This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Volume 26

Number 14, 7 April 2015

Previous issue Next issue

Focus Issue Papers

144001

, , , , and

DNA sequencing

We investigate the influence of a nanopore surface state and the addition of Mg2+ on poly-adenosine translocation. To do so, two kinds of nanopores with a low aspect ratio (diameter ∼3–5 nm, length 30 nm) were tailored: the first one with a negative charge surface and the second one uncharged. It was shown that the velocity and the energy barrier strongly depend on the nanopore surface. Typically if the nanopore and polyA exhibit a similar charge, the macromolecule velocity increases and its global energy barrier of entrance in the nanopore decreases, as opposed to the non-charged nanopore. Moreover, the addition of a divalent chelating cation induces an increase of energy barrier of entrance, as expected. However, for a negative nanopore, this effect is counterbalanced by the inversion of the surface charge induced by the adsorption of divalent cations.

Papers

Biology and Medicine

145101

, , , , , , and

Based on the complementary effects of doxorubicin (DOX), all-trans retinoic acid (ATRA) and low molecular weight heparin (LMWH), the combination therapy of DOX, ATRA and LMWH was expected to exert the enhanced anti-tumor effects and reduce the side effects. In this study, amphiphilic LMWH–ATRA conjugate was synthesized for encapsulating the DOX. In this way, DOX, ATRA and LMWH were assembled into a single nano-system by both chemical and physical modes to obtain a novel anti-tumor targeting drug delivery system that can realize the simultaneous delivery of multiple drugs with different properties to the tumor. LMWH–ATRA nanoparticles exhibited good loading capacities for DOX with excellent physico-chemical properties, good biocompatibility, and good differentiation-inducing activity and antiangiogenic activity. The drug-loading capacity was up to 18.7% with an entrapment efficiency of 78.8%. It was also found that DOX-loaded LMWH–ATRA nanoparticles (DHR nanoparticles) could be efficiently taken up by tumor cells via endocytic pathway, and mainly distributed in cytoplasm at first, then transferred into cell nucleus. Cell viability assays suggested that DHR nanoparticles maintained the cytotoxicity effect of DOX on MCF-7 cells. Moreover, the in vivo imaging analysis indicated that DiR-loaded LMWH–ATRA nanoparticles could target the tumor more effectively as compared to free DiR. Furthermore, DHR nanoparticles possessed much higher anticancer activity and reduced side effects compared to free drugs solution. These results suggested that DHR nanoparticles could be considered as a promising targeted delivery system for combination cancer chemotherapy with lower adverse effects.

145102

, , , , , , , , and

To reduce the toxic side effects of traditional chemotherapeutics in vivo, we designed and constructed a biocompatible, matrix metalloproteinases (MMPs) responsive drug delivery system based on mesoporous silica nanoparticles (MSNs). MMPs substrate peptide containing PLGLAR (sensitive to MMPs) was immobilized onto the surfaces of amino-functionalized MSNs via an amidation reaction, serving as MMPs sensitive intermediate linker. Bovine serum albumin was then covalently coupled to linker as end-cap for sealing the mesopores of MSNs. Lactobionic acid was further conjugated to the system as targeting motif. Doxorubicin hydrochloride was used as the model anticancer drug in this study. A series of characterizations revealed that the system was successfully constructed. The peptide-functionalized MSNs system demonstrated relatively high sensitivity to MMPs for triggering drug delivery, which was potentially important for tumor therapy since the tumor's microenvironment overexpressed MMPs in nature. The in vivo experiments proved that the system could efficiently inhibit the tumor growth with minimal side effects. This study provides an approach for the development of the next generation of nanotherapeutics toward efficient cancer treatment.

