of biotic disturbance.

Open access
Remotely sensed predictors of conifer tree mortality during severe drought

P G Brodrick and G P Asner 2017 Environ. Res. Lett. 12 115013

Widespread, drought-induced forest mortality has been documented on every forested continent over the last two decades, yet early pre-mortality indicators of tree death remain poorly understood. Remotely sensed physiological-based measures offer a means for large-scale analysis to understand and predict drought-induced mortality. Here, we use laser-guided imaging spectroscopy from multiple years of aerial surveys to assess the impact of sustained canopy water loss on tree mortality. We analyze both gross canopy mortality in 2016 and the change in mortality between 2015 and 2016 in millions of sampled conifer forest locations throughout the Sierra Nevada mountains in California. On average, sustained water loss and gross mortality are strongly related, and year-to-year water loss within the drought indicates subsequent mortality. Both relationships are consistent after controlling for location and tree community composition, suggesting that these metrics may serve as indicators of mortality during a drought.

Open access
Temperature response surfaces for mortality risk of tree species with future drought

Henry D Adams et al 2017 Environ. Res. Lett. 12 115014

Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlings of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P. ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7–9 seedling mortality events per species by 2100 under business-as-usual warming occur, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These results illustrate profound benefits for reducing emissions of carbon to the atmosphere from anthropogenic sources and slowing warming as rapidly as possible to maximize forest persistence.

Open access
The importance of drought–pathogen interactions in driving oak mortality events in the Ozark Border Region

Jeffrey D Wood et al 2018 Environ. Res. Lett. 13 015004

Forests are expected to become more vulnerable to drought-induced tree mortality owing to rising temperatures and changing precipitation patterns that amplify drought lethality. There is a crucial knowledge gap regarding drought–pathogen interactions and their effects on tree mortality. The objectives of this research were to examine whether stand dynamics and ‘background’ mortality rates were affected by a severe drought in 2012; and to evaluate the importance of drought–pathogen interactions within the context of a mortality event that killed 10.0% and 26.5% of white (Quercus alba L.) and black (Q. velutina Lam.) oak stems, respectively, in a single year. We synthesized (i) forest inventory data (24 years), (ii) 11 years of ecosystem flux data with supporting biological data including predawn leaf water potential and annual forest inventories, (iii) tree-ring analyses of individual white oaks that were alive and ones that died in 2013, and (iv) documentation of a pathogen infection. This forest displayed stand dynamics consistent with expected patterns of decreasing tree density and increasing basal area. Continued basal area growth outpaced mortality implying a net accumulation of live biomass, which was supported by eddy covariance ecosystem carbon flux observations. Individual white and black oaks that died in 2013 displayed historically lower growth with the majority of dead trees exhibiting Biscogniauxia cankers. Our observations point to the importance of event-based oak mortality and that drought–Biscogniauxia interactions are important in shaping oak stand dynamics in this region. Although forest function has not been significantly impaired, these drought–pathogen interactions could amplify mortality under future climate conditions and thus warrant further investigation.

Open access
Are Scots pine forest edges particularly prone to drought-induced mortality?

Allan Buras et al 2018 Environ. Res. Lett. 13 025001

Climate change is expected to exacerbate the frequency of drought-induced tree mortality world-wide. To better predict the associated change of species composition and forest dynamics on various scales and develop adequate adaptation strategies, more information on the mechanisms driving the often observed patchiness of tree die-back is needed. Although forest-edge effects may play an important role within the given context, only few corresponding studies exist. Here, we investigate the regional die-back of Scots pine in Franconia, Germany, after a hot and dry summer in 2015, thereby emphasizing possible differences in mortality between forest edge and interior. By means of dendroecological investigations and close-range remote sensing, we assess long-term growth performance and current tree vitality along five different forest-edge distance gradients. Our results clearly indicate a differing growth performance between edge and interior trees, associated with a higher vulnerability to drought, increased mortality rates, and lower tree vitality at the forest edge. Prior long-lasting growth decline of dead trees compared to live trees suggests depletion of carbon reserves in course of a long-term drought persisting since the 1990s to be the cause of regional Scots pine die-back. These findings highlight the forest edge as a potential focal point of forest management adaptation strategies in the context of drought-induced mortality.

