This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Volume 25

Number 13, 4 April 2014

Previous issue Next issue

Papers

Biology and medicine

135101

, and

In a previous communication, we reported a new method of synthesis of stable metallic copper nanoparticles (Cu-NPs), which had high potency for bacterial cell filamentation and cell killing. The present study deals with the mechanism of filament formation and antibacterial roles of Cu-NPs in E. coli cells. Our results demonstrate that NP-mediated dissipation of cell membrane potential was the probable reason for the formation of cell filaments. On the other hand, Cu-NPs were found to cause multiple toxic effects such as generation of reactive oxygen species, lipid peroxidation, protein oxidation and DNA degradation in E. coli cells. In vitro interaction between plasmid pUC19 DNA and Cu-NPs showed that the degradation of DNA was highly inhibited in the presence of the divalent metal ion chelator EDTA, which indicated a positive role of Cu2+ ions in the degradation process. Moreover, the fast destabilization, i.e. the reduction in size, of NPs in the presence of EDTA led us to propose that the nascent Cu ions liberated from the NP surface were responsible for higher reactivity of the Cu-NPs than the equivalent amount of its precursor CuCl2; the nascent ions were generated from the oxidation of metallic NPs when they were in the vicinity of agents, namely cells, biomolecules or medium components, to be reduced simultaneously.

Electronics and photonics

135201

, , , , , , and

Direct characterization of the capacitance and interface states is very important for understanding the electronic properties of a nanowire transistor. However, the capacitance of a single nanowire is too small to precisely measure. In this work we have fabricated metal–oxide–semiconductor capacitors based on a large array of self-assembled Si nanowires. The capacitance and conductance of the nanowire array capacitors are directly measured and the interface state profile is determined by using the conductance method. We demonstrate that the nanowire array capacitor is an effective platform for studying the electronic properties of nanoscale interfaces. This approach provides a useful and efficient metrology for the study of the physics and device properties of nanoscale metal–oxide–semiconductor structures.

135202

, , and

We demonstrate improved short-wavelength internal quantum efficiency (IQE) of a-Si/c-Si heterojunction (HJ) solar cells with a surface nanopillar (NP) array via simulation. The gain in IQE is attributed to the light-field modulation caused by the cavity resonance inside the NPs, in which the light energy is effectively localized within the c-Si bulk rather than the a-Si layer. The average IQE in the short-wavelength range (330–450 nm) is enhanced from 43.94% to 62.88% by the optimal NP array, with a maximum IQE of 80.98% at λ = 400 nm. The resulting current gain is over 38.25% compared to a planar HJ cell in this wavelength range, showing a well suppressed recombination-induced current loss. This light-management scheme may also find applications in other types of cells.

135203

, , , , , , and

Back-gated InAs nanowire field-effect transistors are studied focusing on the formation of intrinsic quantum dots, i.e. dots not intentionally defined by electrodes. Such dots have been studied before, but the suggested explanations for their origin leave some open questions, which are addressed here. Stability diagrams of samples with different doping levels are recorded at electron temperatures below 200 mK, allowing us to estimate the number and size of the dots as well as the type of connection, i.e. in series or in parallel. We discuss several potential physical origins of the dots and conclude that they are most probably induced by potential fluctuations at the nanowire surface. Additionally, we show that via gate voltage and doping, the samples can be tuned to different regimes of Coulomb blockade.

135204

, , , , , , and

The oscillating piezoelectric fields accompanying surface acoustic waves are able to transport charge carriers in semiconductor heterostructures. Here, we demonstrate high-frequency (above 1 GHz) acoustic charge transport in GaAs-based nanowires deposited on a piezoelectric substrate. The short wavelength of the acoustic modulation, smaller than the length of the nanowire, allows the trapping of photo-generated electrons and holes at the spatially separated energy minima and maxima of conduction and valence bands, respectively, and their transport along the nanowire with a well defined acoustic velocity towards indium-doped recombination centers.

