This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Volume 141

Number 5, 2011 May 1

Previous issue Next issue

142

Kepler's first major discoveries are two hot (T > 10,000 K) small-radius objects orbiting stars in its field. A viable hypothesis is that these are the cores of stars that have each been eroded or disrupted by a companion star. The companion, which is the star monitored today, is likely to have gained mass from its now-defunct partner and can be considered to be a blue straggler. KOI-81 is almost certainly the product of stable mass transfer; KOI-74 may be as well, or it may be the first clear example of a blue straggler created through three-body interactions. We show that mass-transfer binaries are common enough that Kepler should discover ∼1000 white dwarfs orbiting main-sequence stars. Most of these, like KOI-74 and KOI-81, will be discovered through transits, but many will be discovered through a combination of gravitational lensing and transits, while lensing will dominate for a subset. In fact, some events caused by white dwarfs will have the appearance of "anti-transits"—i.e., short-lived enhancements in the amount of light received from the monitored star. Lensing and other mass-measurement methods provide a way to distinguish white dwarf binaries from planetary systems. This is important for the success of Kepler's primary mission, in light of the fact that white dwarf radii are similar to the radii of terrestrial planets, and that some white dwarfs will have orbital periods that place them in the habitable zones of their stellar companions. By identifying transiting and/or lensing white dwarfs, Kepler will conduct pioneering studies of white dwarfs and of the end states of mass transfer. It may also identify orbiting neutron stars or black holes. The calculations inspired by the discovery of KOI-74 and KOI-81 have implications for ground-based wide-field surveys as well as for future space-based surveys.

143

, , and

As an application of our recent observational error model, we present the astrometric masses of 26 main-belt asteroids. We also present an integrated ephemeris of 300 large asteroids, which was used in the mass determination algorithm to model significant perturbations from the rest of the main belt. After combining our mass estimates with those of other authors, we study the bulk porosities of over 50 main-belt asteroids and observe that asteroids as large as 300 km in diameter may be loose aggregates. This finding may place specific constraints on models of main-belt collisional evolution. Additionally, we observe that C-group asteroids tend to have significantly higher macroporosity than S-group asteroids.

144

, , , , , and

We report spectroscopic observations of the red giant star HR 5692, previously known to be a binary system both from other spectroscopic work and from deviations in the astrometric motion detected by the Hipparcos satellite. Earlier International Ultraviolet Explorer (IUE) observations had shown the presence of a hot white dwarf companion to the giant primary. We have combined our radial velocity observations with other existing measurements and with the Hipparcos intermediate astrometric data to determine a complete astrometric-spectroscopic orbital solution, providing the inclination angle for the first time. We also determine an improved parallax for the system of 10.12 ± 0.67 mas. We derive the physical properties of the primary, and with an estimate of its mass from stellar evolution models (1.84 ± 0.40 M), we infer the mass of the white dwarf companion to be MWD = 0.59 ±  0.12 M. An analysis of an IUE white dwarf spectrum, using our parallax, yields Teff = 30, 400 ±  780 K, log g = 8.25 ±  0.15, and a mass MWD = 0.79 ± 0.09 M, in marginal agreement with the dynamical mass.

145

, , and

Using new radial velocities obtained at KPNO and Fairborn Observatory, we have determined improved spectroscopic orbits for two double-lined F-type binaries, HD 24623 and V923 Sco. The orbital periods are 19.66304 and 34.8386 days, respectively, so it is not surprising that their orbits have relatively high eccentricities of nearly 0.5. The orbital dimensions (a1sin i and a2sin i) and minimum masses (m1sin 3i and m2sin 3i) have accuracies of 0.2% or better. Extensive photometry of HD 24623 with the T4 0.75 m automatic photometric telescope at Fairborn Observatory shows no evidence of eclipses. Instead, a very weak reflection effect is seen, making the system a new variable star. Our spectroscopic ephemeris for V923 Sco indicates that the eclipse detected by Bolton and Herbst is a partial eclipse of the primary but detection of the secondary eclipse is uncertain. For HD 24623, we have determined spectral types of F2 dwarf and F4 dwarf for the primary and secondary, respectively. Our spectral types are F4 dwarf for the two components of V923 Sco. Both components of HD 24623 are rotating more slowly than their pseudosynchronous velocities, as is the primary of V923 Sco. However, the secondary of V923 Sco is likely rotating pseudosynchronously.

