This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Volume 27

Number 11, 18 March 2016

Previous issue Next issue

Topical Review

112001
The following article is Open access

and

Due to its unique physiochemical properties, nano-titanium dioxide (nano-TiO2) is widely used in all aspects of people's daily lives, bringing it into increasing contact with humans. Thus, this material's security issues for humans have become a heavily researched subject. Nano-TiO2 can enter the body through the mouth, skin, respiratory tract or in other ways, after which it enters the blood circulation and is deposited in the liver, changing biochemical indicators and causing liver inflammation. Meanwhile, the light sensitivity of these nanoparticles allows them to become media-generating reactive oxygen species (ROS), causing an imbalance between oxidation and anti-oxidation that leads to oxidative stress and liver damage. Nano-TiO2 can be transported into cells via phagocytosis, where the nanoparticles bind to the mitochondrial membrane, resulting in the disintegration of the membrane and the electron transport chain within the mitochondria. Thus, more ROS are produced. Nano-TiO2 can also enter the nucleus, where it can directly embed into or indirectly affect DNA, thereby causing DNA breakage or affecting gene expression. These effects include increased mRNA and protein expression levels of inflammation-related factors and decreased mRNA and protein expression levels of IκB and IL-2, resulting in inflammation. Long-term inflammation of the liver causes HSC cell activation, and extracellular matrix (ECM) deposition is promoted by multiple signalling pathways, resulting in liver fibrosis. In this paper, the latest progress on murine liver injury induced by environmental TiO2 is systematically described. The toxicity of nano-TiO2 also depends on size, exposure time, surface properties, dosage, administration route, and its surface modification. Therefore, its toxic effects in humans should be studied in greater depth. This paper also provides useful reference information regarding the safe use of nano-TiO2 in the future.

Perspective

112501

and

For a science to become a technology, a certain level of control has to have been established over the way items are fabricated for manufacture and use. Here we first consider the challenge of making and using a LEGO® brick scaled down by a factor of 10n for n = 0–6 in each spatial dimension, i.e. from millimetres to nanometres. We consider both the manufacture and the subsequent properties of the nanobricks that pertain to their use in constructing and dismantling structures. As n increases, the ability to use fails first, to manufacture fails second and to fabricate fails last. Applied to the vast literature in nanoscience, this process emphasises the unmanufacturability of most nanoscale artefacts.

112502

A synthesis technique which can lead to direct integration of tungsten oxide nanowires onto silicon chips is essential for preparing various devices. The conversion of amorphous tungsten films deposited on silicon chips by pulsed layer deposition to nanowires by annealing is an apt method in that direction. This perspective discusses the ingenious features of the technique reported by Dellasega et al on the various aspects of tungsten oxide nanowire synthesis.

112503

Harvesting energies from the atmosphere cost-effectively is critical for both addressing worldwide long-term energy needs at the macro-scale, and achieving the sustainable maintenance-free operation of nanodevices at the micro-scale (Wang and Wu 2012 Angew. Chem. Int. Ed.51 11700–21). Piezoelectric nanogenerator (NG) technology has demonstrated its great application potential in harvesting the ubiquitous and abundant mechanical energy. Despite of the progress made in this rapidly-advancing field, a fundamental understanding and common standard for consistently quantifying and evaluating the performance of the various types of piezoelectric NGs is still lacking. In their recent study Crossley and Kar-Narayan (2015 Nanotechnology26 344001), systematically investigated dynamical properties of piezoelectric NGs by taking into account the effect of driving mechanism and load frequency on NG performance. They further defined the NGs' figures of merit as energy harvested normalized by applied strain or stress for NGs under strain-driven or stress-driven conditions, which are commonly seen in the vibrational energy harvesting. This work provides new insight and a feasible approach for consistently evaluating piezoelectric nanomaterials and NG devices, which is important for designing and optimizing nanoscale piezoelectric energy harvesters, as well as promoting their applications in emerging areas e.g. the internet of things, wearable devices, and self-powered nanosystems.