135205

, , and

A facile, site-specific viral-templated assembly method was used to fabricate sensitive hydrogen sulfide (H2S) gas sensors at room temperature. A gold-binding M13 bacteriophage served to organize gold nanoparticles into linear arrays which were used as seeds for subsequent nanowire formation through electroless deposition. Nanowire widths and densities within the sensors were modified by electroless deposition time and phage concentration, respectively, to tune device resistance. Chemiresistive H2S gas sensors with superior room temperature sensing performance were produced with sensitivity of 654%/ppmv, theoretical lowest detection limit of 2 ppbv, and 70% recovery within 9 min for 0.025 ppmv. The role of the viral template and associated gold-binding peptide was elucidated by removing organics using a short O2 plasma treatment followed by an ethanol dip. The template and gold-binding peptide were crucial to electrical and sensor performance. Without surface organics, the resistance fell by several orders of magnitude, the sensitivity dropped by more than a factor of 100 to 6%/ppmv, the lower limit of detection increased, and no recovery was detected with dry air flow. Viral templates provide a novel, alternative fabrication route for highly sensitive, nanostructured H2S gas sensors.

Patterning and nanofabrication

135301

, , , , , and

Using a focused ion beam, we patterned epitaxial graphene on SiC into an array of graphene nanoribbons as narrow as 15 nm by optimizing the Ga+ ion beam current, acceleration voltage, dwell time, beam center-to-center distance and ion dose. The ion dose required to completely etch away graphene on SiC was determined and compared with the Monte Carlo simulation result. In addition, a photodetector using an array of 300 20 nm graphene nanoribbons was fabricated and its photoresponse was studied.

135302

, , , , , and

We present the fabrication of silicon nanowire (SiNW) mechanical resonators by a resistless process based on focused ion beam local gallium implantation, selective silicon etching and diffusive boron doping. Suspended, doubly clamped SiNWs fabricated by this process presents a good electrical conductivity which enables the electrical read-out of the SiNW oscillation. During the fabrication process, gallium implantation induces the amorphization of silicon that, together with the incorporation of gallium into the irradiated volume, increases the electrical resistivity to values higher than 3 Ω m, resulting in an unacceptably high resistance for electrical transduction. We show that the conductivity of the SiNWs can be restored by performing a high temperature doping process, which allows us to recover the crystalline structure of the silicon and to achieve a controlled resistivity of the structures. Raman spectroscopy and TEM microscopy are used to characterize the recovery of crystallinity, while electrical measurements show a resistivity of 10−4 Ω m. This resistivity allows to obtain excellent electromechanical transduction, which is employed to characterize the high frequency mechanical response by electrical methods.

135303

, , , and

Dipole nano-antennas have predominantly been investigated in their lateral orientation with their long axes in plane with a supporting substrate. However, the response of coupled dipole antennas oriented vertically to a supporting substrate has so far been out of experimental reach. Here, we present a self-aligned electron-beam lithography technique for fabricating such antennas consisting of metal nanostructures on both sides of a suspended silicon nitride membrane. This 30 nm thick membrane provides an ultra-smooth metal/dielectric interface and uniformly defines the antenna feed-gap size in an array of antennas. It is also a suitable substrate for probing the nano-antenna response with monochromated electron energy-loss spectroscopy (EELS) in a transmission electron microscope. We provide details of this double-sided patterning process, and show the excitation of hybridized plasmon modes in EELS with electrons directed along, and at an angle to, the antenna axis.

Energy at the nanoscale

135401

and

Strong and flexible two-ply carbon nanotube yarn supercapacitors are electrical double layer capacitors that possess relatively low energy storage capacity. Pseudocapacitance metal oxides such as MnO2 are well known for their high electrochemical performance and can be coated on carbon nanotube yarns to significantly improve the performance of two-ply carbon nanotube yarn supercapacitors. We produced a high performance asymmetric two-ply yarn supercapacitor from as-spun CNT yarn and CNT@MnO2 composite yarn in aqueous electrolyte. The as-spun CNT yarn serves as negative electrode and the CNT@MnO2 composite yarn as positive electrode. This asymmetric architecture allows the operating potential window to be extended from 1.0 to 2.0 V and results in much higher energy and power densities than the reference symmetric two-ply yarn supercapacitors, reaching 42.0 Wh kg−1 at a lower power density of 483.7 W kg−1, and 28.02 Wh kg−1 at a higher power density of 19 250 W kg−1. The asymmetric supercapacitor can sustain cyclic charge–discharge and repeated folding/unfolding actions without suffering significant deterioration of specific capacitance. The combination of high strength, flexibility and electrochemical performance makes the asymmetric two-ply yarn supercapacitor a suitable power source for flexible electronic devices for applications that require high durability and wearer comfort.