146

, , , , and

A serious limitation in the study of many globular clusters—especially those located near the Galactic center—has been the existence of large and differential extinction by foreground dust. In a series of papers, we intend to map the differential extinction and remove its effects, using a new dereddening technique, in a sample of clusters in the direction of the inner Galaxy, observed using the Magellan 6.5 m telescope and the Hubble Space Telescope. These observations and their analysis will let us produce high-quality color–magnitude diagrams of these poorly studied clusters that will allow us to determine these clusters' relative ages, distances, and chemistry and to address important questions about the formation and the evolution of the inner Galaxy. We also intend to use the maps of the differential extinction to sample and characterize the interstellar medium along the numerous low-latitude lines of sight where the clusters in our sample lie. In this first paper, we describe in detail our dereddening method along with the powerful statistics tools that allow us to apply it, and we show the kind of results that we can expect, applying the method to M62, one of the clusters in our sample. The width of the main sequence and lower red giant branch narrows by a factor of two after applying our dereddening technique, which will significantly help to constrain the age, distance, and metallicity of the cluster.

147

, , , , and

The secured four-color light curves of VW Boo were analyzed with the 2003 version of the Wilson–Devinney code. It is confirmed that VW Boo is a shallow W-type contact binary system with a degree of contact factor f = 10.8%(± 0.5%). Two dark spots were found on the massive cool component this time. They cause an unequal depth of the two maxima. A period investigation based on all available visual, photographic, CCD, and photoelectric data shows that the period of the system includes a long-term decrease (dP/dt = −1.454 × 10−7 days yr−1) and an oscillation (A3 = 0.0059 days; T3 = 25.96 years). These may be caused by mass transfer, angular momentum loss, and cyclic magnetic activity.

148

and

We determine the size of the largest particles that can be lifted from the nuclear surface of the comet 55P/Tempel-Tuttle using a classical outgassing model. The values obtained are in agreement with the estimated lower bound to the diameter of a Leonid meteoroid just capable of producing electrophonic sounds. Thus, we reconcile the discrepancy found by Beech between the estimated value for the maximum diameter of the particle ejected from the parent comet and the size of the 1833 Leonid meteoroid calculated as necessary to produce electrophonic sound.

149

and

We present newly discovered radio emission in the galaxy cluster A2443 which (1) is diffuse, (2) has an extremely steep spectrum, (3) is offset from the cluster center, (4) is of irregular morphology, and (5) is not clearly associated with any of the galaxies within the cluster. The most likely explanation is that this emission is a cluster radio relic associated with a cluster merger. We present deep observations of A2443 at multiple low frequencies (1425, 325, and 74 MHz) which help characterize the spectrum and morphology of this relic. Based on the curved spectral shape of the relic emission and the presence of small-scale structure, we suggest that this new source is likely a member of the radio phoenix class of radio relics.

150

, , and

Focusing on B-emission stars, we investigated a set of Hα equivalent widths (EWs) calculated from observed spectra acquired over a period of about four years from 2003 to 2007. During this time, changes in EW for our program stars were monitored. We have found a simple statistical method to quantify these changes in our observations. This statistical test, commonly called the F ratio, involves calculating the ratio of the external and internal error. We show that the application of this technique can be used to place bounds on the degree of variability of Be stars. This observational tool provides a quantitative way to find Be stars at particular stages of variability requiring relatively little observational data.

151

, , , , , and

The newly discovered short-period close binary star, XY LMi, has been monitored photometrically since 2006. Its light curves are typical EW-type light curves and show complete eclipses with durations of about 80 minutes. Photometric solutions were determined through an analysis of the complete B, V, R, and I light curves using the 2003 version of the Wilson–Devinney code. XY LMi is a high fill-out, extreme mass ratio overcontact binary system with a mass ratio of q = 0.148 and a fill-out factor of f = 74.1%, suggesting that it is in the late evolutionary stage of late-type tidal-locked binary stars. As observed in other overcontact binary stars, evidence for the presence of two dark spots on both components is given. Based on our 19 epochs of eclipse times, we found that the orbital period of the overcontact binary is decreasing continuously at a rate of dP/dt = −1.67 × 10−7 days yr−1, which may be caused by mass transfer from the primary to the secondary and/or angular momentum loss via magnetic stellar wind. The decrease of the orbital period may result in the increase of the fill-out, and finally, it will evolve into a single rapid-rotation star when the fluid surface reaches the outer critical Roche lobe.