Focus issue paper

114001

, , , , , , and

Biosensing

Glucose is the main substrate for neurons in the central nervous system. In order to efficiently characterize the brain glucose mechanism, it is desirable to determine the extracellular glucose dynamics as well as the corresponding neuroelectrical activity in vivo. In the present study, we fabricated an implantable microelectrode array (MEA) probe composed of platinum electrochemical and electrophysiology microelectrodes by standard micro electromechanical system (MEMS) processes. The MEA probe was modified with nano-materials and implanted in a urethane-anesthetized rat for simultaneous recording of striatal extracellular glucose, local field potential (LFP) and spike on the same spatiotemporal scale when the rat was in normoglycemia, hypoglycemia and hyperglycemia. During these dual-mode recordings, we observed that increase of extracellular glucose enhanced the LFP power and spike firing rate, while decrease of glucose had an opposite effect. This dual mode MEA probe is capable of examining specific spatiotemporal relationships between electrical and chemical signaling in the brain, which will contribute significantly to improve our understanding of the neuron physiology.

114002

, , , and

Chemical Imaging

This work aims to simplify multi-dimensional femtosecond transient absorption microscopy (TAM) data into decay associated amplitude maps (DAAMs) that describe the spatial distributions of dynamical processes occurring on various characteristic timescales. Application of this method to TAM data obtained from a model methyl-ammonium lead iodide (CH3NH3PbI3) perovskite thin film allows us to simplify the data set comprising 68 time-resolved images into four DAAMs. These maps offer a simple means to visualize the complex electronic excited-state dynamics in this system by separating distinct dynamical processes evolving on characteristic timescales into individual spatial images. This approach provides new insight into subtle aspects of ultrafast relaxation dynamics associated with excitons and charge carriers in the perovskite thin film, which have recently been found to coexist at spatially distinct locations.

Papers

Biology and medicine

115101

, , and

Magnetic nanoparticles (MNPs) have been widely investigated as a hyperthermic agent for cancer treatment. In this study, thermally responsive Chitosan-coated MnFe2O4 (Chitosan-MnFe2O4) nanoparticles were developed to conduct localized magnetic hyperthermia for cancer treatment. Hydrophobic MnFe2O4 nanoparticles were synthesized via thermal decomposition and modified with 2,3-dimercaptosuccinic acid (DMSA) for further conjugation of chitosan. Chitosan-MnFe2O4 nanoparticles exhibited high magnetization and excellent biocompatibility along with low cell cytotoxicity. During magnetic hyperthermia treatment (MHT) with Chitosan-MnFe2O4 on MDA-MB 231 cancer cells, the targeted therapeutic temperature was achieved by directly controlling the strength of the external AC magnetic fields. In vitro Chitosan-MnFe2O4-assisted MHT at 42 °C led to drastic and irreversible changes in cell morphology and eventual cellular death in association with the induction of apoptosis through heat dissipation from the excited magnetic nanoparticles. Therefore, the Chitosan-MnFe2O4 nanoparticles with high biocompatibility and thermal capability can be an effective nano-mediated agent for MHT on cancer.

115102

, , , , , , , , and

We demonstrate effective inactivation of oral cancer cells SAS through a combination of photothermal therapy (PTT) and photodynamic therapy (PDT) effects based on localized surface plasmon resonance (LSPR) around 1064 nm in wavelength of a Au nanoring (NRI) under femtosecond (fs) laser illumination. The PTT effect is caused by the LSPR-enhanced absorption of the Au NRI. The PDT effect is generated by linking the Au NRI with the photosensitizer of sulfonated aluminum phthalocyanines (AlPcS) for producing singlet oxygen through the LSPR-enhanced two-photon absorption (TPA) excitation of AlPcS. The laser threshold intensity for cancer cell inactivation with the applied Au NRI linked with AlPcS is significantly lower when compared to that with the Au NRI not linked with AlPcS. The comparison of inactivation threshold intensity between the cases of fs and continuous laser illuminations at the same wavelength and with the same average power confirms the crucial factor of TPA under fs laser illumination for producing the PDT effect.