135402

, , , , and

Recently, a triboelectric generator (TEG) has been invented to convert mechanical energy into electricity by a conjunction of triboelectrification and electrostatic induction. Compared to the traditional electromagnetic generator (EMG) that produces a high output current but low voltage, the TEG has different output characteristics of low output current but high output voltage. In this paper, we present a comparative study regarding the fundamentals of TEGs and EMGs. The power output performances of the EMG and the TEG have a special complementary relationship, with the EMG being a voltage source and the TEG a current source. Utilizing a power transformed and managed (PTM) system, the current output of a TEG can reach as high as ∼3 mA, which can be coupled with the output signal of an EMG to enhance the output power. We also demonstrate a design to integrate a TEG and an EMG into a single device for simultaneously harvesting mechanical energy. In addition, the integrated NGs can independently output a high voltage and a high current to meet special needs.

135403

, , , , and

Unique SnOx (x = 1,2)/ordered mesoporous carbon nanocomposites (denoted as SnOx/OMC) are firstly synthesized through a 'one-pot' synthesis together with the soft template self-assembly approach. The obtained SnOx/OMC nanocomposites with various SnOx contents exhibit uniform pore sizes between 3.9 and 4.2 nm, high specific surface areas between 497 and 595 m2 g−1, and high pore volumes between 0.39 and 0.48 cm3 g−1. With loading of Pt, Pt–SnOx/OMC with relatively low SnOx content exhibits superior electrocatalytic performance, long-term durability, and resistance to CO poisoning for methanol oxidation, as compared to Pt/OMC, PtRu/C and Pt–SnOx/C, which may be attributed not only to the synergetic effect of embedded SnOx, but also to the highly ordered mesostructure with high specific surface areas and large pore volumes affording plenty of surface area for support of Pt nanoparticles. This work supplies an efficient way to synthesize novel ordered mesoporous carbon self-supported metallic oxide as catalyst support and its further potential application to reduce the cost of catalysts in direct methanol fuel cells.

Materials: synthesis or self-assembly

135601

, , , , and

We demonstrate a facile and cost effective method to obtain gold nanoparticles on graphene by dispersing Au144 molecular nanoclusters by spin coating them in thin layers on graphene-based films and subsequent annealing in a controlled atmosphere. The graphene-based thin films used for these experiments are prepared by solvent-assisted exfoliation of graphite in water in the presence of ribonucleic acid as a surfactant and by subsequent vacuum filtration of the resulting graphene-containing suspensions. Not only is this method easily reproducible, but it leads to gold nanoparticles that are not dependent in size on the number of graphene layers beneath them. This is a distinct advantage over other methods. Plasmonic effects have been detected in our gold nanoparticle-decorated graphene layers, indicating that these thin films may be useful in applications such as plasmonic solar cells and optical memory devices.

135602

, , , , and

A new sulfur precursor with a highly reactive chemical nature was prepared with S powder and NaBH4 at the high temperature of 180 °C in a closed autoclave and made it possible to carry out the synthesis of high quality metal sulfide nanocrystals (NCs) with diverse composition and structure. Using this new sulfur source, we demonstrated aqueous synthesis of colloidal Cu-doped ZnCdS NCs (d-dots) with pure, color-tunable photoluminescence (PL) in a wide spectral range (from 517 to 650 nm) based on the 'co-nucleation doping' strategy. The influences of the various experimental variables, including Cd/Zn ratio, Cu-doping concentration, pH value and amount of mercaptopropionic acid (MPA), on the optical properties of Cu-doped ZnCdS NCs were systematically investigated. Furthermore, highly efficient and stable dopant emission from Cu:ZnCdS/ZnS core/shell d-dots with PL quantum yield as high as 40% was achieved by the deposition of a ZnS shell around the bare Cu:ZnCdS cores; this is the highest reported to date for aqueous doped NCs. The optical properties and structure of the d-dots were characterized by UV–vis absorption spectra, PL spectra, x-ray photoelectron spectroscopy, powder x-ray diffraction, and transmission electron microscopy. The experimental results indicated that this facile synthesis route would provide a versatile approach for the preparation of other water-soluble sulfide NCs.

