This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Volume 252

2017

Previous issue Next issue

CAR2017 International Congress of Automotive and Transport Engineering - Mobility Engineering and Environment 8–10 November 2017, Pitesti, Romania

Accepted papers received: 04 October 2017
Published online: 23 October 2017

Preface

011001
The following article is Open access

The Congress of Automotive and Road Transport Engineering (in short, CAR) is a traditional scientific event initiated by University of Piteşti, Romania in 1978. CAR is reaching its 11th edition in 2017 and is part of the series of similar annual scientific events organized by Society of Automotive Engineers of Romania (SIAR) and various Romanian universities with interests in Automotive and Transport Engineering. Since its 7th edition from 1997, CAR gained the patronage of FISITA (Fédération Internationale des Sociétés d'Ingénieurs des Techniques de l'Automobile) and EAEC (European Automotive Engineers Cooperation).

Considering that now, more than ever, there is an obvious need to strike a balance between natural increase of road mobility and environmental protection, CAR2017 was focused on Mobility Engineering and Environment. Moreover, the motto of the Congress (Academia, Industry and Government: together for automotive and transport engineering development) was an indication of the organizers belief that there is a need for meetings and discussions about the current and future challenges of the automotive and transport world in order to find the best solutions. In other words, we are convinced that the challenges of the future can only be overcome if these tripartite discussions occur permanently.

Author details and signature are available in this pdf.

011003
The following article is Open access

All papers published in this volume of IOP Conference Series: Materials Science and Engineering have been peer reviewed through processes administered by the proceedings Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing.

Accident research and analysis. Active and passive safety. Vehicle dynamics

012001
The following article is Open access

and

Vehicle-pedestrian collisions result in a substantial number of pedestrian fatalities and injuries worldwide. Concern continues to limit and reduce the tragic consequences suffered by pedestrians involved in road accidents, caused the vehicle-pedestrian accident reconstruction become an important area and distinctly outlined in the reconstruction of road incidents involving vehicle. This paper analyzes the dynamics of vehicle-pedestrian impact influence over pedestrian biomechanics, which is directly connected with the severity of injury after contact with the vehicle profile and with the place where the pedestrian is projected. The main goal of this paper is to highlight some features of reconstruction of road accidents involving pedestrian, looking at the kinematics and dynamics of pedestrian impact for a better understanding of the phenomena that occur. The study on the dynamics and biomechanics of the pedestrian hit by the vehicle is useful in order to understand how the injuries, including the lethal ones, are generated in the collision, what is essential in road accidents reconstruction.

012002
The following article is Open access

In all fields cost is very important and the increasing amount of data that are needed for active safety systems, like ADAS, lead to implementation of some complex and powerful unit for processing raw data. In this manner is necessary a cost-effective method to estimate the maximum available tire road friction during acceleration and braking by continuous monitoring the vehicle dynamics and driver behavior. The method is based on the hypothesis that short acceleration and braking periods can indicate vehicle dynamics, and thus the available tire road friction coefficient, and also human behavior and his limits. Support for this hypothesis is found in the literature and is supported by the result of experiments conducted under different conditions and seasons.

012003
The following article is Open access

, , and

For the development of effective vehicle related safety solutions to improve cyclist protection, kinematic predictions are essential. The objective of the paper was the elaboration of a simple mathematical model for predicting cyclist kinematics, with the advantage of yielding simple results for relatively complicated impact situations. Thus, the use of elaborated math software is not required and the calculation time is shortened. The paper presents a modelling framework to determine cyclist kinematic behaviour for the situations in which a M1 category vehicle frontally hits the rear part of a bicycle. After the primary impact between the vehicle front bumper and the bicycle, the cyclist hits the vehicle's bonnet, the windscreen or both the vehicle's bonnet and the windscreen in short succession. The head-windshield impact is often the most severe impact, causing serious and potentially lethal injuries. The cyclist is represented by a rigid segment and the equations of motion for the cyclist after the primary impact are obtained by applying Newton's second law of motion. The impact time for the contact between the vehicle and the cyclist is yielded afterwards by formulating and intersecting the trajectories for two points positioned on the cyclist's head/body and the vehicle's windscreen/bonnet while assuming that the cyclist's equations of motion after the primary impact remain the same. Postimpact kinematics for the secondary impact are yielded by applying linear and angular momentum conservation laws.

012004
The following article is Open access

, , and

The aim of this paper is to study the effects of different front occupant backseat's rigidities in the case of a rear end collision using a multibody virtual model of an occupant. Simulation will be conducted in PC Crash, the most common accident reconstruction software using a MADYMO multibody occupant to simulate kinematics and dynamic of the passenger. Different backseat torques will be used to see how this will influence the acceleration in the head and torso of the occupant. Also, a real crash test is made to analyze the kinematics of the occupant. We believe that the softer seat's rigidity will reduce not only the head's acceleration but also reduces the effect of "whiplash" upon the neck due to the fact that the backseat will rotate backwards increasing its displacement and absorb some of the energy generated by the collision. Although a softer seat could reduce the head's acceleration, a broken seat will increase it due to the fact that the impact of the backseat with the vehicle's rear seats will generate a second collision. So, in order to achieve a lower acceleration, a controlled torque is recommended and a controlled angular displacement of the backseat is to be used.

012005
The following article is Open access

and

Road accidents represent an aspect of road traffic that may lead negative consequences. In order to solve the problems associated with such events, interdisciplinary knowledge is called for, complex teams of engineers, doctors, lawyers, experts working together in order to reduce the severity of such events. Road safety is a continuous concern for both experts and various government organizations with the aim of protecting the lives of the participants in traffic. It has been estimated that the costs of traffic accidents account for 1-3% of a country GDP, depending on the level of country development [26]. In this paper we analyze a particular class of cases of injuries caused to passengers caused by the inflation of the frontal airbag when they are with the passenger out of position. Head kinematics, accelerations, as well as the severity of injuries expressed by HIC, as related to the AIS scale have been analysed.

012006
The following article is Open access

, and

The present paper is centred on the research of deceleration measured at the level of the lower leg during a pedestrian impact in multiple load cases. Basically, the used methodology for physical test setup is similar to EuroNCAP and European Union regulatory requirements. Due cost reduction reasons, it was not used a pneumatic system in order to launch the lower leg impactor in the direction of the vehicle front-end. During the test it was used an opposite solution, namely the vehicle being in motion, aiming the standstill lower leg impactor. The impactor has similar specifications to those at EU level, i.e. dimensions, materials, and principle of measurement of the deceleration magnitude. Therefore, all the results obtained during the study comply with the requirements of both EU regulation and EuroNCAP. As a limitation, due to unavailability of proper sensors in the equipment of the lower leg impactor, that could provide precise results, the bending angle, the shearing and the detailed data at the level of knee ligaments were not evaluated. The knee joint should be improved for future studies as some bending angles observed during the post processing of several impact video files were too high comparing to other studies. The paper highlights the first pedestrian impact physical test conducted by the author, following an extensive research in the field. Deceleration at the level of pedestrian knee can be substantially improved by providing enough volume between the bumper fascia and the front-end structure and by using pedestrian friendly materials for shock absorbers, such as foams.

012007
The following article is Open access

and

Crash tests are useful for validating computer simulations of road traffic accidents. One of the most important parameters measured is the acceleration. The evolution of acceleration versus time, during a crash test, form a crash pulse. The correctness of the crash pulse determination depends on the data acquisition system used. Recommendations regarding the instrumentation for impact tests are given in standards, which are focused on the use of accelerometers as impact sensors. The goal of this paper is to present the device and software developed by authors for data acquisition and processing. The system includes two accelerometers with different input ranges, a processing unit based on a 32-bit microcontroller and a data logging unit with SD card. Data collected on card, as text files, is processed with a dedicated software running on personal computers. The processing is based on diagrams and includes the digital filters recommended in standards.

012008
The following article is Open access

and

This article presents the experimental results of crash test of Fiat Cinquecento performed by Allgemeiner Deutscher Automobil-Club (ADAC) and the simulation results obtained with program called V-SIM for default settings. At the next stage a wheel was blocked and the parameters of contact between the vehicle and the barrier were changed for better results matching. The following contact parameters were identified: stiffness at compression phase, stiffness at restitution phase, the coefficients of restitution and friction. The changes lead to various post-impact positions, which shows sensitivity of the results to contact parameters. V-SIM is commonly used by expert witnesses who tend to use default settings, therefore the companies offering simulation programs should identify those parameters with due diligence.

012009
The following article is Open access

, , and

With increasing level of complexity and automation in the area of automotive engineering, the simulation of safety relevant Advanced Driver Assistance Systems (ADAS) leads to increasing accuracy demands in the description of tyre contact forces. In recent years, with improvement in tyre simulation, the needs for coping with tyre temperatures and the resulting changes in tyre characteristics are rising significantly. Therefore, experimental validation of three different temperature model approaches is carried out, discussed and compared in the scope of this article. To investigate or rather evaluate the range of application of the presented approaches in combination with respect of further implementation in semi-physical tyre models, the main focus lies on the a physical parameterisation. Aside from good modelling accuracy, focus is held on computational time and complexity of the parameterisation process. To evaluate this process and discuss the results, measurements from a Hoosier racing tyre 6.0 / 18.0 10 LCO C2000 from an industrial flat test bench are used. Finally the simulation results are compared with the measurement data.

012010
The following article is Open access

, , and

Automotive ergonomics is a set of knowledge which has a task to design a vehicle to make the passengers feel comfortable. Interior packaging represents an important stage in the vehicle design process, in order to enable the driver to every important aspect of movement. During the process of driving, the driver performs various movements of arms and legs, leading to a certain fatigue. Each seating position in the vehicle, contain certain boundary conditions, and for that reason it was necessary to examine how the seating position affects the driver possibilities. In this paper, the pedal forces were determined by application of Ramsis human model. Different human populations were taken into account. Correlation between subjects' anthropometrics measures and the foot pedal force pedal was observed. Obtained results were significant input data for vehicle packaging.

012011
The following article is Open access

, and

The main objective of the paper is to capture the behavior of a vehicle on a race circuit, depending on the different inflation pressures of the tires (underpressure and overpressure). Taking into account that in the cornering the forces and the moments of inertia rise due the vehicle mass, and an inertial force decomposes in two components, one in the longitudinal plane and one in the transverse plane, the work aims the assessing the lateral forces that appear, to the contact between the tires and the tread, depending on the inflation pressure. The results have a graphic interpretation, enabling a comparative study of them. Results have been obtained regarding the lateral tire forces that occur between the tire and the road. The differences between these forces were particularly noticeable in cornering, and the differences between these forces were interpreted according to the tire inflation pressure.