Electronics and photonics

115201

, and

In this paper, we report a detailed study of the negative capacitance field effect transistor (NCFET). We present the condition for the stabilization of the negative capacitance to achieve the voltage amplification across the active layer. The theory is based on Landau's theory of ferroelectrics combined with the surface potential model in all regimes of operation. We demonstrate the validity of the presented theory on experimental NCFETs using a gate stack made of P(VDF-TrFE) and SiO2. The proposed analytical modeling shows good agreement with experimental data.

115202

, , , , , , , , and

Directional plasmon excitation and surface enhanced Raman scattering (SERS) emission were demonstrated for 1D and 2D gold nanostructure arrays deposited on a flat gold layer. The extinction spectrum of both arrays exhibits intense resonance bands that are redshifted when the incident angle is increased. Systematic extinction analysis of different grating periods revealed that this band can be assigned to a propagated surface plasmon of the flat gold surface that fulfills the Bragg condition of the arrays (Bragg mode). Directional SERS measurements demonstrated that the SERS intensity can be improved by one order of magnitude when the Bragg mode positions are matched with either the excitation or the Raman wavelengths. Hybridized numerical calculations with the finite element method and Fourier modal method also proved the presence of the Bragg mode plasmon and illustrated that the enhanced electric field of the Bragg mode is particularly localized on the nanostructures regardless of their size.

115203

, and

The manipulation of material properties in perovskite oxide heterojunctions has been increasingly studied, owing to their interacting lattice, charge, spin and orbital degrees of freedom. In this work, the switching, ferroelectricity and magneto-transport properties of epitaxially grown perovskite Pb(Zr0.52Ti0.48)O3 layers sandwiched between Fe3O4 (top electrode) and SrRuO3 (bottom electrode) are investigated. These films show a typical ferroelectric polarization of ∼50 μC/cm2. Once the Pb(Zr0.52Ti0.48)O3 films become thinner (∼30 nm), one can set (reset) the Fe3O4/Pb(Zr0.52Ti0.48)O3/SrRuO3 structures into a low (high) resistance state via formation (rupture) of an Fe-related filament in Pb(Zr0.52Ti0.48)O3 through manipulation of an electric field. Interestingly, at the low-resistance state, a prominent magnetoresistance signal of ∼3% was observed. There is no magnetoresistance signal detected in the virgin Pb(Zr0.52Ti0.48)O3 film (before switching), high-resistive state Pb(Zr0.52Ti0.48)O3 film and Au/Pb(Zr0.52Ti0.48)O3/SrRuO3. These phenomena are attributed to the diffusion of Fe-related ions into the Pb(Zr0.52Ti0.48)O3 film, turning a non-magnetic and insulating layer of perovskite Pb(Zr0.52Ti0.48)O3 into a magnetic and semiconducting-like Pb(Zr0.52Ti0.48)O3. The magneto-transport properties of Fe3O4/Pb(Zr0.52Ti0.48)O3/SrRuO3 have been studied extensively. Such resistance–ferroelectric–ferromagnetic coupling in a single compound paves the way to the realization of a non-volatile multiple-state Pb(ZrTi)O3 hybrid memory, as well as new computing approaches.

115204

, , and

Well-aligned ZnO nanorods have been prepared on p-GaN–sapphire using a vapor phase transport (VPT) technique. A thin sputtered layer of TaOx is employed as the intermediate layer and an n-ZnO–TaOx–p-GaN heterojunction device has been achieved. The current transport of the heterojunction exhibited a typical resistance switching behavior, which originated from the filament forming and breaking in the TaOx layer. Color controllable electroluminescence (EL) was observed from the biased heterojunction at room temperature. Bluish-white wide band emission is achieved from the forward biased device in both the high resistance and low resistance states, while red emission can only be observed for the reverse biased device in the low resistance state. The correlation between the EL and resistance switching has been analyzed in-depth based on the interface band diagram of the heterojunction.