145103

, , and

Modification with poly(ethylene glycol) (PEG) is a widely used method for the prolongation of plasma half-life of colloidal carrier systems such as nanoparticles prepared from human serum albumin (HSA). However, the quantification of the PEGylation extent is still challenging. Moreover, the influence of different PEG derivatives, which are commonly used for nanoparticle conjugation, has not been investigated so far. The objective of the present study is to develop a method for the quantification of PEG and to monitor the influence of diverse PEG reagents on the amount of PEG linked to the surface of HSA nanoparticles. A size exclusion chromatography method with refractive index detection was established which enabled the quantification of unreacted PEG in the supernatant. The achieved results were confirmed using a fluorescent PEG derivative, which was detected by photometry and fluorimetry. Additionally, PEGylated HSA nanoparticles were enzymatically digested and the linked amount of fluorescently active PEG was directly determined. All the analytical methods confirmed that under optimized PEGylation conditions a PEGylation efficiency of up to 0.5 mg PEG per mg nanoparticle could be achieved. Model calculations made a 'brush' conformation of the PEG chains on the particle surface very likely. By incubating the nanoparticles with fetal bovine serum the reduced adsorption of serum proteins on PEGylated HSA nanoparticles compared to non-PEGylated HSA nanoparticles was demonstrated using sodium dodecylsulfate polyacrylamide gel electrophoresis. Finally, the positive effect of PEGylation on plasma half-life was demonstrated in an in vivo study in mice. Compared to unmodified nanoparticles the PEGylation led to a four times larger plasma half-life.

Electronics and photonics

145201

and

In the present work, we demonstrate the potential of double gate junctionless (JL) architecture for enhanced sensitivity for detecting biomolecules in cavity modulated field effect transistors (FETs). The higher values of body factor, achieved in asymmetric gate operation under impact ionization is utilized for enhanced sensing margin which is nearly five times higher than compared to symmetrical mode operation. The intrinsic detection sensitivity is evaluated in terms of threshold voltage change, and the ratio of drain current in the presence and absence of biomolecules in JL nanotransistors. It is shown that asymmetric mode JL transistor achieves a higher degree of detection sensitivity even for a partially filled cavity. The work demonstrates the potential of JL channel architecture for cavity based dielectric modulated FET biosensors.

145202

, , , and

We report the defect-mediated modulation of optical properties in vertically aligned ZnO nanowires via a substrate-assisted Ga incorporation method. We find that Ga atoms were incorporated into a ZnO lattice via the diffusion of liquid Ga droplets from a GaAs substrate in which as-grown ZnO nanowires were placed face down on the GaAs substrate and annealed at 650 °C. Based on structural and compositional characterization, it was confirmed that the substrate-assisted incorporation of Ga can induce a high defect density in vertically aligned ZnO nanowires grown on a Si substrate. In addition, distinct differences in optical properties between as-grown and Ga-incorporated ZnO nanowires were found and discussed in terms of defect-mediated modifications of energy band states, which were associated with the generation and recombination of photoexcited carriers. Furthermore, it was clearly observed that for Ga-incorporated ZnO nanowires, the photocurrent rise and decay processes were slower and the photocurrents under UV illumination were significantly higher compared with as-grown nanowires.

145203

, , , , , , and

The controllability and stability of nanowire transistor characteristics are essential for the development of low-noise and fast-switching nano-electronic devices. In this study, the positive shift of threshold voltage and the improvement of interface quality on In2O3 nanowire transistors were simultaneously achieved by using octadecylphosphonic acid (OD-PA) self-assembly. Following the chemical bond of OD-PA molecules on the surface of In2O3 nanowires, the threshold voltage was positively shifted to 2.95 V, and the noise amplitude decreased to approximately 87.5%. The results suggest that an OD-PA self-assembled monolayer can be used to manipulate and stabilize the transistor characteristics of nanowire-based memory and display devices that require high-sensitivity, low-noise, and fast-response.

Patterning and nanofabrication

145301

and

Bulk metallic glasses (BMGs) are ideal for nanomoulding as they possess desirable strength for molds as well as for moldable materials and furthermore lack intrinsic size limitations. Despite their attractiveness, only recently Pt-based BMGs have been successfully molded into pores ranging 10–100 nm (Kumar et al 2009 Nature457 868–72). Here, we introduce a quantitative theory, which reveals previous challenges in filling nanosized pores. This theory considers, in addition to a viscous and a capillary term, also oxidation, which becomes increasingly more important on smaller length scales. Based on this theory we construct a nanomoulding processing map for BMG, which reveals the limiting factors for BMG nanomoulding. Based on the quantitative prediction of the processing map, we introduce a strategy to reduce the capillary effect through a wetting layer, which allows us to mold non-noble BMGs below 1 μm in air. An additional benefit of this strategy is that it drastically facilitates demoulding, one of the main challenges of nanomoulding in general.

