This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Volume 49

Number 15, 7 August 2004

Previous issue Next issue

PAPERS

3325

and

During high fluence laser–tissue interaction, ablation of tissue occurs, debris is removed from the ablation site and is then ejected at high velocity. This debris may be observed as a combination of luminous plasma and non-luminous plume, both of which have the potential to shield the ablation site. This study examined the role of ablation debris in shielding the tissue and determined its effects on the ablation rate over a range of laser pulse energies, pulse repetition rates and pulse numbers for dentine; the velocity differences between hard and soft tissues were also examined. High-speed photography was carried out at up to 1 × 108 frames per second. A maximum velocity of 2.58 ± 0.52 × 104 m s−1 was recorded for dentine debris within the first 10 ns following ejection. The maximum duration of tissue shielding due to a single pulse, determined by attenuation of a probe beam, was found to be ∼7 ms, ∼80 µs of which was due to luminous plasma and the remainder due to the non-luminous plume.

3341

, and

Calculations of normal tissue complication probability (NTCP) values for the rectum are difficult because it is a hollow, non-rigid, organ. Finding the true cumulative dose distribution for a number of treatment fractions requires a CT scan before each treatment fraction. This is labour intensive, and several surrogate distributions have therefore been suggested, such as dose wall histograms, dose surface histograms and histograms for the solid rectum, with and without margins. In this study, a Monte Carlo method is used to investigate the relationships between the cumulative dose distributions based on all treatment fractions and the above-mentioned histograms that are based on one CT scan only, in terms of equivalent uniform dose. Furthermore, the effect of a specific choice of histogram on estimates of the volume parameter of the probit NTCP model was investigated. It was found that the solid rectum and the rectum wall histograms (without margins) gave equivalent uniform doses with an expected value close to the values calculated from the cumulative dose distributions in the rectum wall. With the number of patients available in this study the standard deviations of the estimates of the volume parameter were large, and it was not possible to decide which volume gave the best estimates of the volume parameter, but there were distinct differences in the mean values of the values obtained.

3353

, , , , , and

Clinical trials for boron neutron capture therapy (BNCT) by using the medical irradiation facility installed in Japan Research Reactor No. 4 (JRR-4) at Japan Atomic Energy Research Institute (JAERI) have been performed since 1999. To carry out the BNCT procedure based on proper treatment planning and its precise implementation, the JAERI computational dosimetry system (JCDS) which is applicable to dose planning has been developed in JAERI. The aim of this study was to verify the performance of JCDS. The experimental data with a cylindrical water phantom were compared with the calculation results using JCDS. Data of measurements obtained from IOBNCT cases at JRR-4 were also compared with retrospective evaluation data with JCDS. In comparison with phantom experiments, the calculations and the measurements for thermal neutron flux and gamma-ray dose were in a good agreement, except at the surface of the phantom. Against the measurements of clinical cases, the discrepancy of JCDS's calculations was approximately 10%. These basic and clinical verifications demonstrated that JCDS has enough performance for the BNCT dosimetry. Further investigations are recommended for precise dose distribution and faster calculation environment.

3367

Physical studies on (i) replacement of heavy water for body water (deuteration), and (ii) formation of a void in human body (void formation) were performed as control techniques for dose distribution in a human head under neutron capture therapy. Simulation calculations were performed for a human-head-size cylindrical phantom using a two-dimensional transport calculation code for mono-energetic incidences of higher-energy epi-thermal neutrons (1.2–10 keV), lower-energy epi-thermal neutrons (3.1–23 eV) and thermal neutrons (1 meV to 0.5 eV). The deuteration was confirmed to be effective both in thermal neutron incidence and in epi-thermal neutron incidence from the viewpoints of improvement of the thermal neutron flux distribution and elimination of the secondary gamma rays. For the void formation, a void was assumed to be 4 cm in diameter and 3 cm in depth at the surface part in this study. It was confirmed that the treatable depth was improved almost 2 cm for any incident neutron energy in the case of the 10 cm irradiation field diameter. It was made clear that the improvement effect was larger in isotropic incidence than in parallel incidence, in the case that an irradiation field size was delimited fitting into a void diameter.

3379

, and

We have developed and tested an MR-compatible gamma probe to simultaneously obtain anatomical information and functional information during surgery. The probe consists of a probe head, an optical fibre bundle and a photo-multiplier tube (PMT). The NaI(Tl) scintillator contained in the probe head is connected to a 7 m optical fibre bundle that transfers the scintillation photons produced in the NaI(Tl) to an area of low magnetic field or out of the MR-scanner's magnetic shielded room. Although the light loss due to the optical fibre bundle was more than 90%, the photo-peak of the gamma for Co-57 (122 keV) could be observed. The point spread function was 4.5 mm full width at half maximum (FWHM) at 5 mm from the collimator surface for 122 keV gamma photons. Furthermore, there was no sensitivity change outside the MR-scanner, inside the MR-scanner without scanning and inside the MR-scanner with scanning. The probe produced a small artefact on the phantom image of the MR-scanner due to the susceptibility difference of the alloy used for the collimator and the shield. However, the artefact was only limited to area surrounding the probe. These results indicate that the developed MR-compatible gamma probe will make it possible to realize the combined MR/RI guided surgery that provides surgeons with anatomical and RI distribution information simultaneously.