Patterning and nanofabrication

115301

, , and

Photoluminescent carbon dots (c-dots) have recently attracted growing interest as a new member of the carbon-nanomaterial family. Here, we report for the first time that c-dot-decorated TiO2 nanotube arrays (c-dot/TiNTs) exhibit highly enhanced abilities regarding photo/voltage-induced organic pollutant degradation and bacterial inactivation. By applying UV irradiation (365 nm) or an electrochemical potential over 3 V (versus Ag/AgCl), an organic dye and a herbicide were efficiently degraded. Moreover, the inactivation of Gram-positive S. aureus and Gram-negative E. coli bacteria was realized on a c-dot/TiNT film. The c-dots were able to absorb light efficiently resulting in multiple exciton generation and also a reduction in the recombination of the e/h+ pair produced in c-dot/TiNT film during photo/voltage-induced degradation. It was also possible to readily regenerate the surface using ultraviolet light irradiation, leaving the whole film structure undamaged and with high reproducibility and stability.

115302

, , , , , , and

A vertical nanogap device (VND) structure comprising all-silicon contacts as electrodes for the investigation of electronic transport processes in bioelectronic systems is reported. Devices were fabricated from silicon-on-insulator substrates whose buried oxide (SiO2) layer of a few nanometers in thickness is embedded within two highly doped single crystalline silicon layers. Individual VNDs were fabricated by standard photolithography and a combination of anisotropic and selective wet etching techniques, resulting in p+ silicon contacts, vertically separated by 4 or 8 nm, depending on the chosen buried oxide thickness. The buried oxide was selectively recess-etched with buffered hydrofluoric acid, exposing a nanogap. For verification of the devices' electrical functionality, gold nanoparticles were successfully trapped onto the nanogap electrodes' edges using AC dielectrophoresis. Subsequently, the suitability of the VND structures for transport measurements on proteins was investigated by functionalizing the devices with cytochrome c protein from solution, thereby providing non-destructive, permanent semiconducting contacts to the proteins. Current–voltage measurements performed after protein deposition exhibited an increase in the junctions' conductance of up to several orders of magnitude relative to that measured prior to cytochrome c immobilization. This increase in conductance was lost upon heating the functionalized device to above the protein's denaturation temperature (80 °C). Thus, the VND junctions allow conductance measurements which reflect the averaged electronic transport through a large number of protein molecules, contacted in parallel with permanent contacts and, for the first time, in a symmetrical Si–protein–Si configuration.

115303

, , , , , , , , and

Nanoimprint lithography (NIL) of functional high-refractive index materials has proved to be a powerful candidate for the inexpensive manufacturing of high-resolution photonic devices. In this paper, we demonstrate the fabrication of printable photonic crystals (PhCs) with high refractive index working in the visible wavelengths. The PhCs are replicated on a titanium dioxide-based high-refractive index hybrid material by reverse NIL with almost zero shrinkage and high-fidelity reproducibility between mold and printed devices. The optical responses of the imprinted PhCs compare very well with those fabricated by conventional nanofabrication methods. This study opens the road for a low-cost manufacturing of PhCs and other nanophotonic devices for applications in visible light.

115304

, , , , , , and

Electron-beam-induced deposition of titanium oxide nanopatterns is described. The precursor is titanium tetra-isopropoxide, delivered to the deposition point through a needle and mixed with oxygen at the same point via a flow through a separate needle. The depositions are free of residual carbon and have an EDX determined stoichiometry of TiO2.2. High resolution transmission electron microscopy and Raman spectroscopy studies reveal an amorphous structure of the fabricated titanium oxide. Ellipsometric characterization of the deposited material reveals a refractive index of 2.2−2.4 RIU in the spectral range of 500−1700 nm and a very low extinction coefficient (lower than 10−6 in the range of 400−1700 nm), which is consistent with high quality titanium oxide. The electrical resistivity of the titanium oxide patterned with this new process is in the range of 10–40 GΩ cm and the measured breakdown field is in the range of 10–70 V μm−1. The fabricated nanopatterns are important for a variety of applications, including field-effect transistors, memory devices, MEMS, waveguide structures, bio- and chemical sensors.