152

A comparison between the observed light curves of periodic masers in G9.62+0.20E and G188.95+0.89 and the results of a simple colliding-wind binary model is made to establish whether the flaring and other time-dependent behavior of the masers in these two star-forming regions can be ascribed to changes in the environment of the masers or in the continuum emission from parts of the background H ii region. It is found that the light curves of widely different shape and amplitude in these two objects can be explained within the framework of a periodic pulse of ionizing radiation that raises the electron density in a volume of partially ionized gas against which the masers are projected. It is also shown that the decay of the 11.405 km s-1 maser in G188.95+0.89 can be explained very well in terms of the recombination of the ionized gas against which the maser is projected, while it would require very special conditions to explain it in terms of changes in the environment of the maser. We conclude that for G9.62+0.20E and G188.95+0.89 the observed changes in the masers are most likely due to changes in the background free–free emission which is amplified by the masers.

153

and

We use SCUBA 850 μm and CO observations to analyze the surroundings of three Galactic ring-like H ii regions, KR 7, KR 81, and KR 120 (Sh 2-124, Sh 2-165, and Sh 2-187), with the aim of finding sites of triggered star formation. We find one prominent submillimeter (sub-mm) source for each region, located at the interface between the H ii region and its neutral surroundings. Using Two Micron All Sky Survey photometry, we find that the prominent sub-mm source for KR 120 probably contains an embedded cluster of young stellar objects (YSOs), making it a likely site for triggered star formation. The KR 7 sub-mm source could possibly contain embedded YSOs, while the KR 81 sub-mm source likely does not. The mass column densities for these dominant sub-mm sources fall in the ∼0.1–0.6 g cm−2 range. The mass of the cold, dense material (clumps) seen as the three dominant sub-mm sources falls around ∼100 M. We use the SCUBA Legacy catalog to characterize the populations of sub-mm sources around the H ii regions, and compare them to the sources found around a previously studied similar ring-like H ii region (KR 140) and near a massive star-forming region (W3). Finally, we estimate the IR luminosities of the prominent newly detected sub-mm sources and find that they are correlated with the clump mass, consistent with a previously known luminosity–mass relationship which this study shows to be valid over four orders of magnitude in mass.

154

, , , , , and

Three-body model fits to Arecibo and Goldstone radar data reveal the nature of two near-Earth asteroid triples. The triple-asteroid system 2001 SN263 is characterized by a primary of ∼1013 kg, an inner satellite ∼1% as massive orbiting at ∼3 primary radii in ∼0.7 days, and an outer satellite ∼2.5% as massive orbiting at ∼13 primary radii in ∼6.2 days. 1994 CC is a smaller system with a primary of mass ∼2.6 ×1011 kg and two satellites ∼2% and ≲1% as massive orbiting at distances of ∼5.5 and ∼19.5 primary radii. Their orbital periods are ∼1.2 and ∼8.4 days. Examination of resonant arguments shows that the satellites are not currently in a mean-motion resonance. Precession of the apses and nodes are detected in both systems (2001 SN263 inner body: dϖ/dt ∼ 1.1 deg day−1; 1994 CC inner body: dϖ/dt∼ −0.2 deg day−1), which is in agreement with analytical predictions of the secular evolution due to mutually interacting orbits and primary oblateness. Nonzero mutual inclinations between the orbital planes of the satellites provide the best fits to the data in both systems (2001 SN263: ∼ 14 deg; 1994 CC: ∼16 deg). Our best-fit orbits are consistent with nearly circular motion, except for 1994 CC's outer satellite which has an eccentric orbit of e ∼ 0.19. We examine several processes that can generate the observed eccentricity and inclinations, including the Kozai and evection resonances, past mean-motion resonance crossings, and close encounters with terrestrial planets. In particular, we find that close planetary encounters can easily excite the eccentricities and mutual inclinations of the satellites' orbits to the currently observed values.

155

Two well-studied white dwarfs with helium-dominated atmospheres (DBs) each possess less hydrogen than carried by a single average-mass comet. Plausibly, the wind rates from these stars are low enough that most accreted hydrogen remains with the star. If so, and presuming their nominal effective temperatures, then these DBs have faced minimal impact by interstellar comets during their 50 Myr cooling age; interstellar iceballs with radii between 10 m and 2 km contain less than 1% of all interstellar oxygen. This analysis suggests that most stars do not produce comets at the rate predicted by "optimistic" scenarios for the formation of the Oort Cloud.