Energy at the nanoscale

145401

, , , , and

In this study, we rationally designed a rapid, low-temperature yet general synthetic methodology for the first time, involving in situ growth of two-dimensional (2D) birnessite-type MnO2 nanosheets (NSs) upon each carbon nanotube (CNT), and we designed the subsequent phase transformation into untrathin mesoporous ZnMn2O4 NSs with a thickness of ∼2–3 nm at room temperature to efficiently fabricate heterostructured core–shell ZnMn2O4 NSs@CNT coaxial nanocables with well-dispersed and tunable ZnMn2O4 loading. The underlying insights into the low-temperature formation mechanism of the unique core–shell hybrid nanoarchitectures were tentatively proposed here. When utilized as a high-performance anode for advanced LIBs, the resultant core–shell ZnMn2O4@CNTs' coaxial nanocables (∼84.5 wt.% loading) exhibited large specific discharge capacity (∼1033 mAh g−1), good rate capability (∼528 mAh g−1) and excellent cycling stability (average capacity degradation of only ∼5.2% per cycle) at a high current rate of 1224 mA g−1, originating from the distinct core–shell synergetic effect of fast electronic delivery and from the large electrode/electrolyte contacting surfaces/interfaces provided by three-dimensional entangling coaxial CNT-based nanonetwork topology.

Sensing and actuating

145501

, , , , , , , , and

A non-enzymatic glucose sensor based on the NiMoO4 nanorods has been fabricated for the first time. The electrocatalytic performance of the NiMoO4 nanorods' modified electrode toward glucose oxidation was evaluated by cyclic voltammetry and amperometry. The NiMoO4 nanorods' modified electrode showed a greatly enhanced electrocatalytic property toward glucose oxidation, as well as an excellent anti-interference and a good stability. Impressively, good accuracy and high precision for detecting glucose concentration in human serum samples were obtained. These excellent sensing properties, combined with good reproducibility and low cost, indicate that NiMoO4 nanorods are a promising candidate for non-enzymatic glucose sensors.

145502

, , , , , , , , , et al

A stepped cantilever composed of a bottom-up silicon nanowire coupled to a top-down silicon microcantilever electrostatically actuated and with capacitive or optical readout is fabricated and analyzed, both theoretically and experimentally, for mass sensing applications. The mass sensitivity at the nanowire free end and the frequency resolution considering thermomechanical noise are computed for different nanowire dimensions. The results obtained show that the coupled structure presents a very good mass sensitivity thanks to the nanowire, where the mass depositions take place, while also presenting a very good frequency resolution due to the microcantilever, where the transduction is carried out. A two-fold improvement in mass sensitivity with respect to that of the microcantilever standalone is experimentally demonstrated, and at least an order-of-magnitude improvement is theoretically predicted, only changing the nanowire length. Very close frequency resolutions are experimentally measured and theoretically predicted for a standalone microcantilever and for a microcantilever-nanowire coupled system. Thus, an improvement in mass sensing resolution of the microcantilever-nanowire stepped cantilever is demonstrated with respect to that of the microcantilever standalone.

145503

, , , , , and

The hydrogen gas-sensing properties have been investigated of two types of thermochemical hydrogen (TCH) sensors composed of thermoelectric layers based on chalcogenide nanowire arrays and anodic aluminum oxide (AAO) templates. The monomorphic-type TCH sensor, which had only Bi2Te3 nanowire arrays, showed an output signal of 23.7 μV in response to 5 vol% hydrogen gas at room temperature, whereas an output signal of 215 μV was obtained from an n–p junction-type TCH sensor made of connected Bi2Te3 and Sb2Te3 nanowire arrays in an AAO template. Despite its small deposition area, the output signal of the n–p sensor was more than nine times that of the monomorphic sensor. This observation can be explained by the difference in electrical connections (parallel and serial conversions) in the TCH sensor between each type of nanowire array. Also, our n–p sensor had a wide detection range for hydrogen gas (from 400 ppm to 45 vol%) and a fast response time of 1.3 s at room temperature without requiring external power.

