Keywords

Keyword=Kuiper Belt objects: individual (Pluto, Charon)

Open all abstracts 1–2 of 2 results
On the Existence of Regular and Irregular Outer Moons Orbiting the Pluto–Charon System

Erez Michaely et al 2017 ApJ 836 27

The dwarf planet Pluto is known to host an extended system of five co-planar satellites. Previous studies have explored the formation and evolution of the system in isolation, neglecting perturbative effects by the Sun. Here we show that secular evolution due to the Sun can strongly affect the evolution of outer satellites and rings in the system, if such exist. Although precession due to extended gravitational potential from the inner Pluto–Charon binary quench such secular evolution up to acrit ∼ 0.0035 au (∼0.09 RHill the Hill radius; including all of the currently known satellites), outer orbits can be significantly altered. In particular, we find that co-planar rings and satellites should not exist beyond acrit; rather, satellites and dust particles in these regions secularly evolve on timescales ranging between 104 and 106 years, and quasi-periodically change their inclinations and eccentricities through secular evolution (Lidov–Kozai oscillations). Such oscillations can lead to high inclinations and eccentricities, constraining the range where such satellites (and dust particles) can exist without crossing the orbits of the inner satellites or crossing the outer Hill stability range. Outer satellites, if such exist are therefore likely to be irregular satellites, with orbits limited to be non-circular and/or highly inclined. Current observations, including the recent data from the New-Horizons mission explored only inner regions (<0.0012 au) and excluded the existence of additional satellites; however, the irregular satellites discussed here should reside farther, in the yet uncharted regions around Pluto.

CIRCUMBINARY CHAOS: USING PLUTO'S NEWEST MOON TO CONSTRAIN THE MASSES OF NIX AND HYDRA

Andrew N. Youdin et al 2012 ApJ 755 17

The Pluto system provides a unique local laboratory for the study of binaries with multiple low-mass companions. In this paper, we study the orbital stability of P4, the most recently discovered moon in the Pluto system. This newfound companion orbits near the plane of the Pluto–Charon (PC) binary, roughly halfway between the two minor moons Nix and Hydra. We use a suite of few body integrations to constrain the masses of Nix and Hydra, and the orbital parameters of P4. For the system to remain stable over the age of the solar system, the masses of Nix and Hydra likely do not exceed 5 × 1016 kg and 9 × 1016 kg, respectively. These upper limits assume a fixed mass ratio between Nix and Hydra at the value implied by their median optical brightness. Our study finds that stability is more sensitive to their total mass and that a downward revision of Charon's eccentricity (from our adopted value of 0.0035) is unlikely to significantly affect our conclusions. Our upper limits are an order of magnitude below existing astrometric limits on the masses of Nix and Hydra. For a density at least that of ice, the albedos of Nix and Hydra would exceed 0.3. This constraint implies they are icy, as predicted by giant impact models. Even with these low masses, P4 only remains stable if its eccentricity e ≲ 0.02. The 5:1 commensurability with Charon is particularly unstable, combining stability constraints with the observed mean motion places the preferred orbit for P4 just exterior to the 5:1 resonance. These predictions will be tested when the New Horizons satellite visits Pluto. Based on the results for the PC system, we expect that circumbinary, multi-planet systems will be more widely spaced than their singleton counterparts. Further, circumbinary exoplanets close to the three-body stability boundary, such as those found by Kepler, are less likely to have other companions nearby.