115305

, , , , , and

Nanoporous silicon oxide templates formed by swift heavy ion tracks technology have been investigated. The influence of the heavy ion characteristics, such as type of ion, energy, stopping power and irradiation fluence on the pore properties of the silicon oxide templates, has been studied. Furthermore, the process of pore formation by chemical etching with hydrofluoric acid has been thoroughly investigated by assessing the effect of etchant concentration and etching time. The outcome of this investigation enables us to have precise control over the resulting geometry of nanopores arrays. As a result, guidelines for the creation of a-SiO2/Si templates with tunable parameters and general recommendations for their further application are presented.

Energy at the nanoscale

115401

, , , , , , and

Micropatterned TiO2 nanorods (TiO2NRs) via three-dimensional (3D) geometry engineering in both microscale and nanoscale decorated with graphene quantum dots (GQDs) have been demonstrated successfully. First, micropillar (MP) and microcave (MC) arrays of anatase TiO2 films are obtained through the sol–gel based thermal nanoimprinting method. Then they are employed as seed layers in hydrothermal growth to fabricate the 3D micropillar/microcave arrays of rutile TiO2NRs (NR), which show much-improved photoelectrochemical water-splitting performance than the TiO2NRs grown on flat seed layer. The zero-dimensional GQDs are sequentially deposited onto the surfaces of the microscale patterned nanorods. Owing to the fast charge separation that resulted from the favorable band alignment of the GQDs and rutile TiO2, the MP-NR-GQDs electrode achieves a photocurrent density up to 2.92 mA cm−2 under simulated one-sun illumination. The incident-photon-to-current-conversion efficiency (IPCE) value up to 72% at 370 nm was achieved on the MP-NR-GQDs electrode, which outperforms the flat-NR counterpart by 69%. The IPCE results also imply that the improved photocurrent mainly benefits from the distinctly enhanced ultraviolet response. The work provides a cost-effective and flexible pathway to develop periodic 3D micropatterned photoelectrodes and is promising for the future deployment of high performance optoelectronic devices.

115402

, , , and

Studies aiming to significantly improve thermal properties, such as figure-of-merit, of silicon nanowires (SiNW) have focused on diameter reduction and surface or interface roughness control. However, the mechanism underlying thermal conductivity enhancement of roughness controlled NWs remains unclear. Here, we report a significant influence of stacking faults (SFs) on the lateral thermal conductivity of a single SiNW, using a combination of newly developed in situ spatially-resolved thermal resistance experiments and high-resolution transmission electron microscopy measurements. We used as-grown SiNWs tapered along the growth direction with progressively lower roughness and SFs density. The results clearly confirmed that both surface roughness and twins or SFs densities suppress the thermal conductivity of an individual SiNW. The results and measurement techniques presented here hold great potential for inspecting minute changes in thermal resistance along an individual SiNW, caused by induced SFs on the nanostructure, and for improving one-dimensional nanowire-based thermoelectric device performance.

115403

, , and

Nanostructured carbon sp2 (ns-C) thin films with up to 30% of sp-coordinated atoms (carbynes) were produced in a high vacuum by the low kinetic energy deposition of carbon clusters produced in the gas phase and accelerated by a supersonic expansion. Immediately after deposition the ns-C films were immersed in situ in an ionic liquid electrolyte. The interfacial properties of ns-C films in the ionic liquid electrolyte were characterized by electrochemical impedance spectroscopy and cyclic voltammetry (CV). The so-prepared carbyne-rich electrodes showed superior electric double layer (EDL) capacitance and electric conductivity compared to ns-C electrodes containing only sp2 carbon, showing the substantial influence of carbynes on the electrochemical properties of nanostructured carbon electrodes.