Materials: synthesis or self-assembly

145601

, , , and

We demonstrate the graphene assisted catalyst free growth of ZnO nanowires (NWs) on chemical vapor deposited (CVD) and chemically processed graphene buffer layers at a relatively low growth temperature (580 °C) in the presence and absence of ZnO seed layers. In the case of CVD graphene covered with rapid thermal annealed ZnO buffer layer, the growth of vertically aligned ZnO NWs takes place, while the direct growth on CVD graphene, chemically derived graphene (graphene oxide and graphene quantum dots) without ZnO seed layer resulted in randomly oriented sparse ZnO NWs. Growth mechanism was studied from high resolution transmission electron microscopy and Raman spectroscopy of the hybrid structure. Further, we demonstrate strong UV, visible photoluminescence (PL) and enhanced photoconductivity (PC) from the CVD graphene–ZnO NWs hybrids as compared to the ZnO NWs grown without the graphene buffer layer. The evolution of crystalinity in ZnO NWs grown with ZnO seed layer and graphene buffer layer is correlated with the Gaussian line shape of UV and visible PL. This is further supported by the strong Raman mode at 438 cm−1 significant for the wurtzite phase of the ZnO NWs grown on different graphene substrates. The effect of the thickness of ZnO seed layers and the role of graphene buffer layers on the aligned growth of ZnO NWs and its enhanced PC are investigated systematically. Our results demonstrate the catalyst free growth and superior performance of graphene–ZnO NW hybrid UV photodetectors as compared to the bare ZnO NW based photodetectors.

145602

, , , , and

The upconversion luminescence (UCL) enhancement based on the surface plasmonic resonance (SPR) of noble metals is a promising way to improve UCL efficiency. However, it is still a challenge to achieve stable and effective UCL enhancement. Here, we present the preparation of the porous Ag/YVO4:Yb3+, Er3+ composite film via a simple double annealing method. It is exciting to observe that a maximum 36-fold (2H11/24I15/2) and 30-fold (4S3/24I15/2) UCL enhancement in the porous Ag/YVO4:Yb3+, Er3+ composite film, attributed to the effective coupling between SPR and the excitation light by adjusting the SPR peak to the excitation wavelength, controlling the effective coupling distance and improving the scattering–absorption ratio. Furthermore, the enhancement factor strongly depended on the excitation power and the Er3+ concentration.

145603

, , , , , , and

Anodic TiO2 nanotubes have been studied extensively for many years. However, the growth kinetics still remains unclear. The systematic study of the current transient under constant anodizing voltage has not been mentioned in the original literature. Here, a derivation and its corresponding theoretical formula are proposed to overcome this challenge. In this paper, the theoretical expressions for the time dependent ionic current and electronic current are derived to explore the anodizing process of Ti. The anodizing current–time curves under different anodizing voltages and different temperatures are experimentally investigated in the anodization of Ti. Furthermore, the quantitative relationship between the thickness of the barrier layer and anodizing time, and the relationships between the ionic/electronic current and temperatures are proposed in this paper. All of the current-transient plots can be fitted consistently by the proposed theoretical expressions. Additionally, it is the first time that the coefficient A of the exponential relationship (ionic current jion = A exp(BE)) has been determined under various temperatures and voltages. And the results indicate that as temperature and voltage increase, ionic current and electronic current both increase. The temperature has a larger effect on electronic current than ionic current. These results can promote the research of kinetics from a qualitative to quantitative level.

Materials: properties, characterization or tools

145701

, , , , and

We have taken advantage of the native surface roughness and the iron content of AISI 316 stainless steel to directly grow multi-walled carbon nanotube (MWCNT) random networks by chemical vapor deposition (CVD) at low-temperature ($\lt 1000{}^\circ \;{\rm C}$) without the addition of any external catalysts or time-consuming pre-treatments. In this way, super-hydrophobic MWCNT films on stainless steel sheets were obtained, exhibiting high contact angle values ($154{}^\circ $) and high adhesion force (high contact angle hysteresis). Furthermore, the investigation of MWCNT films with scanning electron microscopy (SEM) reveals a two-fold hierarchical morphology of the MWCNT random networks made of hydrophilic carbonaceous nanostructures on the tip of hydrophobic MWCNTs. Owing to the Salvinia effect, the hydrophobic and hydrophilic composite surface of the MWCNT films supplies a stationary super-hydrophobic coating for conductive stainless steel. This biomimetical inspired surface not only may prevent corrosion and fouling, but also could provide low friction and drag reduction.