012012
The following article is Open access

and

Reducing the effects of traffic accidents over the occupants is a major objective of collision attempts. Impacts between the car and the pole are very dangerous for the physical integrity of the car's occupants. To minimalize the effects of such events on the passengers of a vehicle, a whole series of efforts by both designers and experienced engineers led to increasingly the vehicles safety. The main aim of these paper is to quantify the influences over the car passengers of loads involved by car against pole collisions using the same car model at different speeds. Also, this kind on occupant influences were study using a small car model. Other goal of the paper was the study of the cars stiffness in frontal collision against the pole. The paper's experimental results were obtained by support of DSD, Dr. Steffan Datentechnik GmbH - Linz, Austria. The described tests were performed in full test facility of DSD Linz, in "Easter 2016 PC-Crash Seminar". Cars accelerations, velocities, rotations angles after pole impact were registered and discussed. The novelty of the paper consists in studies referred for the same car model involved in car against pole collisions at different impact speeds. Paper's conclusions can be future used for car safety improvement.

012013
The following article is Open access

and

This article presents an influence of contact parameters on the collision pattern of vehicles. In this case a crash of two Fiat Cinquecentos with perpendicular median planes was simulated. The first vehicle was driven with a speed 50 km/h and crashed into the other one, standing still. It is a typical collision at junctions. For the first simulation, the default parameters of the V-SIM simulation program were assumed and then the parameters identified from the crash test of a Fiat Cinquecento, published by ADAC (Allgemeiner Deutscher Automobil-Club) were used. Various post-impact movements were observed for both simulations, which demonstrates a sensitivity of the simulation results to the assumed parameters. Applying the default parameters offered by the program can lead to inadequate evaluation of the collision part due to its only approximate reconstruction, which in consequence, influences the court decision. It was demonstrated how complex it is to reconstruct the pattern of the vehicles' crash and what problems are faced by expert witnesses who tend to use default parameters.

012014
The following article is Open access

and

The tyre dynamic rolling radius is an extremely important parameter for vehicle dynamics, for operation of safety systems as ESP, ABS, TCS, etc., for road vehicle research and development, as well as for validation or as an input parameter of automotive simulations and models. The paper investigates the dynamic rolling radii of passenger car tyre and the influence of rolling speed and inflation pressure on their magnitude. The measurement of dynamic rolling radii has been performed on a chassis dynamometer test rig. The dynamic rolling radii have been measured indirectly, using longitudinal rolling speed and angular velocity of wheel. Due to the subtle effects that the parameters have on rolling radius magnitude, very accurate equipment has to be used. Two different methods have been chosen for measuring the wheel angular velocity: the stroboscopic lamp and the incremental rotary encoder. The paper shows that the stroboscopic lamp has an insufficient resolution, therefore it was no longer used for experimental investigation. The tyre dynamic rolling radii increase with rolling speed and with tyre inflation pressure, but the effect of pressure is more significant. The paper also makes considerations on the viability of simplified formulae from literature for calculating the tyre dynamic rolling radius.

012015
The following article is Open access

and

In the modern context of automobile integration with the emerging technologies of the interconnected society, the interaction between tyre and road is an element of major importance for automobile safety systems such as the intelligent tyres, as well as for passenger comfort, fuel economy, environmental protection, infrastructure and vehicle durability. The tyre-road contact generates the distribution of forces exerted on each unit area in the contact patch, therefore the distribution of contact stresses on three orthogonal directions. The numerical investigation of stresses distribution in the contact patch requires the development of finite element models capable of accurately describing the interaction between tyre and rolling surface. The complex finite element model developed for the 11R22.5 truck tyre has been used for investigating the influence of vertical force on the distributions of contact stresses. In addition to these contributions, the paper presents aspects related to the simulation of truck tyre radial stiffness. The influence of tyre rolling has not been taken into consideration, as the purpose of the current research is the investigation of tyre-road contact in stationary conditions.

012016
The following article is Open access

, and

Accident Reconstruction is important in the general context of increasing road traffic safety. In the casuistry of traffic accidents, those caused by tire explosions are critical under the severity of consequences, because they are usually happening at high speeds. Consequently, the knowledge of the running speed of the vehicle involved at the time of the tire explosion is essential to elucidate the circumstances of the accident. The paper presents an analytical model for the kinematics of a vehicle which, after the explosion of one of its tires, begins to skid, overturns and rolls. The model consists of two concurent approaches built as applications of the momentum conservation and energy conservation principles, and allows determination of the initial speed of the vehicle involved, by running backwards the sequences of the road event. The authors also aimed to both validate the two distinct analytical approaches by calibrating the calculation algorithms on a case study

012017
The following article is Open access

, and

Traffic accidents are influenced by various factors, yet, the highest impacting ones are related to vehicle impact speed and collision type. Also, passive vehicle safety systems play a significant role upon the injuries suffered by vehicle occupants. Under the circumstances, a particularly important aspect to consider when using such systems is the position of the vehicle's driver and its occupants. In what follows we embark upon an in-depth analysis in order to investigate the contact effects between the seat belt and the driver, under a dynamic regime. We set out to identify the variation of the kinematic and dynamic parameters for both the driver and the seat belt via comparative analyses between the normal position of the driver and some other out of position instances, considered as critical.

012018
The following article is Open access

, , and

The heavy vehicle industry has today no requirement to provide a tire pressure monitoring system by law. This has created issues surrounding unknown tire pressure and thread depth during active service. There is also no standardization for these kind of systems which means that different manufacturers and third party solutions work after their own principles and it can be hard to know what works for a given vehicle type. The objective is to create an indirect tire monitoring system that can generalize a method that detect both incorrect tire pressure and thread depth for different type of vehicles within a fleet without the need for additional physical sensors or vehicle specific parameters. The existing sensors that are connected communicate through CAN and are interpreted by the Drivec Bridge hardware that exist in the fleet. By using supervised machine learning a classifier was created for each axle where the main focus was the front axle which had the most issues. The classifier will classify the vehicles tires condition and will be implemented in Drivecs cloud service where it will receive its data. The resulting classifier is a random forest implemented in Python. The result from the front axle with a data set consisting of 9767 samples of buses with correct tire condition and 1909 samples of buses with incorrect tire condition it has an accuracy of 90.54% (0.96%). The data sets are created from 34 unique measurements from buses between January and May 2017. This classifier has been exported and is used inside a Node.js module created for Drivecs cloud service which is the result of the whole implementation. The developed solution is called Indirect Tire Monitoring System (ITMS) and is seen as a process. This process will predict bad classes in the cloud which will lead to warnings. The warnings are defined as incidents. They contain only the information needed and the bandwidth of the incidents are also controlled so incidents are created within an acceptable range over a period of time. These incidents will be notified through the cloud for the operator to analyze for upcoming maintenance decisions.

012019
The following article is Open access

and

In this paper is presented a study for the envelope's properties settlement regarding the process of hydroplaning. The phenomenon of hydroplaning is calculable with the aid of the equations of motions for the viscid fluid in streamline regime for thin layers of fluid supposed to crush. Conclusively this paper offers the base of determinations prequisites to settle the envelope's properties concerning to the phenomenon of hydroplaning.

012020
The following article is Open access

and

The presented study was directed at two types of airbag miss-deployments: late deployment and non-deployment. Late deployment can be a product of override or underride road traffic accidents. Non-deployment can be a product of technical failure or trigger algorithm's inability to correctly assume the state of the accident to happen. In order to analyse the phenomena through physical tests, a specialized test device was used for a series of 8 non-deployment tests and a series of 4 airbag firing tests, totalling 12 tests. Acceleration based data was recorded and analysed for the movement of the device part simulating the driver head. High speed video recording was used to analyse the mechanics of airbag deployment and correlate with the acceleration based data. It has been determined, in the limitations of the laboratory testing environment, a significant variation of the time frame for the airbag deployments, despite using similar testing conditions and identical tested products. Also, the initial time frame for airbag deployment delay was overshadowed by other factors such as time to impact.

012021
The following article is Open access

, , , and

Most common road safety engineering deficiencies identified by the authors in South Eastern Europe, including Romania, have been collected together and presented in this paper as a part of road safety unbreakably connected to the safe system approach (driver-vehicle-road). In different South Eastern Europe countries Road Safety Audit (RSA), Road Safety Inspection (RSI), as well as Black Spot Management (BSM) was introduced and practical implementation experience enabled the authors to analyze the road safety problems. Typical road safety engineering deficiencies have been presented in 8 different subsections, based on PIARC (World Road Association) RSA approach. This paper presents collected common road safety problems with relevant illustrations (real pictures) with associated accident risks.

012022
The following article is Open access

, and

The aim of this work is to present a comparison of the main semi active suspension systems used in a passenger car, after having optimized the suspension systems of the vehicle model in respect with ride comfort and road holding. Thus, a half car model, equipped with controllable dampers, along with a seat and a driver was implemented. Semi-active suspensions have received a lot of attention since they seem to provide the best compromise between cost (energy consumption, actuators/sensors hardware) and performance in comparison with active and passive suspensions. In this work, the semi active suspension systems studied are comfort oriented and consist of (a) the two version of Skyhook control (two states skyhook and skyhook linear approximation damper), (b) the acceleration driven damper (ADD), (c) the power driven damper (PDD), (d) the combination of Skyhook and ADD (Mixed Skyhook-ADD) and (e) the combination of the two with the use of a sensor. The half car model equipped with the above suspension systems was excited by a road bump, and was optimized using genetic algorithms (GA) in respect with ride comfort and road holding. This study aims to highlight how the optimization of the vehicle model could lead to the best compromise between ride comfort and road holding, overcoming their well-known trade-off. The optimum results were compared with important performance metrics regarding the vehicle's dynamic behaviour in general.

012023
The following article is Open access

, , and

This paper proposes a plan mechanical model for the vehicles with two axles, taking into account the lateral deflection of the tire. For this mechanical model are determined two mathematical models under the nonlinear differential equations systems form without taking into account the action of the driver and taking into account. The analysis of driver-vehicle system consists in the mathematical description of vehicle dynamics, coupled with the possibilities and limits of the human factor. Description seeks to emphasize the significant influence of the driver in handling and stability analyzes of vehicles and vehicle-driver system stability until the advent of skidding. These mathematical models are seen as very useful tools to analyzing the vehicles stability. The paper analyzes the influence of some parameters of the vehicle on its behavior in terms of stability of dynamic systems.

Advanced engineering methods

012024
The following article is Open access

, , , and

The present paper aims at developing a measuring system for vibrations analysis of engine cylinder cover and passenger seat fixing device. Such a system is useful for analyzing the correlation, if any, between the vibrations generated by internal combustion engine and those felt by the passenger (which create a certain degree of discomfort).

012025
The following article is Open access

, and

The conventional downforce devices (with fixed geometry) of high speed vehicles have parameters such as area, angle of incidence and head resistance coefficients, all with constant values. The downforce is proportional with the square of movement speed and the power consumed for the neutralization of aerodynamic road resistance is proportional with the cube of speed. The authors carried out an analytical study of downforce, adjustable/monitored by optimum incidence (modification of incidence angle of rear wing for performance improvement).

012026
The following article is Open access

and

Shock absorbers play a key role in vehicle dynamics. Researchers have spent significant effort in order to understand phenomena associated with this component, but there are still several issues to address, in part because new technology development and design trends continually lead to new challenges, among which weight reduction is crucial. For shock absorbers, weight reduction is related to the use of new materials (e.g. composite) or new design paradigms (e.g. more complex geometry, wall thickness, etc.). All of them are directly linked to wall compliance values higher than the actual ones. The present article proposes a first analysis of the phenomena introduced by a high wall compliance, through a modelling approach and various simulations in order to understand the vehicle behaviour changes. It is shown that high values of wall compliance lead to increased hysteresis in the force-velocity curve. However, comfort, handling and ride performances are not significantly affected by this designing parameter.