Open access
Gas exchange at whole plant level shows that a less conservative water use is linked to a higher performance in three ecologically distinct pine species

D Salazar-Tortosa et al 2018 Environ. Res. Lett. 13 045004

Increasing temperatures and decreasing precipitation in large areas of the planet as a consequence of global warming will affect plant growth and survival. However, the impact of climatic conditions will differ across species depending on their stomatal response to increasing aridity, as this will ultimately affect the balance between carbon assimilation and water loss. In this study, we monitored gas exchange, growth and survival in saplings of three widely distributed European pine species (Pinus halepensis, P. nigra and P. sylvestris) with contrasting distribution and ecological requirements in order to ascertain the relationship between stomatal control and plant performance. The experiment was conducted in a common garden environment resembling rainfall and temperature conditions that two of the three species are expected to encounter in the near future. In addition, gas exchange was monitored both at the leaf and at the whole-plant level using a transient-state closed chamber, which allowed us to model the response of the whole plant to increased air evaporative demand (AED). P. sylvestris was the species with lowest survival and performance. By contrast, P. halepensis showed no mortality, much higher growth (two orders of magnitude), carbon assimilation (ca. 14 fold higher) and stomatal conductance and water transpiration (ca. 4 fold higher) than the other two species. As a consequence, P. halepensis exhibited higher values of water-use efficiency than the rest of the species even at the highest values of AED. Overall, the results strongly support that the weaker stomatal control of P. halepensis, which is linked to lower stem water potential, enabled this species to maximize carbon uptake under drought stress and ultimately outperform the more water conservative P. nigra and P. sylvestris. These results suggest that under a hotter drought scenario P. nigra and P. sylvestris would very likely suffer increased mortality, whereas P. halepensis could maintain gas exchange and avoid water-induced growth limitation. This might ultimately foster an expansion of P. halepensis to higher latitudes and elevations.

Open access
Differential ecophysiological responses and resilience to heat wave events in four co-occurring temperate tree species

Anirban Guha et al 2018 Environ. Res. Lett. 13 065008

Extreme summer heat waves are known to induce foliar and stem mortality in temperate forest ecosystems, yet our mechanistic knowledge of physiological thresholds for damage is lacking. Current spatiotemporal simulations of forest growth responses to climate change fail to explain the variability between co-occurring tree species to climate extremes, indicating a need for new model frameworks that include mechanistic understanding of trait-specific responses. In this context, using manipulative heat wave (hw) experiments we investigated ecophysiological responses and physiological recovery in four co-occurring temperate tree species of the southeastern United States including three deciduous angiosperms: southern red oak (Quercus falcata Michx.), shumard oak (Q. shumardii Buckl.) and, tulip-poplar (Liriodendron tulipifera L.) and one evergreen conifer: eastern white pine (Pinus strobus L.). The objectives were to investigate inter-specific differences in ecophysiological responses to hw events to understand mechanistic differences in resilience that may be useful for future model development. Two-year-old, well-irrigated potted saplings were exposed to progressively increasing extreme hw diurnal cycles followed by a recovery cycle, with peak midday air temperature increasing from 37 °C to a maximum of 51 °C on the third day of the hw. Plants were assessed for various photosynthetic and water use responses, chlorophyll fluorescence and photosystem-II (PSII) activity, leaf temperature and foliar pigments. Intense heat caused progressive down-regulation in net photosynthesis, but the stomata remained operational, which helped cool leaves through loss of latent heat. Even though whole plant transpiration increased for all species, the rate plateaued at higher hw events that allowed leaf temperature to exceed 45 °C, well beyond the optimal range. A significant increase in non-photochemical quenching over the hw cycles was evident in all species though indications of both transient and chronic PSII damage were evident in the most heat sensitive species, pine and tulip poplar. The oaks, especially Q. falcata, showed greater thermotolerance than other species with a higher threshold for photodamage to PSII, rapid overnight recovery of photoinhibition and minimal heat-induced canopy necrosis. We conclude that these co-occurring tree species exhibit large variability in thermotolerance and in their capability to repair both transient and chronic photodamage. Our results indicate that extreme heat induced damage to PSII within the leaf chloroplasts may be a mechanistic trait that can be used to project how different species respond to extreme weather events.