Sensing and actuating

115501

, , , , , , , , , et al

A side-gated, ultrathin-channel nanopore FET (SGNAFET) is proposed for fast and label-free DNA sequencing. The concept of the SGNAFET comprises the detection of changes in the channel current during DNA translocation through a nanopore and identifying the four types of nucleotides as a result of these changes. To achieve this goal, both p- and n-type SGNAFETs with a channel thicknesses of 2 or 4 nm were fabricated, and the stable transistor operation of both SGNAFETs in air, water, and a KCl buffer solution were confirmed. In addition, synchronized current changes were observed between the ionic current through the nanopore and the SGNAFET's drain current during DNA translocation through the nanopore.

Materials: synthesis or self-assembly

115601

and

Self-assembled GeSi nanostructures on miscut Si(001) substrates are studied systematically with regard to the miscut angle and azimuth, the amount of Ge and the growth temperature. The comprehensive dependence of the spatial arrangement, which can exhibit one- and two-dimensional (1D and 2D) ordering, as well as the shape and density, of GeSi nanostructures on the miscut angle is observed. The orientation and side-walls of the 1D ordered in-plane GeSi nanowires on miscut Si(001) substrates are intimately associated with the miscut azimuth towards the 〈110〉 or 〈010〉 directions. Furthermore, the unique evolution of the GeSi nanostructures with the amount of Ge and the growth temperature on miscut Si (001) substrates towards the 〈010〉 direction is discovered. Such promising features of self-assembled GeSi nanostructures on miscut Si (001) substrates are explained in terms of the thermodynamics and growth kinetics, which are both affected significantly by the substrate vicinality. These results demonstrate that the miscut substrates offer a promising degree of freedom for the feasible modification of self-assembled nanostructures.

115602

, , , , , , , , , et al

We report nano-selective area growth (NSAG) of BGaN by MOCVD on AlN/Si(111) and GaN templates resulting in 150 nm single crystalline nanopyramids. This is in contrast to unmasked or micro-selective area growth, which results in a multi-crystalline structure on both substrates. Various characterization techniques were used to evaluate NSAG as a viable technique to improve BGaN material quality on AlN/Si(111) using results of GaN NSAG and unmasked BGaN growth for comparison. Evaluation of BGaN nanopyramid quality, shape and size uniformity revealed that the growth mechanism is the same on both the templates. Further STEM analysis of BGaN nanopyramids on AlN/Si (111) templates confirmed that these are single-crystalline structures without any dislocations, likely due to single nucleation occurring in the 80 nm mask opening. CL results correspond to boron content between 1.7% and 2.0% in the nanopyramids. We conclude that NSAG is promising for growth of high-quality BGaN nanostructures and complex nano-heterostructures, especially for low-cost silicon substrates.

115603

, , , and

In this paper, we report a novel method for constructing a soluble organic nanotube supported catalyst system based on single-molecule templating of core–shell bottlebrush copolymers. Various organic or metal catalysts, such as sodium prop-2-yne-1-sulfonate (SPS), 1-(2-(prop-2-yn-1-yloxy)ethyl)-1H-imidazole (PEI) and Pd(OAc)2 were anchored onto the tube walls to functionalize the organic nanotubes via copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Depending on the 'confined effect' and the accessible cavity microenvironments of tubular structures, the organic nanotube catalysts showed high catalytic efficiency and site-isolation features. We believe that the soluble organic nanotubes will be very useful for the development of high performance catalyst systems due to their high stability of support, facile functionalization and attractive textural properties.