012027
The following article is Open access

, and

The development of vehicles during the last decade is related to the evolution of electronic systems added in order to increase the safety and the number of services available on board, such as advanced driver-assistance systems (ADAS). Cars already have a complex computer network, with electronic control units (ECUs) connected to each other and receiving information from many sensors. The ECUs transfer an important heat power to the environment, while proper operating conditions need to be provided to ensure their reliability at high and low temperature, vibration and humidity. In a car cabin, electronic devices are usually placed in the compartment under the dashboard, an enclosed space designed for functional purposes. In the early stages of the vehicle design it has become necessary to analyse the environment under dashboard, by the use of Computational Fluid Dynamics (CFD) simulations and measurements. This paper presents the cooling of heat sinks by natural convection, a thermal and fluid simulation of the environment under the dashboard compared with test data.

012028
The following article is Open access

, , and

The paper presents the results of researches on the topological structure and geometrical analysis of the planar mechanisms with articulated bars, which are used for actuating the doors of cars. The main five types of car doors with rotate movement (folding) are presented, being described both as constructive structure and mode of operation, through suitable kinematic schemes. Some innovative solutions for vehicle door actuating mechanisms aim to use as little space as possible, which is beneficial for car parking. There are three types of car door movements: rotation, sliding and planar rotational-sliding. Most of the cars are equipped with folding doors, where the rotate movement is limited and operates horizontally. Almost all sliding doors are placed on the rear of the car (only for passengers, not for driver). Unlike rotate doors, the sliding doors require a minimum lateral space, which is an advantage, especially in parking places. In the end of the paper, a kinematic analysis of the canopy 4-bar mechanism has been performed, in order to increase the passenger comfort on the access into the vehicle.

012029
The following article is Open access

, and

The present study is focused on the life estimation of a rotating part as a component of an engine assembly namely the pulley of the coolant pump. The goal of the paper is to develop a model, supported by numerical analysis, capable to predict the lifetime of the part. Starting from functional drawing, CAD Model and technical specifications of the part a numerical model was developed. MATLAB code was used to develop a tool to apply the load over the selected area. The numerical analysis was performed in two steps. The first simulation concerned the inertia relief due to rotational motion about the shaft (of the pump). Results from this simulation were saved and the stress – strain state used as initial conditions for the analysis with the load applied. The lifetime of a good part was estimated. A defect was created in order to investigate the influence over the working requirements. It was found that there is little influence with respect to the prescribed lifetime.

012030
The following article is Open access

, and

The main steps of the present work represent a methodology of analysing various vibration effects over suspension mechanical parts of a vehicle. A McPherson type suspension from an existing vehicle was created using CAD software. Using the CAD model as input, a finite element model of the suspension assembly was developed. Abaqus finite element analysis software was used to pre-process, solve, and post-process the results. Geometric nonlinearities are included in the model. Severe sources of nonlinearities such us friction and contact are also included in the model. The McPherson spring is modelled as linear spring. The analysis include several steps: preload, modal analysis, the reduction of the model to 200 generalized coordinates, a deterministic external excitation, a random excitation that comes from different types of roads. The vibration data used as an input for the simulation were previously obtained by experimental means. Mathematical expressions used for the simulation were also presented in the paper.

012031
The following article is Open access

, , and

The thermal comfort is one of the most important aspects of the modern vehicles that can influence the safety, the fuel consumption and the pollutions regulation. The objective of this paper is to compare the global and absolute thermal comfort indexes for two vehicles with different distribution air systems inside the car cockpit, one using only front air vents, and the other using both front and rear air vents. The methodology of calculus consists in using the 3D model of the interior vehicle, generally in a CAD format. Then, using a meshing software to create the finite element model of the interior surfaces inside the cockpit and the volume of internal air. Using the obtained finite element geometry, there will be conducted a Theseus FE calculus using the given boundary conditions. The results of the numerical simulation are presented in terms of graphs and figures and also PMV, PPD and DTS thermal comfort indexes. With the obtained results, we will then create the graphs that allows us to evaluate the global and absolute thermal comfort indexes. The results of the evaluation show us that the use of the method allow us to evaluate with a greater accuracy the thermal comfort for the whole vehicle, not only for each passenger, like the standard methods. This shows us that in terms of general and absolute thermal comfort, the vehicle that use front and rear systems is better than the version that use only a front system. The thermal comfort is an important aspect to be taken into account from the beginning of the design stage of a vehicle, by choosing the right air conditioning system. In addition, by using the numerical simulation, we are able to reduce the time needed for preliminary tests and be able to provide the vehicle to the market earlier, at a lower development cost.

012032
The following article is Open access

, , and

In the beginning of the paper are briefly presented various types of semi-active and active suspensions. The advantages and disadvantages of the solutions analyzed are highlighted. There is a mathematical model for the study of an active suspension. In the next chapter we present a calculation model of active suspension controls based on elements of linear dynamic systems theory. The optimal synthesis of the dynamic system is based on a set performance criterion. At the end of the paper are presented the numerical results obtained for a two-degree system model used in several configurations.

012033
The following article is Open access

, and

The paper presented deals with the challenges occurring during the education of the new digital generation of students in the area of engineering subjects. This new situation in teaching technologies imposes the obtaining of appropriate feedback from the students during the lectures and tutorials. The objective of the research is to investigate the impact of the application of video games, graphical presentations, animations, etc. The feedback received in such interactive way gives the opportunity to improve the teaching models and to increase the active participation of the students during the lectures and tutorials.

012034
The following article is Open access

, and

The paper presents the application aspects of computer technologies concerning the process of creating theoretical contact models of planetary gear trains using Abaqus/Explicit. The necessary assumptions, constrains and specific features of these gear drives are discussed in details. The models created are appropriate and useful tools for computer simulation research of the dynamic behaviour of planetary gear trains.

012035
The following article is Open access

, and

The aim of the study is to investigate how the aerodynamic resistance is influenced by the convoy rolling and to see how much this is possible by varying the distance between trucks. Then to see how the gains correlate with the position occupied by the truck in the convoy. The study starts from current research on the premises of running in convoy. Aerodynamic analysis was performed using software finite element of Computational Fluid Dynamics (CFD) type, where it was modeled the convoy rolling of a variable number of trucks. The number of trucks and the distance between them was varied in the model in order to acquire an understanding of the flow field around the trucks and how the distance between them can improve the aerodynamic parameters. The results are presented in the form of streamlines of the air, which indicates the air volume travel speed and direction and of the pressure distribution on the surface of the body. The most significant drop in pressure on the front surface was obtained for the second truck of the convoy, whereas for the following ones the reduction was less important. The participation in a convoy of more than two trucks is justified by the reduction of the whirls that appear and by the uniform air flow. The main advantage of running in convoy mode is to decrease aerodynamic resistance, with beneficial consequences on economic and ecological parameters. Continuing work from here on, it could be analyzed the impact of changing the distance between trucks on the aerodynamic coefficient. The results of CFD simulations need to be verified with experimental data, such as wind-tunnel test, to ensure reliability of the results.

012036
The following article is Open access

and

The comfort of vehicles, regardless of their type is represent a requirement to by fulfilled in the context of current technological developments special vehicles generally move under different soil, time, or season conditions, and the land in which the vehicles move is complex and varied in the physical structure. Due to the high level of involvement in the driveability, safety and comfort of automotive, suspension system is a key factor with major implications for vibration and noise, affecting the human body. The objective of the research is related to determining the test cycles of special vehicles that are approaching real situations, to determine the level of comfort. The evaluate of the degree of comfort will be realized on acceleration values recorded, especially the vertical ones that have the highest influence on the human body. Thus, in this way the tests can be established needed to determine the level of comfort required for each particular type of special vehicle. The utility of the test cycles to optimize comfort is given to the accurate identification of the specific test needs, depending on the each vehicle.

012037
The following article is Open access

, and

In this paper, a half car model of with nonlinear suspension systems is selected in order to study the vertical vibrations and optimize its suspension system with respect to ride comfort and road holding. A road bump was used as road profile. At first, the optimization problem is solved with the use of Genetic Algorithms with respect to 6 optimization targets. Then the k – ε optimization method was implemented to locate one optimum solution. Furthermore, an alternative approach is presented in this work: the previous optimization targets are separated in main and supplementary ones, depending on their importance in the analysis. The supplementary targets are not crucial to the optimization but they could enhance the main objectives. Thus, the problem was solved again using Genetic Algorithms with respect to the 3 main targets of the optimization. Having obtained the Pareto set of solutions, the k – ε optimality method was implemented for the 3 main targets and the supplementary ones, evaluated by the simulation of the vehicle model. The results of both cases are presented and discussed in terms of convergence of the optimization and computational time. The optimum solutions acquired from both cases are compared based on performance metrics as well.

Advanced materials, manufacturing technologies and logistics

012038
The following article is Open access

, , and

Welding copper and its alloys is usually difficult to join by conventional fusion welding processes because of high thermal diffusivity of the copper, alloying elements, necessity of using a shielding gas and a clean surface. To overcome this inconvenience, Friction Stir Welding (FSW), a solid state joining process that relies on frictional heating and plastic deformation, is used as a feasible welding process. In order to achieve an increased welding speed and a reduction in tool wear, this process is assisted by another one (WIG) which generates and adds heat to the process. The aim of this paper is to identify the influence of the additional heat on the process parameters and on the welding joint properties (distribution of the temperature, hardness and roughness). The research includes two experiments for the FSW process and one experiment for tungsten inert gas assisted FSW process. The outcomes of the investigation are compared and analysed for both welding variants. Adding a supplementary heat source, the plates are preheated and are obtain some advantages such as reduced forces used in process and FSW tool wear, faster and better plasticization of the material, increased welding speed and a proper weld quality.

012039
The following article is Open access

, , , and

Industry dynamics, driven by economic and social requirements, must generate more interest in technological optimization, capable of ensuring a steady development of advanced technical means to equip machining processes. For these reasons, the development of tools, devices, work equipment and control, as well as the modernization of machine tools, is the certain solution to modernize production systems that require considerable time and effort. This type of approach is also related to our theoretical, experimental and industrial applications of recent years, presented in this paper, which have as main objectives the elaboration and use of mathematical models, new calculation methods, optimization algorithms, new processing and control methods, as well as some structures for the construction and configuration of technological equipment with a high level of performance and substantially reduced costs..

012040
The following article is Open access

, and

Fused deposition modelling (FDM) technology was investigated in order to produce a part designed to support a test load without permanent deformation. A topology optimization script was developed in order to define the final shape of the part. The solver used for the numerical analysis is LS-Dyna (implicit formulation). The algorithm follows the element removal based on the stress state and it can be very simply implemented. This solution of developing a custom code was adopted because plastic strain state was monitored and this is not yet implemented in other topology optimization applications. The results of the traction test were assembled and investigated in order to outline some of the typical parameters used for mechanical characterization. As a general overview of the results it was found that the parts manufactured using a 45°/45° stacking configuration are stronger that the ones manufactured using 0°/90° stacking configuration.