Open access
Forest drought resistance distinguished by canopy height

Peipei Xu et al 2018 Environ. Res. Lett. 13 075003

How are the survival and growth of trees under severe drought affected by their size? While some studies have shown that large trees are more vulnerable to drought than smaller trees, others found that small trees are the more vulnerable. We explored the potential relationships between canopy height and forest responses to drought indicated by tree mortality, tree ring width index (RWI), and normalized difference vegetation index (NDVI) in the southwestern United States (SWUS) in 2002. In that year many trees had zero tree ring growth due to mortality and dieback, presumably related to drought-stress. With RWI data from a tree ring data base and climate data co-located with the field measurements, we found size-dependent linear correlations between these forest responses and canopy height in SWUS under severe drought condition. During that drought period, both trunk growth (RWI) and leaf growth (NDVI) were positively correlated with canopy height of the smaller trees (less than 18 m) and negatively correlated with canopy height of greater than 18 m. Tree mortality was negatively correlated with canopy height up to 15 m. Both local-scale and regional-scale data are consistent in showing that forests with medium canopy height (around 18 meters) showed the greatest resistance to severe drought. We suggest that negative impacts of severe drought on forests could be modified with active management of canopy structure.

Open access
Camouflaged as degraded wax: hygroscopic aerosols contribute to leaf desiccation, tree mortality, and forest decline

Juergen Burkhardt et al 2018 Environ. Res. Lett. 13 085001

Some 40 years ago, air pollution caused widespread forest decline in Central Europe and eastern North America. More recently, high levels of tree mortality worldwide are thought to be driven by rising temperatures and increasing atmospheric drought. A neglected factor, possibly contributing to both phenomena, is the foliar accumulation of hygroscopic aerosols. Recent experiments with experimentally added aerosols revealed that foliar aerosol accumulation can (i) create the microscopic impression of ‘wax degradation’, considered an important proxy of forest decline associated with air pollution, though the mechanism remains unexplained; and (ii) increase epidermal minimum conductance (gmin), a measure of cuticular permeability and completeness of stomatal closure—both could lead to reduced drought tolerance. Here, those studies with applied aerosol are extended by addressing plant responses to reduction of ambient aerosol.

Scots pine, silver fir, and common oak seedlings were grown for 2 years in greenhouses ventilated with ambient air (AA) or air filtered to remove nearly all aerosol particles (FA). Removal of ambient aerosol prevented the development of amorphous structures viewed in the electron microscope that have typically been interpreted as degraded waxes. Lower gmin values suggested that FA plants had better stomatal control and therefore greater drought tolerance than AA plants. The co-occurrence of apparent wax degradation and reduced drought tolerance in AA plants suggests a common cause. This may be mediated by the deliquescence and spreading of hygroscopic aerosols across the leaf surface. The liquid film produced may penetrate the stomata and facilitate unproductive stomatal transpiration. In this way, aerosol pollution may enhance the impacts of atmospheric drought, and may damage trees and forests on large spatial scales.

Open access
Chronic historical drought legacy exacerbates tree mortality and crown dieback during acute heatwave-compounded drought

George Matusick et al 2018 Environ. Res. Lett. 13 095002

Globally, combinations of drought and warming are driving widespread tree mortality and crown dieback. Yet thresholds triggering either tree mortality or crown dieback remain uncertain, particularly with respect to two issues: (i) the degree to which heat waves, as an acute stress, can trigger mortality, and (ii) the degree to which chronic historical drought can have legacy effects on these processes. Using forest study sites in southwestern Australia that experienced dieback associated with a short-term drought with a heatwave (heatwave-compounded drought) in 2011 and span a gradient in long-term precipitation (LTP) change, we examined the potential for chronic historical drought to amplify tree mortality or crown dieback during a heatwave-compounded drought event for the dominant overstory species Eucalyptus marginata and Corymbia calophylla. We show pronounced legacy effects associated with chronically reduced LTP (1951–1980 versus 1981–2010) at the tree level in both study species. When comparing areas experiencing 7.0% and 11.5% decline in LTP, the probability of tree mortality increased from low (<0.10) to high (>0.55) in both species, and probability of crown dieback increased from high (0.74) to nearly complete (0.96) in E. marginata. Results from beta regression analysis at the stand-level confirmed tree-level results, illustrating a significant inverse relationship between LTP reduction and either tree mortality (F = 10.39, P = 0.0073) or dieback (F = 54.72, P < 0.0001). Our findings quantify chronic climate legacy effects during a well-documented tree mortality and crown dieback event that is specifically associated with an heatwave-compounded drought. Our results highlight how insights into both acute heatwave-compounded drought effects and chronic drought legacies need to be integrated into assessments of how drought and warming together trigger broad-scale tree mortality and crown dieback events.