135603

, , and

This paper describes the facile solution plasma synthesis of bimetallic nanoparticles, including solid solution alloys (Ni–Cu and Ni–Cr system), eutectic alloys of Sn–Pb, and intermetallic alloys (SnSb and Ni3Sn), by using metallic alloy wire as the cathode and Pt wire as the anode. In the typical process, the cathode was melted by the local-concentration of current, upon applying a DC voltage between the two electrodes immersed in the electrolyte. The solid solution alloys of Ni–Cu and Ni–Cr prepared in this study have a uniform distribution of composition. On the other hand, the uniformity in the composition of the eutectic Sn–Pb alloy depends on the microstructure of the electrode. The use of quenched electrode with small crystal grains favors the formation of Sn–Pb alloy nanoparticles, in which the Sn-rich and Pb-rich phases coexist in each particle. The formation of intermetallic SnSb and Ni3Sn alloy nanoparticles is accompanied by the formation of colloidal oxide. These results demonstrate that the solution plasma technique is applicable not only for the synthesis of pure metals but can also be used for the synthesis of various alloy nanoparticles.

135604

, , and

In this work the growth and field emission properties of vertically aligned and spatially ordered and unordered ZnO nanowires are studied. Spatially ordered nanowire arrays of controlled array density are synthesized by both chemical bath deposition and vapour phase transport using an inverse nanosphere lithography technique, while spatially unordered arrays are synthesized by vapour phase transport without lithography. The field emission characteristics of arrays with 0.5, 1.0, and 1.5 μm inter-wire distances, as well as unordered arrays, are examined, revealing that, within the range of values examined, field emission properties are mainly determined by variations in nanowire height, and show no correlation with nanowire array density. Related to this, we find that a significant variation in nanowire height in an array also leads to a reduction in catastrophic damage observed on samples during field emission because arrays with highly uniform heights are found to suffer significant arcing damage. We discuss these results in light of recent computational studies of comparable nanostructure arrays and find strong qualitative agreement between our results and the computational predictions. Hence the results presented in this work should be useful in informing the design of ZnO nanowire arrays in order to optimize their field emission characteristics generally.

135605

, , , , , , , , , et al

The atomic structure of the cubic-SiC(001) surface during ultra-high vacuum graphene synthesis has been studied using scanning tunneling microscopy (STM) and low-energy electron diffraction. Atomically resolved STM studies prove the synthesis of a uniform, millimeter-scale graphene overlayer consisting of nanodomains rotated by ±13.5° relative to the 〈110〉-directed boundaries. The preferential directions of the domain boundaries coincide with the directions of carbon atomic chains on the SiC(001)-c(2 × 2) reconstruction, fabricated prior to graphene synthesis. The presented data show the correlation between the atomic structures of the SiC(001)-c(2 × 2) surface and the graphene/SiC(001) rotated domain network and pave the way for optimizing large-area graphene synthesis on low-cost cubic-SiC(001)/Si(001) wafers.