156

, , , and

We present the results of a ground-based, high spatial resolution infrared 18 μm imaging study of nearby luminous infrared galaxies (LIRGs), using the Subaru 8.2 m and Gemini-South 8.1 m telescopes. The diffraction-limited images routinely achieved with these telescopes in the Q band (17–23 μm) allow us to investigate the detailed spatial distribution of infrared emission in these LIRGs. We then investigate whether the emission surface brightnesses are modest, as observed in starbursts, or are so high that luminous active galactic nuclei (AGNs; high emission surface brightness energy sources) are indicated. The sample consists of 18 luminous buried AGN candidates and starburst-classified LIRGs identified in earlier infrared spectroscopy. We find that the infrared 18 μm emission from the buried AGN candidates is generally compact, and the estimated emission surface brightnesses are high, sometimes exceeding the maximum value observed in and theoretically predicted for a starburst phenomenon. The starburst-classified LIRGs usually display spatially extended 18 μm emission and the estimated emission surface brightnesses are modest, within the range sustained by a starburst phenomenon. The general agreement between infrared spectroscopic and imaging energy diagnostic methods suggests that both are useful tools for understanding the hidden energy sources of the dusty LIRG population.

157

, , and

The results of 1031 speckle-interferometric observations of double stars, made with the 26 inch refractor of the U.S. Naval Observatory, are presented. Each speckle-interferometric observation of a system represents a combination of over two thousand short-exposure images. These observations are averaged into 457 mean relative positions and range in separation from 0farcs15 to 16farcs94, with a median separation of 3farcs03. The range in V-band magnitudes for the primary (secondary) of observed targets is 3.1–12.9 (3.2–13.3). This is the sixteenth in a series of papers presenting measurements obtained with this system and covers the period 2009 January 12 through 2009 December 17. Included in these data are 12 older measurements whose positions were previously deemed possibly aberrant, but are no longer classified this way following a confirming observation. Also, 10 pairs with a single observation are herein confirmed. This paper also includes the first data obtained using a new ICCD with fiber optic cables.

158

, , and

We present new reddening maps of the Small Magellanic Cloud (SMC) and Large Magellanic Cloud (LMC) based on the data of the third phase of the Optical Gravitational Lensing Experiment (OGLE III). We have used two different methods to derive optical reddening maps. We adopt a theoretical mean unreddened color for the red clump (RC) in the SMC and LMC, respectively. We subdivide the photometric data for both Clouds into subfields and calculate the difference between the observed RC position and the theoretical value for each field, which provides us with the reddening value in (VI). Furthermore, reddening values are obtained for 13490 LMC RR Lyrae ab and 1529 SMC RR Lyrae ab stars covering the whole OGLE III region of the Magellanic Clouds (MCs). The observed colors (VI) of the RR Lyrae stars are compared with the color from the absolute magnitudes. The absolute magnitude of each RR Lyrae star is computed using its period and metallicity derived from Fourier decomposition of its light curve. In general, we find a low and uniform reddening distribution in both MCs. The RC method indicates a mean reddening of the LMC of E(VI) = 0.09 ± 0.07 mag, while for the SMC E(VI) = 0.04 ± 0.06 mag is obtained. With RR Lyrae stars a median value of E(VI) = 0.11 ± 0.06 mag for the LMC and E(VI) = 0.07 ± 0.06 mag for the SMC is found. The LMC shows very low reddening in the bar region, whereas the reddening in the star-forming leading edge and 30 Doradus is considerably higher. In the SMC, three pronounced regions with higher reddening are visible. Two are located along the bar, while the highest reddening is found in the star-forming wing of the SMC. In general, the regions with higher reddening are in good spatial agreement with infrared reddening maps as well as with reddening estimations of other studies. The position-dependent reddening values from the RC method are available via the German Astrophysical Virtual Observatory interface.

159

, , , , and

The size distribution in the cold classical Kuiper Belt (KB) can be approximated by two idealized power laws: one with steep slope for radii R > R* and one with shallow slope for R < R*, where R* ∼ 25–50 km. Previous works suggested that the size frequency distribution (SFD) rollover at R* can be the result of extensive collisional grinding in the KB that led to the catastrophic disruption of most bodies with R < R*. Here, we use a new code to test the effect of collisions in the KB. We find that the observed rollover could indeed be explained by collisional grinding provided that the initial mass in large bodies was much larger than the one in the present KB and was dynamically depleted. In addition to the size distribution changes, our code also tracks the effects of collisions on binary systems. We find that it is generally easier to dissolve wide binary systems, such as the ones existing in the cold KB today, than to catastrophically disrupt objects with RR*. Thus, the binary survival sets important limits on the extent of collisional grinding in the KB. We find that the extensive collisional grinding required to produce the SFD rollover at R* would imply a strong gradient of the binary fraction with R and separation, because it is generally easier to dissolve binaries with small components and/or those with wide orbits. The expected binary fraction for RR* is ≲0.1. The present observational data do not show such a gradient. Instead, they suggest a large binary fraction of ∼0.4 for R = 30–40 km. This may indicate that the rollover was not produced by disruptive collisions, but is instead a fossil remnant of the KB object formation process.