012041
The following article is Open access

, , and

Friction Stir Welding (FSW) is an innovative solid-state joining process. This process was, in first time, develop to join the similar aluminum plates but now the technology can be used to weld a large area of materials similar or dissimilar. Taking these into account FSW process, for dissimilar materials are increasingly required, more than traditional arc welding, in industrial environment. More than that FSW is used in aeronautics industry because of very good result and very good weldability between aluminum alloy used at building of airplanes, where the body of airplane are 20% aluminum alloy and this percent can be increaser in future. In this paper is presented an experimental study which includes welding three dissimilar aluminum alloy, with different properties, used in aeronautics industry, this materials are: AA 2024, AA6061 and AA7075. After welding with different parameters, the welding join and welding process will be analyzed considering process temperature, process vertical force, and roughnessof welding seams, visual aspect and microhardness.

012042
The following article is Open access

, and

Vehicle noise is composed mainly of wheel-road noise and noise from the power unit. At low speeds power unit noise dominates while at high speeds wheel-road noise dominates as wheel-road noise level increases approximately logarithmically with speed. The wheel liner is designed as a component of the vehicle that has a multiple role. It has to prevent the dirt or water from the road surface that are engaged by the wheel to access the engine/front bay. Same time it has the important role to reduce perceived noised in the passenger's compartment that comes from the wheel-road interaction. Progress in plastic injection moulding technology allowed for new structures to be developed – nonwoven materials in combination with a PP based carrier structure which benefits from a cell structure caused by MuCell injection moulding. The results are light parts with increased sound absorption performances. An adapted combination of materials and production processes can provide the solution for stiff yet soundproofing structures valued for modern vehicles. Sound absorption characteristics of materials used for wheel liners applications were reported in this study. Different polypropylene and polyester fibre-based thermally bonded nonwovens varying in weight and thickness were investigated. Having as a background the performances of the nonwoven material the microcellular structure was part of the analysis. Acoustical absorptive behaviour was explained by analysing the results obtained using the impedance tube and correlating with the knowledge of materials structure.

012043
The following article is Open access

, , and

This paper presents a study about the factors that influence the working performances of workers in the automotive industry. These factors regard mainly the transportations conditions, taking into account the fact that a large number of workers live in places that are far away of the enterprise. The quantitative data obtained from this study will be generalized by using a neural network, software simulated. The neural network is able to estimate the performance of workers even for the combinations of input factors that had been not recorded by the study. The experimental data obtained from the study will be divided in two classes. The first class that contains approximately 80% of data will be used by the Java software for the training of the neural network. The weights resulted from the training process will be saved in a text file. The other class that contains the rest of the 20% of experimental data will be used to validate the neural network. The training and the validation of the networks are performed in a Java software (TrainAndValidate java class). We designed another java class, Test.java that will be used with new input data, for new situations. The experimental data collected from the study. The software that simulated the neural network. The software that estimates the working performance, when new situations are met. This application is useful for human resources department of an enterprise. The output results are not quantitative. They are qualitative (from low performance to high performance, divided in five classes).

012044
The following article is Open access

and

Due to environment and sustainability regulation in the last decades considerable performance in green technology in the field of materials science through the development of biocomposites could be noticed. Thus, the development of high-performance materials produced from natural resources expands worldwide. This can be attributed mainly due to their assets compared to their synthetic contourparts like low cost, low weight, less damage to processing equipment, improved surface finish of moulded parts composite, good mechanical properties, biodegradability, abundant and renewable resources. Natural fibres are valuable and versatile resources with multiple advantages.

Nowadays all the more, the automotive industry is under increasing pressure to fulfill environmental and performance demands and higher fuel efficiency at competitive costs. Automakers recognize potential in biocomposites if these materials can offer the same performance as traditional composites but with lower weight. Additional they exhibit non-brittle fracture on impact, which is another significant requirement for automotive sector. Other drivers that scores for use of natural fibres reinforced polymer composites (NFRPC) in automotive applications imply reduced waste disposal, reduction of greenhouse gas emission and Life Cycle Consideration.

In spite of their benefits, the significant challenge for producers and supplier to handle with natural fiber reinforced polymer composites resides in large inconsistency of their properties. The chemical composition of vegetal fibres relies on several factors comprising fiber variety, time of harvesting, climatic history, soil characteristics and fibre processing technology. All these factors exert an influence on their final properties when used as reinforcements in biocomposite materials.

In this review a wide range of issues is addressed with special reference to mechanical properties of fibres, interface adhesion and environmental implication of NFRPC. The discussion on the cellulosic/lignocellulosic fibre properties is conducted in order to relate their chemical composition, microstructure and mechanical properties and to understand their use and limits as reinforcements in composite materials.

The variation within the mechanical properties of natural fibres is a challenge towards designing predictable components for industry since the engineers are accustomed to the precise and reproducible properties of synthetic fibres.

The hydrophilic nature of lignocellulosic fibres causes poor resistance to moisture and incompatibility to hydrophobic polymer matrix. As a consequence, this incompatibility causes a weak fibre/matrix interface, which consecutively leads to diminished mechanical properties of the biocomposites. Therefore, it is important to ensure a good adhesion between matrix and fibres to enhance the mechanical strength of NFRPC.

This study aims to provide an overview of the greener surface treatments without use of hazardous chemicals, with emphasize on the enzymatic surface modification of natural fibres. The effectiveness of the treatment on the mechanical properties of the resulting NFRPC is also reviewed.

Environmental impact of NFRPC is another important issue addressed in this review. A comparison of the environmental impacts between the NFRPC and SFRPC applied in the automobile sector, based on LCA studies, will be traced.

012045
The following article is Open access

, , and

Presently, in the automotive industry, the tendency is to adapt permanently to the changes and introduce the market tendency in the new products that leads of the customer satisfaction. Many quality techniques were adopted in this field to continuous improvement of product and process quality and advantages were also gained. The present paper has focused on possibilities that offers the use of Quality Assurance Matrix (QAM) and Quality Control Story (QC Story) to provide largest protection against nonconformities in the production process, throughout a case study in the automotive industry. There is a direct relationship from the QAM to a QC Story analysis. The failures identified using QAM are treated with QC Story methodology. Using this methods, will help to decrease the PPM values and will increase the quality performance and the customer satisfaction.

012046
The following article is Open access

and

Today there is used an overwhelming number of different risk analyses techniques with acronyms such as: FMEA (Failure Modes and Effects Analysis) and its extension FMECA (Failure Mode, Effects, and Criticality Analysis), DRBFM (Design Review by Failure Mode), FTA (Fault Tree Analysis) and and its extension ETA (Event Tree Analysis), HAZOP (Hazard & Operability Studies), HACCP (Hazard Analysis and Critical Control Points) and What-if/Checklist. However, the most used analysis techniques in the mechanical and electrical industry are FMEA and FTA. In FMEA, which is an inductive method, information about the consequences and effects of the failures is usually collected through interviews with experienced people, and with different knowledge i.e., cross-functional groups. The FMEA is used to capture potential failures/risks & impacts and prioritize them on a numeric scale called Risk Priority Number (RPN) which ranges from 1 to 1000. FTA is a deductive method i.e., a general system state is decomposed into chains of more basic events of components. The logical interrelationship of how such basic events depend on and affect each other is often described analytically in a reliability structure which can be visualized as a tree. Both methods are very time-consuming to be applied thoroughly, and this is why it is oftenly not done so. As a consequence possible failure modes may not be identified. To address these shortcomings, it is proposed to use a combination of FTA and FMEA.

012047
The following article is Open access

, , , and

The modern concept for the evolution of manufacturing systems requires multi-criteria optimization of technological processes and equipments, prioritizing associated criteria according to their importance. Technological preparation of the manufacturing can be developed, depending on the volume of production, to the limit of favourable economical effects related to the recovery of the costs for the design and execution of the technological equipment. Devices, as subsystems of the technological system, in the general context of modernization and diversification of machines, tools, semi-finished products and drives, are made in a multitude of constructive variants, which in many cases do not allow their identification, study and improvement. This paper presents a case study in which the multi-criteria analysis of some structures, based on a general optimization method, of novelty character, is used in order to determine the optimal construction variant of a control device. The rational construction of the control device confirms that the optimization method and the proposed calculation methods are correct and determine a different system configuration, new features and functions, and a specific method of working to control inaccessible surfaces.

012048
The following article is Open access

, and

In this paper it is presented a numerical simulation and an experimental study of total friction torque from radial ball bearings. For this purpose it is conceived a virtual CAD model of the experimental test bench for bearing friction torque measurement. The virtual model it is used for numerical simulation in Adams software, that allows dynamic study of multi-body systems and in particularly with facility Adams Machinery of dynamic behavior of machine parts. It is manufactured an experimental prototype of the test bench for radial ball bearings friction torque measurement. In order to measure the friction torque of the tested bearings it is used an equal resistance elastic beam element, with strain gauge transducer to measure bending deformations. The actuation electric motor of the bench has the shaft mounted on two bearings and the motor housing is fixed to the free side of the elastic beam, which is bended by a force proportional with the total friction torque. The beam elastic element with strain gauge transducer is calibrated in order to measure the force occurred. Experimental determination of the friction torque is made for several progressive radial loads. It is established the correlation from the friction torque and bearing radial load. The bench allows testing of several types and dimensions of radial bearings, in order to establish the bearing durability and of total friction torque.

012049
The following article is Open access

, , and

Experimental and numerical methods to identify the linear viscoelastic properties of flax fibre reinforced epoxy (FFRE) composite are presented in this study. The method relies on the evolution of storage modulus and loss factor as observed through the frequency response. Free-free symmetrically guided beams were excited on the dynamic range of 10 Hz to 4 kHz with a swept sine excitation focused around their first modes. A fractional derivative Zener model has been identified to predict the complex moduli. A modified ply constitutive law has been then implemented in a classical laminates theory calculation (CLT) routine.

Advanced transport systems and road traffic

012050
The following article is Open access

, , and

The transport system is a powerful system with varying loads in operation coming from changes in freight and passenger traffic in different time periods. The variations are due to the specific conditions of organization and development of socio-economic activities. The causes of varying loads can be included in three groups: economic, technical and organizational. The assessing of transport demand variability leads to proper forecast and development of the transport system, knowing that the market price is determined on equilibrium between supply and demand. The reduction of transport demand variability through different technical solutions, organizational, administrative, legislative leads to an increase in the efficiency and effectiveness of transport. The paper presents a new way of assessing the future needs of transport through dynamic series. Both researchers and practitioners in transport planning can benefit from the research results. This paper aims to analyze in an original approach how a good transport forecast can lead to a better management in transport, with significant effects on transport demand full meeting in quality terms. The case study shows how dynamic series of statistics can be used to identify the size of future demand addressed to the transport system.