135606

, , , , , , , and

In this paper we experimentally study the growth of self-assembled SiGe islands formed on Si(001) by exploiting the thermally activated surface diffusion of Ge atoms from a local Ge source stripe in the temperature range 600–700 °C. This new growth strategy allows us to vary continuously the Ge coverage from 8 to 0 monolayers as the distance from the source increases, and thus enables the investigation of the island growth over a wide range of dynamical regimes at the same time, providing a unique birds eye view of the factors governing the growth process and the dominant mechanism for the mass collection by a critical nucleus. Our results give experimental evidence that the nucleation process evolves within a diffusion limited regime. At a given annealing temperature, we find that the nucleation density depends only on the kinetics of the Ge surface diffusion resulting in a universal scaling distribution depending only on the Ge coverage. An analytical model is able to reproduce quantitatively the trend of the island density. Following the nucleation, the growth process appears to be driven mainly by short-range interactions between an island and the atoms diffusing within its vicinities. The islands volume distribution is, in fact, well described in the whole range of parameters by the Mulheran's capture zone model. The complex growth mechanism leads to a strong intermixing of Si and Ge within the island volume. Our growth strategy allows us to directly investigate the correlation between the Si incorporation and the Ge coverage in the same experimental conditions: higher intermixing is found for lower Ge coverage. This confirms that, besides the Ge gathering from the surface, also the Si incorporation from the substrate is driven by the diffusion kinetics, thus imposing a strict constraint on the initial Ge coverage, its diffusion properties and the final island volume

135607

, , , , and

Nitrogen-doped mesoporous carbons (NMPCs) with well-developed polyhedral morphology were prepared by direct carbonization of zeolitic imidazolate framework-8 (ZIF-8) nanopolyhedrons. The fantastic structural characteristics of NMPCs such as ultrahigh BET surface area (1960 m2 g−1), large pore volume (1.16 cm3 g−1), and nitrogen doping make it an excellent catalyst support. PtRu nanoparticles (with a size of approximately 1.9 nm) were homogeneously supported on NMPCs by microwave-assisted reduction in ethylene glycol, and the obtained PtRu/NMPCs catalyst shows a significantly higher electrocatalytic activity and stability for methanol oxidation than the typical commercial PtRu/C (E-TEK) catalyst.

135608

, , and

We report a kinetically-controlled template-free room-temperature production of hollow silica materials with various novel morphologies, including tubes, crutches, ribbons, bundles and bells. The obtained products, which grew in a well-controlled manner, were monodispersed in shape and size. The role of ammonia, sodium citrate, polyvinylpyrrolidone, chloroauric acid and NaCl in shape control is discussed in detail. The oriented growth of these micro-/nanostructures directed by reverse micelles followed a solution–solution–solid (SSS) mechanism, similar to the classic vapor–liquid–solid mechanism. The evolution processes of silica rods, tubes, crutches, bundles and bells were recorded using transmission electron microscopy to prove the SSS mechanism.

135609

, , , and

We report the density- and size-controlled growth of zinc oxide (ZnO) nanorod arrays on arbitrary substrates using reduced graphene oxide (rGO) nanodot arrays. For the controlled growth of the ZnO nanorod arrays, rGO nanodot arrays with tunable density and size were designed using a monolayer of diblock copolymer micelles and oxygen plasma etching. While the diameter and number density of the ZnO nanorods were readily determined by those of the rGO nanodots, the length of the ZnO nanorods was easily controlled by changing the growth time. x-ray diffraction and electron microscopy confirmed that the vertically well-aligned ZnO nanorod arrays were heteroepitaxially grown on the rGO nanodots. Strong, sharp near-band-edge emission peaks with no carbon-related peak were observed in the photoluminescence spectra, implying that the ZnO nanostructures grown on the rGO nanodots were of high optical quality and without carbon contamination. Our approach provides a general and rational route for heteroepitaxial growth of high-quality inorganic materials with tunable number density, size, and spatial arrangement on arbitrary substrates using rGO nanodot arrays.

135610

, , , , , , and

The growth mode and structural and optical properties of novel type of inclined GaN nanowires (NWs) grown by plasma-assisted MBE on Si(001) substrate were investigated. We show that due to a specific nucleation mechanism the NWs grow epitaxially on the Si substrate without any SixNy interlayer, first in the form of zinc-blende islands and then as double wurtzite GaN nanorods with Ga-polarity. X-ray measurements show that orientation of these nanowires is epitaxially linked to the symmetry of the substrate so that [0001] axis of w-GaN nanowire is directed along the [111]Si axis. This is different from commonly observed behavior of self-induced GaN NWs that are N-polar and grow perpendicularly to the surface of nitridized silicon substrate independently on its orientation. The inclined NWs exhibit bright luminescence of bulk donor-bound excitons (D0X) at 3.472 eV and exciton-related peak at 3.46 eV having a long lifetime (0.7 ns at 4 K) and observable up to 50 K.