160

, , , and

Barium ii (Ba) stars are chemically peculiar F-, G-, and K-type objects that show enhanced abundances of s-process elements. Since s-process nucleosynthesis is unlikely to take place in stars prior to the advanced asymptotic giant branch (AGB) stage, the prevailing hypothesis is that each present Ba star was contaminated by an AGB companion which is now a white dwarf (WD). Unless the initial mass ratio of such a binary was fairly close to unity, the receiving star is thus at least as likely to be a dwarf as a giant. So although most known Ba stars appear to be giants, the hypothesis requires that Ba dwarfs be comparably plentiful and moreover that they should all have WD companions. However, despite dedicated searches with the IUE satellite, no WD companions have been directly detected to date among the classical Ba dwarfs, even though some 90% of those stars are spectroscopic binaries, so the contamination hypothesis is therefore presently in some jeopardy. In this paper, we analyze recent deep, near-UV and far-UV Galaxy Evolution Explorer (GALEX) exposures of four of the brightest of the class (HD 2454, 15360, 26367, and 221531), together with archived GALEX data for two newly recognized Ba dwarfs: HD 34654 and HD 114520 (which also prove to be spectroscopic binaries). The GALEX observations of the Ba dwarfs as a group show a significant far-UV excess compared to a control sample of normal F-type dwarfs. We suggest that this ensemble far-UV excess constitutes the first direct evidence that Ba dwarfs have WD companions.

161

, , , , , , , , , et al

We present SuperWASP observations of HAT-P-14b, a hot Jupiter discovered by Torres et al. The planet was found independently by the SuperWASP team and named WASP-27b after follow-up observations had secured the discovery, but prior to the publication by Torres et al. Our analysis of HAT-P-14/WASP-27 is in good agreement with the values found by Torres et al. and we provide additional evidence against astronomical false positives. Due to the brightness of the host star, Vmag = 10, HAT-P-14b is an attractive candidate for further characterization observations. The planet has a high impact parameter and the primary transit is close to grazing. This could readily reveal small deviations in the orbital parameters indicating the presence of a third body in the system, which may be causing the small but significant orbital eccentricity. Our results suggest that the planet may undergo a grazing secondary eclipse. However, even a non-detection would tightly constrain the system parameters.

162

Using two volume-limited samples of the Main Galaxy sample of the Sloan Digital Sky Survey Data Release 7 with luminosities of −20.5 ⩽ Mr⩽ −18.5 and −22.5 ⩽ Mr⩽ −20.5, respectively, I explore the correlation between environment and gas metallicity for star-forming galaxies. Overall, results indicate that galaxies in the lowest density regime preferentially have lower gas metallicity than galaxies in the densest regimes, and that the correlation between environment and gas metallicity is fundamental.

163

, , , and

We present multicolor light curves of SN 1998bw which appeared in ESO184-G82 in close temporal and spatial association with GRB 980425. The light curves are based on observations conducted at Cerro Tololo Inter-American Observatory (CTIO) and data from the literature. The CTIO photometry reaches ∼86 days after the gamma-ray burst (GRB) in U and ∼160 days after the GRB in BV(RI)C. The observations in U extend the previously known coverage by about 30 days and determine the slope of the early exponential tail. We calibrate a large set of local standards in common with those of previous studies and use them to transform published observations of the supernova (SN) to our realization of the standard photometric system. We show that the photometry from different sources merges smoothly and we provide a unified set of 300 observations of the SN in five bands. Using the extensive set of spectra in the public domain, we compute extinction and K-corrections and build quasi-bolometric unreddened rest-frame light curves. We provide low-degree piecewise spline fits to these light curves with daily sampling. They reach ∼86 rest-frame days after the GRB with U-band coverage and ∼498 rest-frame days after the GRB without U.