012051
The following article is Open access

, , and

Transport represents the sector with the fastest growing greenhouse gas emissions around the world. The main global objective is to reduce energy usage and associated greenhouse gas emissions from the transportation sector. For this study it was analyzed the road transportation system from Brasov Metropolitan area. The study was made for the transportation route that connects Ghimbav city to the main surrounding objectives. In this study ware considered four optimization measures: vehicle fleet renewal; building the detour belt for the city; road increasing the average travel speed; making bicycle lanes; and implementing an urban public transport system for Ghimbav. For each measure it was used a mathematical model to calculate the energy consumption and carbon emissions from the road transportation sector. After all four measures was analyzed is calculated the general energy consumption and CO2 reduction if this are applied from year 2017 to 2020.

012052
The following article is Open access

, , and

Road traffic congestion has become a daily phenomenon in the central area of Pitesti in the peak traffic periods. In order to achieve the mobility plan of Pitesti, an important stage is the diagnostic analysis of the road traffic. For this purpose, the urban road network was formalized through a graph containing the most important 40 intersections and traffic measurements were made at all these intersections and on the main roads connecting the peri-urban area. The data obtained by traffic macrosimulation confirmed the overloading of the street network during peak traffic hours and the analyzes made for various road traffic organization scenarios have shown that there are sustainable solutions for urban mobility only if the road network is fundamentally reconfigured (a belt outside the city and a median ring). Thus, the necessity of realizing the road passage in the Prundu neighbourhood and the finishing of the city belt by realizing the "detour West" of the city is argued. The importance of the work is that it brings scientific arguments for the realization of these road infrastructure projects, integrated in the urban mobility plan, which will base the development strategy of the Pitesti municipality.

012053
The following article is Open access

, , , and

For modelling road traffic at the level of a road network it is necessary to specify the flows of all traffic currents at each intersection. These data can be obtained by direct measurements at the traffic light intersections, but in the case of a roundabout this is not possible directly and the literature as well as the traffic modelling software doesn't offer ways to solve this issue. Two sets of formulas are proposed by which all traffic flows from the roundabouts with 3 or 4 arms are calculated based on the streams that can be measured. The objective of this paper is to develop computational programs to operate with these formulas. For each of the two sets of analytical relations, a computational program was developed in the Java operating language. The obtained results fully confirm the applicability of the calculation programs. The final stage for capitalizing these programs will be to make them web pages in HTML format, so that they can be accessed and used on the Internet. The achievements presented in this paper are an important step to provide a necessary tool for traffic modelling because these computational programs can be easily integrated into specialized software.

012054
The following article is Open access

, , and

One of the major problems facing the Pitesti city is the road congestion that occurs in the central area of the city during the peak hours. With all the measures taken in recent years - the widening of road arteries, increasing the number of parking spaces, the creation of overground road passages - it is obvious that the problem can only be solved by a new philosophy regarding urban mobility: it is no longer possible to continue through solutions to increase the accessibility of the central area of the city, but it is necessary, on the contrary, to promote a policy of discouraging the penetration of vehicles in the city center, coupled with a policy of improving the connection between urban public transport and county public transport. This new approach is also proposed in the new Urban Mobility Plan of Pitesti city, under development. The most convincing argument for the necessity of this new orientation in the Pitesti city mobility plan is based on the analysis of the current situation of passenger transport on the territory of Pitesti city: the analysis of "public transport versus private transport" reveals a very low occupancy rate for cars and the fact that the road surface required for a passenger (the dynamic area) is much higher in the case of private transport than in the case of public transport. Measurements of passenger flows and vehicle flows on the 6 penetration ways in the city have been made and the calculations clearly demonstrate the benefits of an urban public transport system connected by "transshipment buses" to be made at the edge of the city, to the county public transport system. In terms of inter-county transport, it will continue to be connected to the urban public transport system by existing bus Station, within the city: South Bus Station and North Bus Station. The usefulness of the paper is that it identifies the solutions for sustainable mobility in Pitesti city and proposes concrete solutions for the development of the integrated passenger transport system.

012055
The following article is Open access

, , , and

Comparative analysis of the models used in the literature for the fundamental traffic diagram reveals that the improvement of these models can only be achieved by taking into account the vehicle tracking models. Given that it is of great interest to model the relation between density and speed, to identify the conditions in which maximum flow can be achieved with a high operating speed and safely. For the non-homogeneous traffic, met in our country due to the lack of highways, the model describing the minimum range of vehicles was developed based on the relation of the minimum distance between vehicles taking into account the difference between the vehicle braking modes. Finally it is explained the maximum volume of traffic according to a parameter that includes the decelerations of the two vehicles, which determined the proposed use of this new concept in road traffic theory. This has made it possible to conclude that in the case of non-homogeneous traffic the volume increases only to a certain speed value, then decreases, while in the case of homogeneous traffic the volume continues to increase to a limit value. The paper argues the necessity of using this new parameter for road traffic models.

012056
The following article is Open access

The fact that the number of vehicles is increasing year after year represents a challenge in road traffic management because it is necessary to adjust the road traffic, in order to prevent any incidents, using mostly the same road infrastructure.

At this moment one-way road network provides efficient traffic flow for vehicles but it is not ideal for pedestrians. Therefore, a proper solution must be found and applied when and where it is necessary. Replacing one-way road network with two-way road network may be a viable solution especially if in the area is high pedestrian traffic.

The paper aims to highlight the influence of both, one-way and two-way urban road networks through an experimental research which was performed by using traffic data collected in the field. Each of the two scenarios analyzed were based on the same traffic data, the same geometrical conditions of the road (lane width, total road segment width, road slopes, total length of the road network) and also the same signaling conditions (signalised intersection or roundabout).

The analysis which involves two-way scenario reveals changes in the performance parameters like delay average, stops average, delay stop average and vehicle speed average.

Based on the values obtained, it was possible to perform a comparative analysis between the real, one-way, scenario and the theoretical, two-way, scenario.

012057
The following article is Open access

, , and

In the present paper was studied the noise pollution in Cernavodă city. The noise measurements were made for nine intersections from different city areas. Noise measurements were taken for three chosen routes with high population density, heavy traffic, commercial and residential buildings. Average, maximum and minimum values were collected and compared with standards. The impact of road traffic noise on the community depends on various factors such as road location and design, land use planning measures, building design, traffic composition, driver behaviour and the relief. In the study area 9 locations are identified to measure noise level. By using sound level meter noise levels are measured at different peak sessions i.e. morning, afternoon and evening. The presented values were collected for evening rush hour.

Hybrid and electric vehicles

012058
The following article is Open access

, , , and

Battery powered Electric Vehicles are starting to play a significant role in today's automotive industry. There are many types of batteries found in the construction of today's Electric Vehicles, being hard to decide which one fulfils best all the most important characteristics, from different viewpoints, such as energy storage efficiency, constructive characteristics, cost price, safety and utilization life. This study presents the autonomy of an Electric Vehicle that utilizes four different types of batteries: Lithium Ion (Li-Ion), Molten Salt (Na-NiCl2), Nickel Metal Hydride (Ni-MH) and Lithium Sulphur (Li-S), all of them having the same electric energy storage capacity. The novelty of this scientific work is the implementation of four different types of batteries for Electric Vehicles on the same model to evaluate the vehicle's autonomy and the efficiency of these battery types on a driving cycle, in real time, digitized by computer simulation.

012059
The following article is Open access

, , and

Currently, the tendency of the car manufacturers is to continue the expansion of the global production of SUVs (Sport Utility Vehicle), while observing the requirements imposed by the new pollution standards by developing new technologies like DHEP (Diesel Hybrid Electric Powertrain). Experience has shown that the transient regimes are the most difficult to control from an economic and ecological perspective. As a result, this paper will highlight the behaviour of such engines that are provided in a middle class SUV (Sport Utility Vehicle), which operates in such states. We selected the transient regimes characteristic to the NMVEG (New Motor Vehicle Emissions Group) cycle. The investigations using the modelling platform AMESim allowed for rigorous interpretations for the 16 acceleration and 18 deceleration states. The results obtained from the simulation will be validated by experiments.

012060
The following article is Open access

, , and

Nowadays, environmental pollution has become a general issue and the automotive industry is probably the most affected. The principal air-quality pollutant emissions from petrol, diesel and LPG engines are carbon dioxide, oxides of nitrogen, un-burnt hydrocarbons. Modern cars produce only quite small quantities of the air quality pollutants, but the emissions from large numbers of cars add to a significant air quality problem. Electric vehicles are an answer to this problem because they have absolutely no emissions. These vehicles have some major disadvantages regarding cost and range. In this paper, an electric vehicle model will be created in the AVL Cruise software. The constructed model is based on the existing Dacia Sandero. Also unlike the real car, the model presented has different characteristics since it is a full electric vehicle. It has an electric motor instead of the petrol engine and a battery pack placed in the trunk. The model will be simulated in order to obtain data regarding vehicle performance, energy consumption and range on the new WLTC test cycle. The obtained know-how will help on later improvements of the electric model regarding methods to increase the vehicle range on the new WLTC test cycle.

012061
The following article is Open access

, and

In introduction are presented solutions of planetary mechanisms that can be used in the construction of the hybrid automobiles where the thermal and electrical sources must be coupled. The systems have in their composition a planetary mechanism with two degrees of mobility at which are coupled a thermal engine, two revertible electrical machines, a gear transmission with four gears and a differential mechanism which transmits the motion at the driving wheels. For the study of the dynamical behavior, with numerical results, one designs such mechanisms, models the elements with solids in AutoCAD, and obtains the mechanical properties of the elements. Further on, we present and solve the equations of motion of a hybrid automotive for which one knows the dynamical parameters.

012062
The following article is Open access

, and

In the first part of the paper, a comparative study of the planetary mechanisms solutions which can be used in the coupling of power sources is made, this coming in addition to the previous works of the authors. It is analyzed the functioning mode of two planetary mechanisms used in different configurations and optimal variants are set.

012063
The following article is Open access

, and

The paper presents an upgraded methodology for determination of the electric motor power considering the time for acceleration. The influence of the speed factor of electric motor on the value of needed power at same acceleration time is studied. Some calculations on the basis of real vehicle were made. The numeric and graphical results are given. They show a decrease of needed power with the increase of the speed factor of motor, because the high speed factor allows the use of a larger range of the characteristic with the maximum power of the motor. An experimental verification of methodology was done.

012064
The following article is Open access

, and

To analyze the working possibilities of power-split infinitely variable transmissions (IVTs) it is necessary to follow a systematic approach. The method proposed in this paper consists of generating a block diagram of the transmission and then, based on this diagram, to derive the kinematics and dynamics equations of the transmission. For an actual numerical case, the derived equations are used to find characteristic values of the transmission components (gear and chain drives, planetary units) necessary to calculate the speed ratios, the speeds, torques and powers acting on the shafts and coupling (control) elements, and even to estimate the overall efficiency of the transmission.