Materials: properties, characterization or tools

115701

, , , and

Multi-walled carbon nanotube (CNT) structures, including unidirectionally aligned sheets and spun yarns, were fabricated by direct dry-spinning methods from spinnable CNT arrays. We improved the mechanical properties of the CNT structures. CNTs were tailored in sheets and yarns using perfluorophenyl azide (PFPA) as a binding agent. The azide group of PFPA bonds to graphene crystal surfaces under UV radiation exposed for 1 h. For the CNT sheet, Young's modulus increased from 1.6 to 32.9 GPa and tensile strength increased from 35.9 MPa to 144.5 MPa. For the CNT yarns Young's modulus increased from 29.5 to 78.0 GPa and tensile strength increased from 639.1 to 675.6 MPa. With this treatment, the CNT sheets became more robust and more flexible materials. Since cross-linking of CNTs by PFPA is a simple and rapid process, it is suitable for fabrication of enhanced CNT materials.

115702

, and

Understanding the phase diagram is the first step to identifying the structure–performance relationship of a material at the nanoscale. In this work, a modified nanothermodynamical model has been developed to predict the phase diagrams of Ag–Co nanoalloys with the size of 1 ∼ 100 nm, which also overcomes the difference in the predicted results between theory and simulation for the first time. Based on this modified model, the phase diagrams of Ag–Co nanoalloys with various polyhedral morphologies (tetrahedron, cube, octahedron, decahedron, dodecahedron, rhombic dodecahedron, truncated octahedron, cuboctahedron, and icosahedron) have been predicted, showing good agreement with molecular dynamics simulations at the nanoscale of 1 ∼ 4 nm. In addition, the surface segregation of Ag–Co nanoalloys has been predicted with a Co-rich core/Ag-rich surface, which is also consistent with the simulation results. Our results highlight a useful roadmap for bridging the difference between theory and simulation in the prediction of the phase diagram at the nanoscale, which will help both theorists and experimentalists.

115703

, , , , and

As an emerging three-dimensional chiral metamaterial, plasmonic nanospirals (NSs) possess inherent chiroptical activity that has attracted increasing attention for developing potential photonic applications. However, the study of chiroptical activity of plasmonic NSs is still in its infancy, especially for NSs made of silver, which is a typical plasmonic material with high plasmonic quality. Herein, we present a systematic study of circular dichroism (CD) of silver NSs (AgNSs) that are fabricated and engineered in helical lengths by glancing-angle deposition (GLAD) and dispersed in ethanol. The CD spectrum is composed of a bisignated mode of two peaks, one in the UV regime and the other in the visible. The UV mode has a resonance wavelength saturating at ∼375 nm and a linewidth decoupled from the helical elongation, while the visible mode tends to have a redshift and its linewidth broadens linearly with the elongation of AgNS. Helical elongation generally amplifies the chiroptical activity of both modes. Finite-element simulation shows good agreement with the experimental CD results, and accounts for the wavelength-related chiroptical distinction in terms of the resonance wavelength. This work contributes to understanding the bisignated chiroptical responses of plasmonic nanospirals, and introduces a simple method to tailor the visible chiroptical activity that is strongly desired to explore a wide range of chirality-related bio-applications.

115704

, , , and

We have examined the morphology and composition of embedded nanowires that can be formed during molecular beam epitaxy of GaAs1−xBix using high angle annular dark field ('Z-contrast') imaging in an aberration-corrected scanning transmission electron microscope. Samples were grown in Ga-rich growth conditions on a stationary GaAs substrate. Ga-rich droplets are observed on the surface with lateral trails extending from the droplet in the [110] direction. Cross-sectional scanning transmission electron microscopy of the film reveals epitaxial nanowire structures of composition ∼GaAs embedded in the GaAs1−xBix epitaxial layers. These nanowires extend from a surface droplet to the substrate at a shallow angle of inclination (∼4°). They typically are 4 μm long and have a lens-shaped cross section with major and minor axes dimensions of 800 and 120 nm. The top surface of the nanowires exhibits a linear trace in longitudinal cross-section, across which the composition change from ∼GaAs to GaAs1−xBix appears abrupt. The bottom surfaces of the nanowires appear wavy and the composition change appears to be graded over ∼25 nm. The droplets have phase separated into Ga- and Bi-rich components. A qualitative model is proposed in which Bi is gettered into Ga droplets, leaving Bi depleted nanowires in the wakes of the droplets as they migrate in one direction across the surface during GaAs1−xBix film growth.