164

, , , , , , and

We present a multi-wavelength study of NGC 4330, a highly inclined spiral galaxy in the Virgo Cluster which is a clear example of strong, ongoing intracluster medium–interstellar medium (ICM–ISM) ram pressure stripping. The H i has been removed from well within the undisturbed old stellar disk, to 50%–65% of R25. Multi-wavelength data (WIYN BVR–Hα, Very Large Array 21 cm H i and radio continuum, and Galaxy Evolution Explorer NUV and FUV) reveal several one-sided extraplanar features likely caused by ram pressure at an intermediate disk-wind angle. At the leading edge of the interaction, the Hα and dust extinction curve sharply out of the disk in a remarkable and distinctive "upturn" feature that may be generally useful as a diagnostic indicator of active ram pressure. On the trailing side, the ISM is stretched out in a long tail which contains 10% of the galaxy's total H i emission, 6%–9% of its NUV–FUV emission, but only 2% of the Hα. The centroid of the H i tail is downwind of the UV/Hα tail, suggesting that the ICM wind has shifted most of the ISM downwind over the course of the past 10–300 Myr. Along the major axis, the disk is highly asymmetric in the UV, but more symmetric in Hα and H i, also implying recent changes in the distributions of gas and star formation. The UV–optical colors indicate very different star formation histories for the leading and trailing sides of the galaxy. On the leading side, a strong gradient in the UV–optical colors of the gas-stripped disk suggests that it has taken 200–400 Myr to strip the gas from a radius of >8 to 5 kpc, but on the trailing side there is no age gradient. All our data suggest a scenario in which NGC 4330 is falling into the cluster center for the first time and has experienced a significant increase in ram pressure over the last 200–400 Myr. Many of the UV-bright stars that form outside the thin disk due to ram pressure will ultimately produce stellar thick disk and halo components with characteristic morphologies and age distributions distinct from those produced by gravitational interactions.

165

The Local Interstellar Bubble is an irregular region from 50 to 150 pc from the Sun in which the interstellar gas density is 10−2–10−3 of that outside the bubble and the interstellar temperature is 106 K. Evidently most of the gas was swept out by one or more supernovae. I explored the stellar contents and ages of the region from visual double stars, spectroscopic doubles, single stars, open clusters, emission regions, X-ray stars, planetary nebulae, and pulsars. The bubble has three sub-regions. The region toward the galactic center has stars as early as O9.5 V and with ages of 2–4 M yr. It also has a pulsar (PSRJ1856−3754) with a spin-down age of 3.76 Myr. That pulsar is likely to be the remnant of the supernova that drove away most of the gas. The central lobe has stars as early as B7 V and therefore an age of about 160 Myr or less. The Pleiades lobe has stars as early as B3 and therefore an age of about 50 Myr. There are no obvious pulsars that resulted from the supernovae that cleared out those areas. As found previously by Welsh & Lallement, the bubble has five B stars along its perimeter that show high-temperature ions of O vi and C ii along their lines of sight, confirming its high interstellar temperature.

166

, , , , , , , and

Using light curves from the HATNet survey for transiting extrasolar planets we investigate the optical broadband photometric variability of a sample of 27, 560 field K and M dwarfs selected by color and proper motion (VK ≳ 3.0, μ > 30 mas yr−1, plus additional cuts in J − H versus HKS and on the reduced proper motion). We search the light curves for periodic variations and for large-amplitude, long-duration flare events. A total of 2120 stars exhibit potential variability, including 95 stars with eclipses and 60 stars with flares. Based on a visual inspection of these light curves and an automated blending classification, we select 1568 stars, including 78 eclipsing binaries (EBs), as secure variable star detections that are not obvious blends. We estimate that a further ∼26% of these stars may be blends with fainter variables, though most of these blends are likely to be among the hotter stars in our sample. We find that only 38 of the 1568 stars, including five of the EBs, have previously been identified as variables or are blended with previously identified variables. One of the newly identified EBs is 1RXS J154727.5+450803, a known P = 3.55 day, late M-dwarf SB2 system, for which we derive preliminary estimates for the component masses and radii of M1 = M2 = 0.258 ± 0.008 M and R1 = R2 = 0.289 ± 0.007 R. The radii of the component stars are larger than theoretical expectations if the system is older than ∼200 Myr. The majority of the variables are heavily spotted BY Dra-type stars for which we determine rotation periods. Using this sample, we investigate the relations between period, color, age, and activity measures, including optical flaring, for K and M dwarfs, finding that many of the well-established relations for F, G, and K dwarfs continue into the M dwarf regime. We find that the fraction of stars that is variable with peak-to-peak amplitudes greater than 0.01 mag increases exponentially with the VKS color such that approximately half of field dwarfs in the solar neighborhood with M ≲ 0.2 M are variable at this level. Our data hint at a change in the rotation–activity–age connection for stars with M ≲ 0.25 M.