145702

, , , , , , and

Resistive random access memories (ReRAMs) are promising next-generation memory devices. Observation of the conductive filaments formed in ReRAMs is essential in understanding their operating mechanisms and their expected ultimate performance. Finding the position of the conductive filament is the key process in the preparation of samples for cross-sectional transmission electron microscopy (TEM) imaging. Here, we propose a method for locating the position of conductive filaments hidden under top electrodes. Atomic force microscopy imaging with a conductive tip detects the current flowing through a conductive filament from the bottom electrode, which reaches its maximum at a position that is above the conductive filament. This is achieved by properly biasing a top electrode, a bottom electrode and the conductive tip. This technique was applied to Cu/Ta2O5/Pt atomic switches, revealing the formation of a single Cu filament in a device, although the device had a large area of 5 × 5 μm2. Change in filament size was clearly observed depending on the compliance current used in the set process. It was also found from the TEM observation that the cross-sectional shape of the formed filament varies considerably, which is attributable to different Cu nuclei growth mechanisms.

145703

, , , , , , and

Selenium nanoparticles (Se NPs) possess well-known excellent biological activities and low toxicity, and have been employed for numerous applications except as inhibitors to protein glycation. Herein, the present study is carried out to investigate the inhibitory effect of Se NPs on protein glycation in a bovine serum albumin (BSA)/glucose system. By measuring the amount of glucose covalently bound onto BSA, the formation of fructosamine and fluorescent products, it is found that Se NPs can hinder the development of protein glycation in a dose-dependent but time-independent manner under the selected reaction conditions (55 °C, 40 h). And after comparing the increase of inhibitory rate in different stages, it is observed that Se NPs show the greatest inhibitory effect in the early stage, then in the advanced stage, but no effect in the intermediate stage. Fourier transform infrared spectroscopy characterization of Se NPs collected after glycation and determination of ·OH influence and glyoxal formation show that the mechanism for the inhibitory efficacy of Se NPs is related to their strong competitive activity against available amino groups in proteins, their great scavenging activity on reactive oxygen species and their inhibitory effect on α-dicarbonyl compounds' formation. In addition, it is proved that Se NPs protect proteins from structural modifications in the system and they do not exhibit significant cytotoxicity towards BV-2 and BRL-3A cells at low concentrations (10 and 50 μg mL−1). Consequently, Se NPs may be suitable for further in vivo studies as novel anti-glycation agents.

145704

, and

Alkyl-capped silicon quantum dots (SiQDs) show enhanced luminescence when drop cast as films on glass slides in mixtures with Ag or Au nanoparticles or the electron donor ferrocene (Fc). Metal enhancement of quantum dot photoluminescence (PL) is known to arise from a combination of the intense near-field associated with the surface plasmon of the metal on the rate of absorption and the decrease in the lifetime of the excited state. Here we present evidence that an additional factor is also involved: electron transfer from the metal to the quantum dot. Under CW irradiation with an argon ion laser at 488 nm, SiQDs undergo a reversible photofading of the PL as the particles photoionize. A steady-state condition is established by the competition between photoionization and electron–hole recombination. The fading of the initial PL I0 to the steady-state value ${{I}_{\infty }}$ can be modelled by a simple first order decay with a lognormal distribution of rates, which reflects the heterogeneity of the sample. In the presence of Ag and Au nanoparticles, the modal rate constants of photofading increase by factors of up to 4-fold and the ratio ${{I}_{0}}/{{I}_{\infty }}$ decreases by factors up to 5-fold; this is consistent with an increase in the rate of electron–hole recombination facilitated by the metal nanoparticles acting as sources of electrons. Further support for this interpretation comes from the enhancement in PL observed in photofading experiments with films of SiQDs mixed with Fc; this compound is a well-known one-electron donor, but shows no plasmon band which complicates the estimation of PL enhancement with Ag NPs.

145705

, , , , and

Using the nanoscale violet tungsten oxide as the tungsten source, the WC-Co composite powder was synthesized by the in situ reactions. The particle size of the WC-Co composite powder has a narrow distribution with the mean particle size below 100 nm, and the single composite particle has a nanocrystalline structure with a mean grain size smaller than 10 nm. The detailed characterizations of the nanoparticle microstructure reveal that the orientation relationship and coherence at the interfaces can form during the in situ reactions and further inherit in the consolidated cemented carbide bulk material. The favorable crystallographic characteristics of the WC-Co composite nanoparticles play a significant role in the enhancement of the mechanical properties of the prepared cemented carbide bulk material.

Corrigendum