115705

, , , and

The possibility of spatially resolving the optical properties of atomically thin materials is especially appealing as they can be modulated at the micro- and nanoscale by reducing their thickness, changing the doping level or applying a mechanical deformation. Therefore, optical spectroscopy techniques with high spatial resolution are necessary to get a deeper insight into the properties of two-dimensional (2D) materials. Here we study the optical absorption of single- and few-layer molybdenum disulfide (MoS2) in the spectral range from 1.24 eV to 3.22 eV (385 nm to 1000 nm) by developing a hyperspectral imaging technique that allows one to probe the optical properties with diffraction limited spatial resolution. We find hyperspectral imaging very suited to study indirect bandgap semiconductors, unlike photoluminescence which only provides high luminescence yield for direct gap semiconductors. Moreover, this work opens the door to study the spatial variation of the optical properties of other 2D systems, including non-semiconducting materials where scanning photoluminescence cannot be employed.

115706

and

We have investigated the effect of dipolar interactions on the superspin blocking and freezing of 9 nm average size Fe3O4 magnetic nanoparticle ensembles. Our dynamic susceptibility data reveals a two-regime behavior of the blocking temperature, TB, upon diluting a Fe3O4/hexane magnetic fluid. As the nanoparticle volume ratio, Φ, is reduced from an as-prepared reference Φ = 1 to Φ = 1/96, the blocking temperature decreases from 46.1 K to 34.2 K, but higher values reenter upon further diluting the magnetic fluid to Φ = 1/384 (where TB = 42.5 K). We found evidence that cooling below TB within the higher concentration range (Φ > 1/48) leads to the collective freezing of the superspins, whereas individual superspin blocking occurs in the presence of weaker interactions (Φ < 1/96). The unexpected increase of the blocking temperature with the decrease of the inter-particle interactions observed at low nanoparticle concentrations is well described by the Mørup–Tronc model.

115707

, , , , , , and

A nano-scale analogue to the double cantilever experiment that combines instrumented nano-indentation and atomic force microscopy is used to precisely and locally measure the adhesion of InP bonded on sub-100 nm patterned Si using oxide-free or oxide-mediated bonding. Surface-bonding energies of 0.548 and 0.628 J m−2, respectively, are reported. These energies correspond in turn to 51% and 57% of the surface bonding energy measured in unpatterned regions on the same samples, i.e. the proportion of unetched Si surface in the patterned areas. The results show that bonding on patterned surfaces can be as robust as on unpatterned surfaces, provided care is taken with the post-patterning surface preparation process and, therefore, open the path towards innovative designs that include patterns embedded in the Si guiding layer of hybrid III-V/Si photonic integrated circuits.

115708
The following article is Open access

, , , , , , , and

Alveolar bone loss has long been a challenge in clinical dental implant therapy. Simvastatin (SV) has been demonstrated to exert excellent anabolic effects on bone. However, the successful use of SV to increase bone formation in vivo largely depends on the local concentration of SV at the site of action, and there have been continuing efforts to develop an appropriate delivery system. Specifically, nanostructured lipid carrier (NLC) systems have become a popular type of encapsulation carrier system. Therefore, SV-loaded NLCs (SNs) (179.4 nm in diameter) were fabricated in this study, and the osteogenic effect of the SNs was evaluated in a critical-sized rabbit calvarial defect. Our results revealed that the SNs significantly enhanced bone formation in vivo, as evaluated by hematoxylin and eosin (HE) staining, immunohistochemistry, and a fluorescence analysis. Thus, this novel nanostructured carrier system could be a potential encapsulation carrier system for SV in bone regeneration applications.

Corrigendum