167

, , , , , , , , and

Using a sample of ∼30,000 quasars from the 7th Data Release of the Sloan Digital Sky Survey, we explore the range of properties exhibited by high-ionization, broad emission lines, such as C iv λ1549. Specifically, we investigate the anti-correlation between continuum luminosity and emission-line equivalent width (the Baldwin Effect (BEff)) and the "blueshifting" of the high-ionization emission lines with respect to low-ionization emission lines. Employing improved redshift determinations from Hewett & Wild, the blueshift of the C iv emission line is found to be nearly ubiquitous, with a mean shift of ∼810 km s−1 for radio-quiet (RQ) quasars and ∼360 km s−1 for radio-loud (RL) quasars. The BEff is present in both RQ and RL samples. We consider these phenomena within the context of an accretion disk-wind model that is modulated by the nonlinear correlation between ultraviolet and X-ray continuum luminosity. Composite spectra are constructed as a function of C iv emission-line properties in an attempt to reveal empirical relationships between different line species and the continuum. Within a two-component disk+wind model of the broad emission-line region (BELR), where the wind filters the continuum seen by the disk component, we find that RL quasars are consistent with being dominated by the disk component, while broad absorption line quasars are consistent with being dominated by the wind component. Some RQ objects have emission-line features similar to RL quasars; they may simply have insufficient black hole (BH) spin to form radio jets. Our results suggest that there could be significant systematic errors in the determination of Lbol and BH mass that make it difficult to place these findings in a more physical context. However, it is possible to classify quasars in a paradigm where the diversity of BELR parameters is due to differences in an accretion disk wind between quasars (and over time); these differences are underlain primarily by the spectral energy distribution, which ultimately must be tied to BH mass and accretion rate.

168

and

We study blue horizontal branch (BHB) and RR Lyrae stars in the Rodgers et al. fields and compare their velocity and density distributions with other surveys in the same part of the sky. Photometric data are given for 176 early-type stars in the northern field. We identify fourteen BHB stars and four possible BHB stars, and determine the selection efficiency of the Century survey, the HK survey, and the SDSS survey for BHB stars. We give light curves and γ radial velocities for three type ab RR Lyrae stars in the northern field; comparison with the nearby LONEOS survey shows that there is likely to be an equal number of lower-amplitude type ab RR Lyrae stars that we do not find. There are therefore at least twice as many BHB stars as type ab RR Lyrae stars in the northern field—similar to the ratio in the solar neighborhood. The velocity distribution of the southern field shows no evidence for an anomalous thick disk that was found by Gilmore et al.; the halo velocity peaks at a slightly prograde rotational velocity but there is also a significant retrograde halo component in this field. The velocity distribution in the northern field shows no evidence of Galactic rotation for |Z| ⩾ 4 kpc and a slight prograde motion for |Z| < 4 kpc. The space densities of BHB stars in the northern field agree with an extrapolation of the power-law distribution recently derived by de Propris et al. For |Z| < 4 kpc, however, we observe an excess of BHB stars compared with this power law. We conclude that these BHB stars mostly belong to a spatially flattened, non-rotating inner halo component of the Milky Way in confirmation of the Kinman et al. analysis of Century survey BHB stars.

169

and

We report the detection of a strong, reversing magnetic field and variable Hα emission in the bright helium-weak star HD 176582 (HR 7185). Spectrum, magnetic, and photometric variability of the star are all consistent with a precisely determined period of 1.5819840 ± 0.0000030 days which we assume to be the rotation period of the star. From the magnetic field curve, and assuming a simple dipolar field geometry, we derive a polar field strength of approximately 7 kG and a lower limit of 52° for the inclination of the rotation axis. However, based on the behavior of the Hα emission, we adopt a large inclination angle of 85° and this leads to a large magnetic obliquity of 77°. The Hα emission arises from two distinct regions located at the intersections of the magnetic and rotation equators and which corotate with the star at a distance of about 3.5 R* above its surface. We estimate that the emitting regions have radial and meridional sizes on the order of 2 R* and azimuthal extents (perpendicular to the magnetic equator) of less than approximately 0.6 R*. HD 176582 therefore appears to show many of the cool magnetospheric phenomena as that displayed by other magnetic helium-weak and helium-strong stars such as the prototypical helium-strong star σ Ori E. The observations are consistent with current models of magnetically confined winds and rigidly rotating magnetospheres for magnetic Bp stars.