Internal combustion engines

012065
The following article is Open access

, , and

Currently, there is a growing demand for diesel engines, primarily due to the relatively low fuel consumption compared to spark-ignition engines. However, these engines have a great disadvantage in terms of pollution because they produce solid particles that ultimately form particulate matter (PM), which has harmful effects on human health and also on the environment. The toxic emissions from the diesel engine exhaust, like particulate matter (PM) and NOx, generated by the combustion of fossil fuels, lead to the necessity to develop green fuels which on one hand should be obtained from regenerative resources and on the other hand less polluting. In this paper, the authors focused on the amount of emissions produced by a diesel engine when running with a fuel mixture consisting of diesel and DME. Dimethyl ether (DME) is developed mainly by converting natural gas or biomass to synthesis gas (syngas). It is an extremely attractive resource for the future used in the transport industry, given that it can be obtained at low costs from renewable resources. Using DME mixed with diesel for the combustion process, besides the fact that it produces less smoke, the emission levels of particulate matter is reduced compared to diesel and in some situations, NOx emissions may decrease. DME has a high enough cetane number to perform well as a compression-ignition fuel but due to the poor lubrication and viscosity, it is difficult to be used as the main fuel for combustion

012066
The following article is Open access

, , and

The aim of this study is to highlight the influences of the diesel pilot quantity as well as the timing on the autoignition of ethanol and the pollutant emissions resulting from the combustion process. The combustion concept presented in this paper requires the injection of a small quantity of diesel fuel in order to create the required autoignition conditions for ethanol. The combustion of the diesel droplets injected in the combustion chamber lead to the creation of high temperature locations that favour the autoignition of ethanol. However, due to the high vaporization enthalpy and the better distribution inside the combustion chamber of ethanol, the peak temperature values are reduced. Due to the lower temperature values and the high burning velocity of ethanol (combined with the fact that there are multiple ignition sources) the conditions required for the formation of nitric oxides are not achieved anymore, thus leading to significantly lower NOx emissions. This way the benefits of the Diesel engine and of the constant volume combustion are combined to enable a more efficient and environmentally friendly combustion process.

012067
The following article is Open access

, , , and

The paper presents a comparative study of a Diesel engine functioning in different situations and at different partial loads and engine speeds. There are shown graphs of some experimental results, obtained by using concepts and algorithms from mathematical statistics. It is presented a study of functional factors influence on engine dynamics and fuel saving, by using correlation analysis, variance analysis, information theory and sensitivity analysis. There are highlighted characteristics of vehicle driving in urban and extra-urban environment.

012068
The following article is Open access

, , , and

The ignition delay period for a compression ignition engine fueled alternatively with pure diesel and with biodiesel B20 has been experimentally and numerically investigated. The engine was operated under full load conditions for two speeds, 1400 rpm speed for maximum brake torque and 2400 rpm speed for maximum brake power. Different parameters suggested as important to define the start of combustion have been considered before the acceptance of a certain evaluation technique of ignition delay. Correlations between these parameters were analyzed and concluded about the best method to identify the start of combustion. The experimental results were further compared with the ignition delay predicted by some correlations. The results showed that the determined ignition delays are in good agreement with those of the Arrhenius type expressions for pure diesel fuel, while for biodiesel B20 the correlation results are significantly different than the experimental results.

012069
The following article is Open access

, , and

The paper objective is to highlight the consequences of adding different alcohols in gasoline on the distillation characteristics of these blends. Changes of the distillation parameters (ti, t10, t50, t90, tf, E70, E100, E150) have been evaluated and, also, the evolution trends of the distillation curves for different alcohol added in mixture with the gasoline have been estimated. Several types of gasoline sold on the market and methanol, ethanol, i-propanol and butanol were used during the experiments and the corresponding distillation curves have been analyzed. The alcohol fraction in mixtures varied between 5 and 20%. Double blends with alcohol added in gasoline and triple blends with two alcohols added in gasoline were used. The comparison of the distillation curves of the mixtures was done with respect to that of pure gasoline. It was specified how the values of the distillation parameters, E70, E100 and E150, were set within the limits of EN 228. The distillation was made on 100 ml of fuel and the measurements were made on each 10 ml of fuel transformed into vapor state and then condensed. The influence of the alcohols present in these mixtures was manifested by the changes in the shape of the distillation curve. The butanol influence on the distillation temperatures was found lower than that of ethanol, because the physicochemical properties of the butanol are closer to those of gasoline. The molecules of alcohols actively interact with the fractions of gasolines, their combination leading to a conjugate effect and to a modifying the distillation parameters values. The variation of these parameters depends on the alcohol fraction in the mixture.

012070
The following article is Open access

This paper is designed to develop a HCCI engine starting from a spark ignition engine platform. The engine test was a single cylinder, four strokes provided with carburetor. The results of experimental research on this version were used as a baseline for the next phase of the work. After that, the engine was modified for a HCCI configuration, the carburetor was replaced by a direct fuel injection system in order to control precisely the fuel mass per cycle taking into account the measured intake air-mass. To ensure that the air – fuel mixture auto ignite, the compression ratio was increased from 9.7 to 11.5. The combustion process in HCCI regime is governed by chemical kinetics of mixture of air-fuel, rein ducted or trapped exhaust gases and fresh charge. To modify the quantities of trapped burnt gases, the exchange gas system was changed from fixed timing to variable valve timing. To analyze the processes taking place in the HCCI engine and synthesizing a control system, a model of the system which takes into account the engine configuration and operational parameters are needed. The cylinder processes were simulated on virtual model. The experimental research works were focused on determining the parameters which control the combustion timing of HCCI engine to obtain the best energetic and ecologic parameters.

012071
The following article is Open access

, , , , , , and

Performance and exhaust emissions of spark ignition engines are strongly dependent on the development of the combustion process. Controlling this process in order to improve the performance and to reduce emissions by ensuring rapid and robust combustion depends on how ignition stage is achieved. An ignition system that seems to be able for providing such an enhanced combustion process is that based on plasma generation using a Q-switched solid state laser that delivers pulses with high peak power (of MW-order level). The laser-spark devices used in the present investigations were realized using compact diffusion-bonded Nd:YAG/Cr4+:YAG ceramic media. The laser igniter was designed, integrated and built to resemble a classical spark plug and therefore it could be mounted directly on the cylinder head of a passenger car engine. In this study are reported the results obtained using such ignition system provided for a K7M 710 engine currently produced by Renault-Dacia, where the standard calibrations were changed towards the lean mixtures combustion zone. Results regarding the performance, the exhaust emissions and the combustion characteristics in optimized spark timing conditions, which demonstrate the potential of such an innovative ignition system, are presented.

012072
The following article is Open access

, and

Study of construction and wearing process in the case of piston-rings and other significant components from internal combustion engines leads at any time to creative and useful optimizing ideas, both in designing and manufacturing phases. Main objective of the present paper is to realize an interdisciplinary research using advanced methods in piston-rings evaluation of a common vehicle on the streets which is Ford Focus FYDD. Specific objectives are a theoretical study of the idea for advanced analysis method in piston-rings evaluation and an applied research developed in at Technical University from Cluj-Napoca with the motor vehicle caught in the repairing process.

012073
The following article is Open access

, , , and

In this paper, an analysis and a model of the factors influencing the filling and compression of the fresh load is presented, in case of a spark ignition engine. Equally, the combustion and expansion processes of the engine are taken into account. All these processes are modelled together with the engine load changing, for different engine speed values.

012074
The following article is Open access

, , , , and

In this paper we present the synthesis of the cam for a distribution mechanism used for Miller-Atkinson cycle and described in previous works. The input data contain the angles at which the valve opens and closes, respectively, the dimensions of the main parts, the maximum displacement of the valve. and the law of motion of the valve. The authors consider that the law of motion of the valve is described by numerical values, even if in the simulation process they use analytical formulae for this displacement. The head of the valve is considered to be circular. A particular case of flat head of the valve is also described. The relative displacement of the lever and the valve is discussed in two hypotheses: symmetric position and asymmetric position of the contact point with respect to the axis of the valve. The contact between the head of the valve is assured by a cylindrical roller. The contact between the cam and the lever is considered with a roller tappet. In all cases the cam is obtained by numerical synthesis using a convenient angular degree. A great attention is paid to the convexity of the cam. The resulted cam is transformed in a convex one using the Jarvis March. The authors also perform a comparison between the theoretical profile of the cam and the profile of the convex cam. The reduced velocity and acceleration are obtained in all cases. Some aspects of the wear are discussed using the relative linear and angular velocities. The paper closes with a paragraph of conclusions.

012075
The following article is Open access

, , , , and

The mechanism considered in this paper is a VCR one consisting in a crank, a shaft, an intermediate triangular element and a control lever and it was described in previous papers of the authors. The authors start from a classical crank-shaft mechanism for which the extreme positions are known. The first stage of the synthesis consists in determination of the constraint function which has to be fulfilled by the new mechanism so that the extreme position remain unchanged. The new step consists in imposing new conditions for the mechanism so that some new positions have to be obtained. The main hypothesis is that the positions of different characteristic points of the mechanism may be written as continuous functions of the certain input data. Due to aspect, the synthesis of the mechanism implies continuous variations of the output data and, consequently, there exists at least one solution for the synthesis process. In each case the authors determine the extreme positions of the piston. These extreme positions are also continuous functions of the input data. Two main approaches are discussed in the paper. One approach consists in the exact determination of the solution using a numerical procedure. The second one is an approximate one and consists in the determination of an approximate solution of the synthesis and verifying the deviation of this solution. For the new mechanism obtained by synthesis the authors determined the reduced velocities and accelerations of different characteristic elements. Some aspects of the wear are discussed with the aid of the reduced relative velocities.

012076
The following article is Open access

, , , and

The study of the development conditions of the intake process from spark plug engine, especially from thermal point of view, highlight complex influences. These influences affect in a decisive manner the energy performance of the engine. In this paper, the authors had done a study and an analysis of the aspects for the purpose to develop a physically-mathematically model which ensures the highlighting of the thermal regime influences of the spark plug engine concerning the efficiency of the filling.

012077
The following article is Open access

, , , and

In this paper there were presented researches related to preparation and characterization of physicochemical properties of diesel-ethanol blends stabilized with tetrahydrofuran as surfactant, in order to be used as fuels in compression ignition engines. The main spray characteristics and engine performances of these blends were evaluated by using AVL Fire software. In the first stage of the studies, commercial diesel was mixed with ethanol, in different concentrations (between 2% and 15% v/v), followed by the addition of tetrahydrofuran (THF) until the blends were miscible, i.e. the blends were stabilized. The experiments were done at room temperature (22 °C). The obtained blends were characterized in order to determine the chemical composition and physicochemical properties, i.e. density, kinematic viscosity, surface tension. UV-Vis spectroscopy was utilized in order to determine a semi-quantitative evaluation regarding the chemical composition of the prepared blends and chemical interaction between diesel, ethanol and THF. Based on the determined properties, the fuel spray characteristics, engine performances and emission characteristics were evaluated by simulation using the AVL Fire software. The obtained results regarding physicochemical properties of blends were compared with diesel. Some improvements were observed when operating with the prepared blends compared to diesel with respect to engine performances and emission characteristics. Based on physicochemical evaluation and computer simulation, it was demonstrated that diesel-ethanol-tetrahydrofuran blends can be used as alternative fuel in compression ignition engines.