135611

, , , , and

Silver nanoparticles (NPs) embedded in lithium niobate were fabricated via ion beam synthesis and are suitable for various plasmonic applications, e.g. enhancement of optical nonlinear effects. After room temperature silver implantation, annealing in the temperature range of 400–600 °C was performed in order to recrystallize the damaged lithium niobate surface layer. The shape of the silver NPs, their optical properties as well as the structural properties of their surrounding matrix have been analyzed for various annealing steps. TEM investigations show that annealing at 400 °C does not lead to recrystallization of the damaged lithium niobate. A recrystallization occurs upon increasing the annealing temperature to 500 or 600 °C, but simultaneously a second phase consisting of lithium triniobate forms. This is additionally supported by XRD measurements. By utilizing dynamic annealing, i.e. implanting silver at elevated temperatures of 400 °C, it is shown that the LiNbO3 matrix stays single crystalline during ion implantation and no LiNb3O8 is formed. This is additionally verified by comparing the positions of the surface plasmon resonances with calculations based on Mie's scattering theory.

Materials: properties, characterization or tools

135701

, , , , , and

This paper reports on the role of surface and deep-level defects on the blue emission of tin oxide quantum dots (SnO2 QDs) synthesized by the solution-combustion method at different combustion temperatures. X-ray diffraction studies showed the formation of a single rutile SnO2 phase with a tetragonal lattice structure. High resolution transmission electron microscopy studies revealed an increase in the average dot size from 2.2 to 3.6 nm with an increase of the combustion temperature from 350 to 550 °C. A decrease in the band gap value from 3.37 to 2.76 eV was observed with the increase in dot size due to the quantum confinement effect. The photoluminescence emission was measured for excitation at 325 nm and it showed a broad blue emission band for all the combustion temperatures studied. This was due to the creation of various oxygen and tin vacancies/defects as confirmed by x-ray photoelectron spectroscopy data. The origin of the blue emission in the SnO2 QDs is discussed with the help of an energy band diagram.

135702

, , , , , and

Among numerous active photocatalytic materials, Sn-based oxide nanomaterials are promising photocatalytic materials in environmental protection measures such as water remediation due to their excellent physicochemical property. Research on photocatalytic nanomaterials for photodegradation of methyl orange (MO) so far has focused on TiO2-based nanostructures; e.g., TiO2-P25 is recognized to be the best commercial photocatalyst to date, rather than Sn-based oxide nanomaterials, in spite of their impressive acid- and alkali-resistant properties and high stability. Here, we demonstrate very high photocatalytic activity of highly stable sub-5 nm hydromarchite (Sn6O4(OH)4) nanocrystals synthesized by a simple and environmentally friendly laser-based technique. These Sn6O4(OH)4 nanocrystals exhibit ultrahigh photocatalytic performance for photodegradation of MO and their degradation efficiency is far superior to that of TiO2-P25. The detailed investigations demonstrated that the great photocatalytic activity results from the ultrafine size and unique surface activity induced by the laser-based technique. Mass production of reactive species of hydroxyl radicals was detected in the experiments due to the appropriate bandgap of Sn6O4(OH)4 nanocrystals. These findings actually open a door to applications of Sn-based oxide nanomaterials as advanced photocatalytic materials.