170

, , , , , , , , , et al

We present the results of a Jupiter Trojans' light curve survey aimed at characterizing the rotational properties of Trojans in the approximate size range 60–150 km. The survey, which was designed to provide reliable and unbiased estimates of rotation periods and amplitudes, resulted in light curves for a total of 80 objects, 56 of which represent the first determinations published to date and nine of which supersede previously published erroneous values. Our results more than double the size of the existing database of rotational properties of Jovian Trojans in the selected size range. The analysis of the distributions of the rotation periods and light curve amplitudes is the subject of companion papers.

171

, , , , , , , , and

We present HST/ACS observations of RR Lyrae variable stars in six ultra-deep fields of the Andromeda galaxy (M31), including parts of the halo, disk, and giant stellar stream. Past work on the RR Lyrae stars in M31 has focused on various aspects of the stellar populations that make up the galaxy's halo, including their distances and metallicities. This study builds upon this previous work by increasing the spatial coverage (something that has been lacking in previous studies) and by searching for these variable stars in constituents of the galaxy not yet explored. Besides the 55 RR Lyrae stars we found in our initial field located 11 kpc from the galactic nucleus, we find additional RR Lyrae stars in four of the remaining five ultra-deep fields as follows: 21 in the disk, 24 in the giant stellar stream, three in the halo field 21 kpc from the galactic nucleus, and five in one of the halo fields at 35 kpc. No RR Lyrae stars were found in the second halo field at 35 kpc. The RR Lyrae populations of these fields appear to be mostly of Oosterhoff I type, although the 11 kpc field appears to be intermediate or mixed. We will discuss the properties of these stars including period and reddening distributions. We calculate metallicities and distances for the stars in each of these fields using different methods and compare the results, to an extent that has not yet been done. We compare these methods not just on RR Lyrae stars in our M31 fields, but also on a data set of Milky Way field RR Lyrae stars.

172

, , , and

We present absolute parallaxes and proper motions for seven members of the Hyades open cluster, pre-selected to lie in the core of the cluster. Our data come from archival astrometric data from fine guidance sensor (FGS) 3 and newer data for three Hyads from FGS 1r, both white-light interferometers on the Hubble Space Telescope (HST). We obtain member parallaxes from six individual FGS fields and use the field containing van Altena 622 and van Altena 627 (= HIP 21138) as an example. Proper motions, spectral classifications, and VJHK photometry of the stars comprising the astrometric reference frames provide spectrophotometric estimates of reference star absolute parallaxes. Introducing these into our model as observations with error, we determine absolute parallaxes for each Hyad. The parallax of vA 627 is significantly improved by including a perturbation orbit for this previously known spectroscopic binary, now an astrometric binary. Compared to our original (1997) determinations, a combination of new data, updated calibration, and improved analysis lowered the individual parallax errors by an average factor of 4.5. Comparing parallaxes of the four stars contained in the Hipparcos catalog, we obtain an average factor of 11 times improvement with the HST. With these new results, we also have better agreement with Hipparcos for the four stars in common. These new parallaxes provide an average distance for these seven members, 〈D〉 = 47.5 pc, for the core, a ±1σ dispersion depth of 3.6 pc, and a minimum depth from individual components of 16.0 ± 0.9 pc. Absolute magnitudes for each member are compared to established main sequences with excellent agreement. We obtain a weighted average distance modulus for the core of the Hyades of mM = 3.376 ± 0.01, a value close to the previous Hipparcos values, mM = 3.33 ± 0.02.

173

, , , , , , , , , et al

The absolute flux calibration of the James Webb Space Telescope (JWST) will be based on a set of stars observed by the Hubble and Spitzer Space Telescopes. In order to cross-calibrate the two facilities, several A, G, and white dwarf stars are observed with both Spitzer and Hubble and are the prototypes for a set of JWST calibration standards. The flux calibration constants for the four Spitzer IRAC bands 1–4 are derived from these stars and are 2.3%, 1.9%, 2.0%, and 0.5% lower than the official cold-mission IRAC calibration of Reach et al., i.e., in agreement within their estimated errors of ∼2%. The causes of these differences lie primarily in the IRAC data reduction and secondarily in the spectral energy distributions of our standard stars. The independent IRAC 8 μm band-4 fluxes of Rieke et al. are about 1.5% ± 2% higher than those of Reach et al. and are also in agreement with our 8 μm result.