012078
The following article is Open access

Over the past 30 years numerous studies and laboratory experiments have researched the use of laser energy to ignite gas and fuel-air mixtures. The actual implementation of this laser application has still to be fully achieved in a commercial automotive application. Laser Plug Ignition as a replacement for Spark Plug Ignition in the internal combustion engines of automotive vehicles, offers several potential benefits such as extending lean burn capability, reducing the cyclic variability between combustion cycles and decreasing the total amount of ignition costs, and implicitly weight and energy requirements. The paper presents preliminary results of cycle variability study carried on a SI Engine equipped with laser Plug Ignition system. Versus classic ignition system, the use of the laser Plug Ignition system assures the reduction of the combustion process variability, reflected in the lower values of the coefficient of variability evaluated for indicated mean effective pressure, maximum pressure, maximum pressure angle and maximum pressure rise rate. The laser plug ignition system was mounted on an experimental spark ignition engine and tested at the regime of 90% load and 2800 rev/min, at dosage of λ=1.1. Compared to conventional spark plug, laser ignition assures the efficiency at lean dosage.

012079
The following article is Open access

, , , and

The main objective of the paper is to reduce the pollutant emissions of a compression ignition engine, fuelling the engine with liquefied petroleum gas (LPG), aiming to maintain the energetic performances of the engine. To optimise the engine operation a corelation between the substitute ratio of the diesel fuel with LPG and the adjustments for the investigated regimens must be made in order to limit the maximum pressure and smoke level, knock and rough engine functioning, fuel consumption and the level of the pollutant emissions.

The test bed situated in the Thermotechnics, Engines, Thermal Equipments and Refrigeration Instalations Department was adapted to be fuelled with liquefied petroleum gas. A conventional LPG fuelling instalation was adopted, consisting of a LPG tank, a vaporiser, conections between the tank and the vaporiser and a valve to adjust the gaseous fuel flow. Using the diesel-gas methode, in the intake manifold of the engine is injected LPG in gaseous aggregation state and the airr-LPG homogeneous mixture is ignited from the flame appeared in the diesel fuel sprays. To maintain the engine power at the same level like in the standard case of fuelling only with diesel fuel, for each investigated operate regimen the diesel fuel dose was reduced, being energetically substituted with LPG. The engine used for experimental investigations is a turbocharged truck diesel engine with a 10.34 dm3 displacement. The investigated working regimen was 40% load and 1750 rpm and the energetic substitute ratios of the diesel fuel with LPG was situated between [0-25%].

012080
The following article is Open access

, and

Internal combustion engines still play a major role in today transportation but increasing the fuel efficiency and decreasing chemical emissions remain a great goal of the researchers. Direct injection and air assisted injection system can improve combustion and can reduce the concentration of the exhaust gas pollutes. Advanced air-to-fuel and combustion air-to-fuel injection system for mixtures, derivatives and alcohol gasoline blends represent a major asset in reducing pollutant emissions and controlling combustion processes in spark-ignition engines.

The use of these biofuel and biofuel blending systems for gasoline results in better control of spark ignition engine processes, making combustion as complete as possible, as well as lower levels of concentrations of pollutants in exhaust gases.

The main purpose of this paper was to provide most suitable tools for ensure the proven increase in the efficiency of spark ignition engines, making them more environmentally friendly.

The conclusions of the paper allow to highlight the paths leading to a better use of alcohols (biofuels) in internal combustion engines of modern transport units.

012081
The following article is Open access

and

Born more than a century ago, the concept of exploiting the pressure wave phenomenon has evolved with rather small steps, experiencing an accelerated progress over the past decades. This paper aims an overview on the researchers' results over time regarding the pressure wave technology and its applications, pointing out on the internal combustion engine's supercharging application.

This review complements the past reports on the subject, presenting the evolution of the concept and technology, as well as the researcher's efforts on solving the specific shortcomings of this pressure wave technology. Undoubtedly, the pressure wave rotors have been a research goal over the years. At first, most of the researches were experimental and the theoretical calculations required to improve the technology were too arduous. Recently, new computer software dedicated to accurate simulation of the processes governing the wave rotor operation, altogether with modern experimental measurement instruments and well-developed diagnostic techniques have opened wide possibilities to innovate the pressure wave supercharging technology.

This paper also highlights the challenges that specialists still have to overcome and aspects to become future preoccupations and research directions.

012082
The following article is Open access

, , , and

The surge limit on automotive turbocharger needs to be avoided to prevent operations with pressure and mass flow oscillations. Mild surge is accompanied by noise which is disturbing. Deep surge can cause significant loss of engine power and severe drivability issues. It is necessary to know the stationary limit in order to match a turbocharger with an engine, ensuring enough surge margin. However, this choice does not guarantee surge free operation during transient functioning. In this paper, the surge onset of a compressor while closing a downstream valve is studied. Various tests have been carried out varying the closing time, the position of the initial operating point and the volume of the circuit. The inlet and outlet signals of physical parameters are analyzed with spectral and temporal methods in order to define the instant of the surge occurrence.

012083
The following article is Open access

, , , and

Increased environmental awareness and depletion of fossil petroleum resources are driving the automotive industry to seek out and use alternative fuels. For instance, the biofuel is a major renewable energy source to supplement declining fossil fuel resources. The addition of alcohols like methanol and ethanol is practical in biodiesel blends due to its miscibility with the pure biodiesel. Alcohols also improve physico-chemical properties of biodiesel blends, which lead to improved combustion efficiency. Proper volatility of fuels is critical to the operation of internal combustion engines with respect to both performance and emissions. Volatility may be characterised by various measurements, the most common of which are vapour pressure, distillation and the vapour/liquid ratio. The presence of ethanol or other oxygenates may affect these properties and, as a result, performance and emissions, as well. However, in the case of diesel-biodiesel-alcohols mixtures, the variance of component volatility makes difficult the analysis of the overall volatility.

Thus, the paper presents an experimental method of distilling diesel-biodiesel-alcohols mixtures by adjusting the boiler pressure of an i-Fischer Dist equipment.

012084
The following article is Open access

, , , and

The European Commission approved a so-called Real Driving Emission (RDE) test in response to the criticisms to the current driving cycle used at chassis dyno for homologation purpose (NEDC): it is considered outdated and misleading since air pollutants in real driving conditions are considerably higher than the certification thresholds. So, what's at stake is the air quality which degraded continuously despite the ever-increasing severity of the regulations during the last almost three decades. Thus, from September 2017, the RDE test will become part of the type approval process for all cars sold in Europe. As its name points out, it will include "real world driving" using a portable emissions measurement system (PEMS). The paper presents the RDE features (PEMS mounting, testing environment, boundary conditions, driving dynamics) and presents a case study on the influence of the driving style upon the tail-pipe emissions under the RDE testing. The results presented in the paper issued from the existing cooperation on this topic between University of Pitesti and Renault Technologie Roumanie

012085
The following article is Open access

and

The world consumption of fossil fuels is increasing rapidly and it affects the environment by green house gases causing health hazards. Biodiesel is emerging as an important promising alternative energy resource which can be used to reduce or even replace the usage of petroleum. Since is mainly derived from vegetable oil or animal fats can be produce for large scale by local farmers offering a great choice. However the extensive utilization of the biofuels can lead to shortages in the food chain. This paper analyzed the sunflower methyl ester (SFME) and its blends as an alternate source of fuel for diesel engines. Biodiesel was prepared from sunflower oil in laboratory in a small biodiesel installation (30L) by base transesterification. A 4 cylinder Deutz F4L912 diesel engine was used to perform the tests on various blends of sunflower biodiesel. The emissions of CO, HC were lower than diesel fuel for all blends tested. The NOx emissions were higher due to the high volatility and high viscosity of biodiesel.

012086
The following article is Open access

, and

Alternative fuels for use in internal combustion engines have become recently in attention due the strict regulations regarding the environmental protection, emissions and to reduce the dependency of the fossil fuels. One choice is the use of methanol as it can be produce from renewable sources and blended with gasoline in any proportion. The aim of this study is to compare the effects of methanol – gasoline blends regarding performance, combustion and emission characteristics with gasoline. Five different blends M5, M10, M15, M20 and M25 were tested in a single cylinder spark ignition engine typically used in scooters applications. The experimental results in engine performance show a decrease of torque and power up to 10 %and in emissions characteristics a CO, CO2, HC. It can be concluded that gasohol is viable option to be used in gasoline engines to replace partially the fossil fuel.

012087
The following article is Open access

, , and

One of the most important subsystems of modern passenger cars is the transmission. This paper aims to investigate the global performances of a modern transmission in different test cycles including the newly introduced WLTC (Worldwide Harmonized Light Vehicles Test Cycle). The study is done using a complex model developed in a performant simulation environment. Transmission efficiency calculation is emphasized, the efficiency being considered variable depending on engine torque, engine speed and gear ratio. The main important parameters (vehicle speed fluctuation, overall transmission efficiency, fuel consumption ratio) needed to compare test cycles and the transmissions performance are determined.

012088
The following article is Open access

, , and

It is known that current vehicles must meet stringent demands on pollution limits but also must meet and the dynamical and economical performances. In this context the transient regimes are those affecting this performances, in this paper are presenting the results of the simulations for these regimes using a vehicle powered with two energy sources gasoline and LPG. Have been selected the transient regimes characteristic for NMVEG cycle (New Motor Vehicle Emissions Group). The simulation is performed using AMESim platform and the results have allowed meticulous interpretations for the 16 regimes of acceleration. The results obtained from the simulation will be validated experimentally.

012089
The following article is Open access

, and

The large amount of heat is scattered in the internal combustion engine through exhaust gas, coolant, convective and radiant heat transfer. Of all these residual heat sources, exhaust gases have the potential to recover using various modern heat recovery techniques. Waste heat recovery from an engine could directly reduce fuel consumption, increase available electrical power and improve overall system efficiency and if it would be used a turbochargers that can also produce energy. This solution is called turbo aggregation and has other ways to develop it in other areas of research like the electrical field. [1-3]

012090
The following article is Open access

, , , and

The paper aims to study the combustion process in a modern diesel engine over the engine operating map. In order to study the rate of heat release (ROHR), an automotive diesel engine was experimentally tested using the injection parameters factory defined. The experimental test was conducted over the engine operating map as the engine speed was limited to 2400 rpm. Then, an engine simulation model was developed in AVL Boost. By means of that model the ROHR was estimated and approximated by means of double Vibe function. In all engine operating points we found two peaks at the ROHR. The first is a result of the pilot injection as the second corresponds to the main injection. There was not found an overlap between both peaks. It was found that the first peak of ROHR occurs closely before top dead center (BTDC) at partial load than full load. The ROHR peak as a result of main injection begins from 4°BTDC to 18°ATDC. It starts earlier with increasing engine speed and load. The combustion duration varies from 30 ºCA to 70 °CA. In order to verify the results pressure curve was estimated by means of defined Vibe function parameters and combustion duration. As a result, we observed small deviation between measured and simulated pressure curves.