135703

, , and

Ferritin is a protein nano-cage that encapsulates minerals inside an 8 nm cavity. Previous band gap measurements on the native mineral, ferrihydrite, have reported gaps as low as 1.0 eV and as high as 2.5–3.5 eV. To resolve this discrepancy we have used optical absorption spectroscopy, a well-established technique for measuring both direct and indirect band gaps. Our studies included controls on the protein nano-cage, ferritin with the native ferrihydrite mineral, and ferritin with reconstituted ferrihydrite cores of different sizes. We report measurements of an indirect band gap for native ferritin of 2.140 ± 0.015 eV (579.7 nm), with a direct transition appearing at 3.053 ± 0.005 eV (406.1 nm). We also see evidence of a defect-related state having a binding energy of 0.220 ± 0.010 eV . Reconstituted ferrihydrite minerals of different sizes were also studied and showed band gap energies which increased with decreasing size due to quantum confinement effects. Molecules that interact with the surface of the mineral core also demonstrated a small influence following trends in ligand field theory, altering the native mineral's band gap up to 0.035 eV.

135704

, , and

After Mg and Ni nanoparticles were fabricated by hydrogen plasma metal reaction, Mg-rich MgxNi100−x(75 < x < 90) materials were synthesized from these metal nanoparticles to study the synergistic effects for hydrogen storage in these samples to show both good kinetics and high capacity. These MgxNi100−x materials may absorb hydrogen with a capacity of around 3.3–5.1 wt% in 1 min at 573 K. The Mg90Ni10 sample shows a hydrogen capacity of 6.1 wt%. The significant kinetic enhancement is thought to be due to the unique nanostructure from the special synthesis route, the catalytic effect of the Mg2Ni nano phase, and the synergistic effects between the Mg2Ni and Mg phases in the materials. An interesting phenomenon which has never been reported before was observed during pressure composition isotherm (PCT) measurements. One steep step in the absorption process and two obviously separated steps in the desorption process during PCT measurements of Mg80Ni20 and Mg90Ni10 samples were observed and a possible reason from the kinetic performance of the Mg2Ni and Mg phases in absorption and desorption processes was explained. These MgxNi100−x materials synthesized from Mg and Ni nanoparticles show high capacity and good kinetics, which makes these materials very promising candidates for thermal storage or energy storage and utilization for renewable power.

135705
The following article is Open access

, , and

We have upgraded a low-temperature scanning tunnelling microscope (STM) with a radio-frequency (RF) modulation system to extend STM spectroscopy to the range of low energy excitations (<1 meV). We studied single molecules of a stable hydrocarbon π-radical weakly physisorbed on Au(111). At 5 K thermal excitation of the adsorbed molecules is inhibited due to the lack of short-wavelength phonons of the substrate. We demonstrate resonant excitation of mechanical modes of single molecules by RF tunnelling at 115 MHz, which induces structural changes in the molecule ranging from controlled diffusion and modification of bond angles to bond breaking as the ultimate climax (resonance catastrophe). Our results pave the way towards RF-STM-based spectroscopy and controlled manipulation of molecular nanostructures on a surface.

135706

and

Generally, there are two distinct effects in modifying the properties of low-dimensional nanostructures: surface effect (SE) due to increased surface–volume ratio and quantum size effect (QSE) due to quantum confinement in reduced dimension. The SE has been widely shown to affect the elastic constants and mechanical properties of nanostructures. Here, we demonstrate that QSE can also have a strong effect on the elastic constants of nanofilms from first-principles calculations. We conclude that generally QSE is dominant in affecting the elastic constants of metallic nanofilms while SE is more pronounced in semiconductor or insulator nanofilms. We also demonstrate that QSE affects the elastic constants of armchair graphene nanoribbons. Our findings have broad implications in quantum aspects of nanomechanics.

135707

, , , , , , , , and

An environmentally friendly new approach to prepare reduced graphene oxide (RGO) was developed by using glycylglycine (gly-gly) as both a reducing and stabilizing agent. Graphene oxide (GO) was transformed to RGO with the appropriate pH, temperature and reducing agent/GO ratio. The RGO was characterized by ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, thermo-gravimetric analysis, x-ray diffraction, x-ray photoelectron spectroscopy (XPS), and transmission electron microscopy. The RGO aqueous suspension showed extraordinary stability in the absence of any external stabilizing reagents. The XPS analysis showed that this excellent stability is due to modifications of the RGO nanosheets by the gly-gly molecules. The modified RGO complex with copper shows good catalytic performance for reduction of 4-nitrophenol to 4-aminophenol.