Open access
Forest die-off following global-change-type drought alters rhizosphere fungal communities

Anna J M Hopkins et al 2018 Environ. Res. Lett. 13 095006

Globally, forest die-off from global-change-type drought events (hotter droughts) are of increasing concern, with effects reported from every forested continent. While implications of global-change-type drought events have been explored for above-ground vegetation, below-ground organisms have received less attention, despite their essential contributions to plant growth, survival, and ecosystem function. We investigated rhizosphere fungal communities in soils beneath trees affected by a global-change-type drought in a Mediterranean climate-type ecosystem in southwestern Australia, quantifying how fungal richness, composition and functional groups varied along a drought impact gradient. Following a forest die-off three years previously, we collected soils beneath dead and alive trees within forest exhibiting high, minimal and relatively unaffected levels of forest die-off. Rhizosphere fungal DNA was extracted from soils, amplified and subjected to high throughput sequencing. Fungal community composition varied significantly (P < 0.001) along the drought impact gradient with less richness in drought affected stands. There was some evidence of community differentiation between dead versus alive trees (P = 0.09), and no difference in rarefied richness and diversity. When considered by functional group, die-off-impacted plots had more arbuscular mycorrhizal fungi (AM) and saprotrophs, and fewer ectomycorrhizal fungi (ECM), compared with living trees from the unaffected plots. Further, within die-off plots, dead versus alive tree rhizosphere samples contained more AM, saprotrophs and pathogens, and fewer ECM. Disruptions to rhizosphere fungal communities, such as altered functional groups, can have implications for ecosystem persistence and function, particularly in regions projected to experience increased global-change-type drought events.

Open access
Fire and tree death: understanding and improving modeling of fire-induced tree mortality

Sharon M Hood et al 2018 Environ. Res. Lett. 13 113004

Each year wildland fires kill and injure trees on millions of forested hectares globally, affecting plant and animal biodiversity, carbon storage, hydrologic processes, and ecosystem services. The underlying mechanisms of fire-caused tree mortality remain poorly understood, however, limiting the ability to accurately predict mortality and develop robust modeling applications, especially under novel future climates. Virtually all post-fire tree mortality prediction systems are based on the same underlying empirical model described in Ryan and Reinhardt (1988 Can. J. For. Res. 18 1291–7), which was developed from a limited number of species, stretching model assumptions beyond intended limits. We review the current understanding of the mechanisms of fire-induced tree mortality, provide recommended standardized terminology, describe model applications and limitations, and conclude with key knowledge gaps and future directions for research. We suggest a two-pronged approach to future research: (1) continued improvements and evaluations of empirical models to quantify uncertainty and incorporate new regions and species and (2) acceleration of basic, physiological research on the proximate and ultimate causes of fire-induced tree mortality to incorporate processes of tree death into models. Advances in both empirical and process fire-induced tree modeling will allow creation of hybrid models that could advance understanding of how fire injures and kills trees, while improving prediction accuracy of fire-driven feedbacks on ecosystems and landscapes, particularly under novel future conditions.

Open access
Temporal declines in tree longevity associated with faster lifetime growth rates in boreal forests

Eric B Searle and Han Y H Chen 2018 Environ. Res. Lett. 13 125003

Global change has been linked to significant increases in tree mortality in the world’s forests. Reduced tree longevity through increased growth rates has been suggested as one of the mechanisms responsible for the temporal increases in tree mortality, but this idea has not been directly tested. Here we explicitly defined two testable hypotheses: (i) the probability of ageing driven tree mortality increases with global change and (ii) the mortality probability associated with global change is higher for faster growing trees. To test these hypotheses, we examined the temporal changes of tree mortality probability in 539 permanent sample plots monitored from 1960–2009, with ages greater than 100 years at initial censuses, across the boreal region of Alberta, Canada. As expected, we found an overall temporal increase in tree mortality probability, indicating a loss in tree longevity with global change. We also found that trees with faster lifetime growth rates experienced higher temporal increases in mortality probability compared to slower growing trees. An analysis of the responses of tree mortality probability to increasing atmospheric carbon dioxide and temperature and decreases in water availability indicated that increasing atmospheric carbon dioxide and decreasing water availability were the major drivers of declining longevity. Our results suggest that tree longevity may further decline with the expected increase of atmospheric carbon dioxide and decreasing water availability in the region.