012091
The following article is Open access

, , , and

This paper focuses on studying statistical models of vehicles dynamics. It was design and perform a one year testing program. There were used many same type cars with gasoline engines and different mileage. Experimental data were collected of onboard sensors and those on the engine test stand. A database containing data of 64th tests was created. Several mathematical modelling were developed using database and the system identification method. Each modelling is a SISO or a MISO linear predictive ARMAX (AutoRegressive–Moving-Average with eXogenous inputs) model. It represents a differential equation with constant coefficients. It were made 64th equations for each dependency like engine torque as output and engine's load and intake manifold pressure, as inputs. There were obtained strings with 64 values for each type of model. The final models were obtained using average values of the coefficients. The accuracy of models was assessed.

012092
The following article is Open access

, , and

The use of biofuels, especially in transportation and industrial processes, is seen as one of the most effective solutions to promote the reduction of greenhouse gases and pollutant emissions, as well as to lighten the dependence from petro-fuel producers. Biofuels are defined as a wide range of energy sources derived from biomass. In this category, alcohols produced through fermentation, such as ethanol and butanol, are considered some of the most suitable alternatives for transportation purposes. The benefits of bio-ethanol addition to gasoline have always been recognized for practical reasons. Apart from the variety of sources which it can be produced from, ethanol can raise the octane rating, given its improved anti-knock characteristics, allowing the use of higher compression ratios and higher thermal efficiency. However, ethanol's high latent heat of vaporization can cause problems during cold-start due to poor evaporation. On the other hand, in hot climates ethanol fuelling can result in adverse effects such as vapour lock. Butanol can be considered as an emergent alternative fuel. Normal butanol has several well-known advantages when compared to ethanol, including increased energy content, greater miscibility with transportation fuels, and lower propensity for water absorption. Despite of these pros, the costs of n-butanol production are higher due to lower yields compared to ethanol. Moreover, vaporization remains a critical aspect of this biofuel. Understanding the effect of biofuels on in-cylinder combustion processes is a key-point for the optimization of fuel flexibility and achieving lower CO2 emissions. To this aim, a combined thermodynamic and optical investigation was performed on a direct injection spark ignition engine fuelled with ethanol, butanol and gasoline. Fuels were compared by fixing the injection and spark ignition strategies. Thermodynamic measurements were coupled with optical investigations based on cycle resolved flame visualization. Optimized procedures of image processing were applied to follow the evolution of the flame front in terms of morphological parameters and to evaluate the local distribution of diffusive flames induced by oxidation of fuel deposits during late combustion. These data were correlated with exhaust gas measurements. The experiments confirmed that the chemical-physical specifications of the tested fuels strongly influenced the temporal and spatial evolution of the flame front. Moreover, different distributions and intensities of diffusive flames were observed. These results demonstrated the effect of the fuel on the deposits amount and distribution in the combustion chamber, at fixed operative conditions.

012093
The following article is Open access

and

Extensive application of downsizing, as well as the application of alternative combustion control with respect to well established stoichiometric operation, have determined a continuous increase in the energy that is delivered to the working fluid in order to achieve stable and repeatable ignition. Apart from the complexity of fluid-arc interactions, the extreme thermodynamic conditions of this initial combustion stage make its characterization difficult, both through experimental and numerical techniques. Within this context, the present investigation looks at the analysis of spark discharge and flame kernel formation, through the application of UV-visible spectroscopy. Characterization of the energy transfer from the spark plug's electrodes to the air-fuel mixture was achieved by the evaluation of vibrational and rotational temperatures during ignition, for stoichiometric and lean fuelling of a direct injection spark ignition engine. Optical accessibility was ensured from below the combustion chamber through an elongated piston design, that allowed the central region of the cylinder to be investigated. Fuel effects were evaluated for gasoline and n-butanol; roughly the same load was investigated in throttled and wide-open throttle conditions for both fuels. A brief thermodynamic analysis confirmed that significant gains in efficiency can be obtained with lean fuelling, mainly due to the reduction of pumping losses. Minimal effect of fuel type was observed, while mixture strength was found to have a stronger influence on calculated temperature values, especially during the initial stage of ignition. In-cylinder pressure was found to directly determine emission intensity during ignition, but the vibrational and rotational temperatures featured reduced dependence on this parameter. As expected, at the end of kernel formation, temperature values converged towards those typically found for adiabatic flames. The results show that indeed only a relatively small part of the electrical energy is actually used for promoting chemical reactions and that temperature during the arc and kernel phases are influenced to a reduced extent by fuel concentrations.

Vehicle electronics and software

012094
The following article is Open access

and

The future of the vehicle is made of cars, roads and infrastructures connected in a two way automated communication in a holistic system. It is a mandatory to use Encryption to maintain Confidentiality, Integrity and Availability in an ad hoc vehicle network. Vehicle to Vehicle communication, requires multichannel interaction between mobile, moving and changing parties to insure the full benefit from data sharing and real time decision making, a network of such users referred as mobile ad hoc network (MANET), however as ad hoc networks were not implemented in such a scale, it is not clear what is the best method and protocol to apply. Furthermore the visibility of secure preferred asymmetric encrypted ad hoc networks in a real time environment of dense moving autonomous vehicles has to be demonstrated, In order to evaluate the performance of Ad Hoc networks in changing conditions a simulation of multiple protocols was performed on large number of mobile nodes. The following common routing protocols were tested, DSDV is a proactive protocol, every mobile station maintains a routing table with all available destinations, DSR is a reactive routing protocol which allows nodes in the MANET to dynamically discover a source route across multiple network hops, AODV is a reactive routing protocol Instead of being proactive. It minimizes the number of broadcasts by creating routes based on demand, SAODV is a secure version of AODV, requires heavyweight asymmetric cryptographic, ARIANDE is a routing protocol that relies on highly efficient symmetric cryptography the concept is primarily based on DSR.

A methodical evolution was performed in a various density of transportation, based on known communication bench mark parameters including, Throughput Vs. time, Routing Load per packets and bytes. Out of the none encrypted protocols, It is clear that in terms of performance of throughput and routing load DSR protocol has a clear advantage the high node number mode. The encrypted protocols show lower performance with ARIANDE being superior to SAODV and SRP. Nevertheless all protocol simulation proved it to match required real time performance.

012095
The following article is Open access

, , and

The electric vehicle is a new consumer of electricity that is becoming more and more widespread. Under these circumstances, new strategies for optimizing power consumption and increasing vehicle autonomy must be designed. These must include route planning along with consumption, fuelling points and points of interest. The hardware and software solution proposed by us allows: non-invasive monitoring of power consumption, energy autonomy - it does not add any extra consumption, data transmission to a server and data fusion with the route, the points of interest of the route and the power supply points. As a result: an optimal route planning service will be provided to the driver, considering the route, the requirements of the electric vehicle and the consumer profile. The solution can be easily installed on any type of electric car - it does not involve any intervention on the equipment.

012096
The following article is Open access

, , and

Nowadays the automotive industry makes a quantum shift to a future, where the driver will have smaller and smaller role in driving his or her vehicle ending up being totally excluded. In this paper, we have investigated the different levels of driving automatization, the prospective effects of these new technologies on the environment and traffic safety, the importance of regulations and their current state, the moral aspects of introducing these technologies and the possible scenarios of deploying the autonomous vehicles. We have found that the self-driving technologies are facing many challenges: a) They must make decisions faster in very diverse conditions which can include many moral dilemmas as well; b) They have an important potential in reducing the environmental pollution by optimizing their routes, driving styles by communicating with other vehicles, infrastructures and their environment; c) There is a considerable gap between the self-drive technology level and the current regulations; fortunately, this gap shows a continuously decreasing trend; d) In case of many types of imminent accidents management there are many concerns about the ability of making the right decision. Considering that this field has an extraordinary speed of development, our study is up to date at the submission deadline. Self-driving technologies become increasingly sophisticated and technically accessible, and in some cases, they can be deployed for commercial vehicles as well. According to the current stage of research and development, it is still unclear how the self-driving technologies will be able to handle extreme and unexpected events including their moral aspects. Since most of the traffic accidents are caused by human error or omission, it is expected that the emergence of the autonomous technologies will reduce these accidents in their number and gravity, but the very few currently available test results have not been able to scientifically underpin this issue yet. The increasing trend in automation of vehicles will radically change the composition of car industry players, as mechatronics will not only be a complementary part of the automobile industry but an indispensable part of it. There is a reasonable expectation that automated cars will perform the same or better in all respects than their conventional counterparts. However, it seems that the current regulations do not keep up with the development of technology and sometimes hinder the development and testing of autonomous technologies.

012097
The following article is Open access

, , , and

The paper presents a study regarding the possibility to develop a drowsiness detection system for car drivers based on three types of methods: EEG and EOG signal processing and driver image analysis. In previous works the authors have described the researches on the first two methods. In this paper the authors have studied the possibility to detect the drowsy or alert state of the driver based on the images taken during driving and by analyzing the state of the driver's eyes: opened, half-opened and closed. For this purpose two kinds of artificial neural networks were employed: a 1 hidden layer network and an autoencoder network.

012098
The following article is Open access

Mobility is a basic necessity of contemporary society and it is a key factor in global economic development. The basic requirements for the transport of people and goods are: safety and duration of travel, but also a number of additional criteria are very important: energy saving, pollution, passenger comfort.

Due to advances in hardware and software, automation has penetrated massively in transport systems both on infrastructure and on vehicles, but man is still the key element in vehicle driving. However, the classic concept of 'human-in-the-loop' in terms of 'hands on' in driving the cars is competing aside from the self-driving startups working towards so-called 'Level 4 autonomy', which is defined as "a self-driving system that does not requires human intervention in most scenarios".

In this paper, a conceptual synthesis of the autonomous vehicle issue is made in connection with the artificial intelligence paradigm. It presents a classification of the tasks that take place during the driving of the vehicle and its modeling from the perspective of traditional control engineering and artificial intelligence. The issue of autonomous vehicle management is addressed on three levels: navigation, movement in traffic, respectively effective maneuver and vehicle dynamics control. Each level is then described in terms of specific tasks, such as: route selection, planning and reconfiguration, recognition of traffic signs and reaction to signaling and traffic events, as well as control of effective speed, distance and direction. The approach will lead to a better understanding of the way technology is moving when talking about autonomous cars, smart/intelligent cars or intelligent transport systems. Keywords: self-driving vehicle, artificial intelligence, deep learning, intelligent transport systems.

012099
The following article is Open access

This simulator was conceived as a software program capable of generating complex control signals, identical to those in the electronic management systems of modern spark ignition or diesel engines. Speed in rpm and engine load percentage defined by throttle opening angle represent the input variables in the simulation program and are graphically entered by two-meter instruments from the simulator central block diagram. The output signals are divided into four categories: synchronization and position of each cylinder, spark pulses for spark ignition engines, injection pulses and, signals for generating the knock window for each cylinder in the case of a spark ignition engine. The simulation program runs in real-time so each signal evolution reflects the real behavior on a physically thermal engine. In this way, the generated signals (ignition or injection pulses) can be used with additionally drivers to control an engine on the test bench.