Open access
Mechanisms of a coniferous woodland persistence under drought and heat

Nate G McDowell et al 2019 Environ. Res. Lett. 14 045014

Predictions of warmer droughts causing increasing forest mortality are becoming abundant, yet few studies have investigated the mechanisms of forest persistence. To examine the resistance of forests to warmer droughts, we used a five-year precipitation reduction (∼45% removal), heat (+4 °C above ambient) and combined drought and heat experiment in an isolated stand of mature Pinus edulis-Juniperus monosperma. Despite severe experimental drought and heating, no trees died, and we observed only minor evidence of hydraulic failure or carbon starvation. Two mechanisms promoting survival were supported. First, access to bedrock water, or ‘hydraulic refugia’ aided trees in their resistance to the experimental conditions. Second, the isolation of this stand amongst a landscape of dead trees precluded ingress by Ips confusus, frequently the ultimate biotic mortality agent of piñon. These combined abiotic and biotic landscape-scale processes can moderate the impacts of future droughts on tree mortality by enabling tree avoidance of hydraulic failure, carbon starvation, and exposure to attacking abiotic agents.

Open access
Drought supersedes warming in determining volatile and tissue defenses of piñon pine (Pinus edulis)

Amy M Trowbridge et al 2019 Environ. Res. Lett. 14 065006

Trees are suffering mortality across the globe as a result of drought, warming, and biotic attacks. The combined effects of warming and drought on in situ tree chemical defenses against herbivory have not been studied to date. To address this, we transplanted mature piñon pine trees—a well-studied species that has undergone extensive drought and herbivore-related mortality—within their native woodland habitat and also to a hotter-drier habitat and measured monoterpene emissions and concentrations across the growing season. We hypothesized that greater needle temperatures in the hotter-drier site would increase monoterpene emission rates and consequently lower needle monoterpene concentrations, and that this temperature effect would dominate the seasonal pattern of monoterpene concentrations regardless of drought. In support of our hypothesis, needle monoterpene concentrations were lower across all seasons in trees transplanted to the hotter-drier site. Contrary to our hypothesis, basal emission rates (emission rates normalized to 30 °C and a radiative flux of 1000 μmol m−2 s−1) did not differ between sites. This is because an increase in emissions at the hotter-drier site from a 1.5 °C average temperature increase was offset by decreased emissions from greater plant water stress. High emission rates were frequently observed during June, which were not related to plant physiological or environmental factors but did not occur below pre-dawn leaf water potentials of −2 MPa, the approximate zero carbon assimilation point in piñon pine. Emission rates were also not under environmental or plant physiological control when pre-dawn leaf water potential was less than −2 MPa. Our results suggest that drought may override the effects of temperature on monoterpene emissions and tissue concentrations, and that the influence of drought may occur through metabolic processes sensitive to the overall needle carbon balance.

Open access
Continental-scale consequences of tree die-offs in North America: identifying where forest loss matters most

Abigail L S Swann et al 2018 Environ. Res. Lett. 13 055014

Regional-scale tree die-off events driven by drought and warming and associated pests and pathogens have occurred recently on all forested continents and are projected to increase in frequency and extent with future warming. Within areas where tree mortality has occurred, ecological, hydrological and meteorological consequences are increasingly being documented. However, the potential for tree die-off to impact vegetation processes and related carbon dynamics in areas remote to where die-off occurs has rarely been systematically evaluated, particularly for multiple distinct regions within a given continent. Such remote impacts can occur when climate effects of local vegetation change are propagated by atmospheric circulation—the phenomena of ‘ecoclimate teleconnections’. We simulated tree die-off events in the 13 most densely forested US regions (selected from the 20 US National Ecological Observatory Network [NEON] domains) and found that tree die-off even for smaller regions has potential to affect climate and hence Gross Primary Productivity (GPP) in disparate regions (NEON domains), either positively or negatively. Some regions exhibited strong teleconnections to several others, and some regions were relatively sensitive to tree loss regardless of what other region the tree loss occurred in. For the US as a whole, loss of trees in the Pacific Southwest—an area undergoing rapid tree die-off—had the largest negative impact on remote US GPP whereas loss of trees in the Mid-Atlantic had the largest positive impact. This research lays a foundation for hypotheses that identify how the effects of tree die-off (or other types of tree loss such as deforestation) can ricochet across regions by revealing hot-spots of forcing and response. Such modes of connectivity have direct applicability for improving models of climate change impacts and for developing more informed and coordinated carbon accounting across regions.