3389

, , , , and

T2*-weighted gradient-echo magnetic resonance imaging (T2*-weighted GRE MRI) was used to investigate spontaneous fluctuations in tumour vasculature non-invasively. FSa fibrosarcomas, implanted intramuscularly (i.m.) in the legs of mice, were imaged at 4.7 T, over a 30 min or 1 h sampling period. On a voxel-by-voxel basis, time courses of signal intensity were analysed using a power spectrum density (PSD) analysis to isolate voxels for which signal changes did not originate from Gaussian white noise or linear drift. Under baseline conditions, the tumours exhibited spontaneous signal fluctuations showing spatial and temporal heterogeneity over the tumour. Statistically significant fluctuations occurred at frequencies ranging from 1 cycle/3 min to 1 cycle/h. The fluctuations were independent of the scanner instabilities. Two categories of signal fluctuations were reported: (i) true fluctuations (TFV), i.e., sequential signal increase and decrease, and (ii) profound drop in signal intensity with no apparent signal recovery (SDV). No temporal correlation between tumour and contralateral muscle fluctuations was observed. Furthermore, treatments aimed at decreasing perfusion-limited hypoxia, such as carbogen combined with nicotinamide and flunarizine, decreased the incidence of tumour T2*-weighted GRE fluctuations. We also tracked dynamic changes in T2* using multiple GRE imaging. Fluctuations of T2* were observed; however, fluctuation maps using PSD analysis could not be generated reliably. An echo-time dependency of the signal fluctuations was observed, which is typical to physiological noise. Finally, at the end of T2*-weighted GRE MRI acquisition, a dynamic contrast-enhanced MRI was performed to characterize the microenvironment in which tumour signal fluctuations occurred in terms of vessel functionality, vascularity and microvascular permeability. Our data showed that TFV were predominantly located in regions with functional vessels, whereas SDV occurred in regions with no contrast enhancement as the result of vessel functional impairment. Furthermore, transient fluctuations appeared to occur preferentially in neoangiogenic hyperpermeable vessels. The present study suggests that spontaneous T2*-weighted GRE fluctuations are very likely to be related to the spontaneous fluctuations in blood flow and oxygenation associated with the pathophysiology of acute hypoxia in tumours. The disadvantage of the T2*-weighted GRE MRI technique is the complexity of signal interpretation with regard to pO2 changes. Compared to established techniques such as intravital microscopy or histological assessments, the major advantage of the MRI technique lies in its capacity to provide simultaneously both temporal and detailed spatial information on spontaneous fluctuations throughout the tumour.

3413

, , and

Compliant layer knee joints have been considered for use in an attempt to increase the serviceable life of artificial joints. If designed correctly, these joints should operate within the full-fluid film lubrication regime. However, adverse tribological conditions, such as the presence of bone and bone cement particles, may breach the fluid film and cause surface wear. The frictional behaviour of both polyurethane (PU) and conventional polyethylene (PE) tibial components against a metallic femoral component was therefore assessed when bone cement particles were introduced into the lubricant. The bone cement particles caused a large increase in the frictional torque of both the PE and PU bearings; however, the friction produced by the PU bearings was still considerably lower than that produced by the PE bearings. The volume of bone cement particles between each of the bearings and the resultant frictional torque both decreased over time. This occurred more quickly with the PE bearings but greater damage was caused to the surface of the PE bearings than the PU components.

3427

, , , and

The contrast of calcifications in images of breast tissue specimens using a synchrotron-based diffraction enhanced imaging (DEI) apparatus has been measured and is compared to the contrast in images acquired using a conventional synchrotron-based radiographic imaging modality. DEI is an imaging modality which derives image contrast from x-ray absorption, refraction and small-angle scatter-rejection (extinction), unlike conventional radiographic techniques, which can only derive contrast from absorption. DEI is accomplished by inserting an analyser crystal in the beam path between the sample and the detector. Two of the three breast tissue specimens contained calcifications associated with cancer, while a third contained benign calcifications. Results of the image analysis indicate that the DEI contrast of images taken with the analyser crystal tuned to the peak of its rocking curve, was as much as 19 times that of the conventional radiograph, with an average of 5.5 for all calcifications. This improved image contrast for even near-pixel-size calcifications suggests potential utility for DEI in breast imaging.

3441

and

A simplification of the source channel geometry of the Leksell Gamma Knife® (GK), recently proposed by the authors and checked for a single source configuration (Al-Dweri F M O, Lallena A M and Vilches M 2004 Phys. Med. Biol.49 2687–703), has been used to calculate the dose distributions along the x, y and z axes in a water phantom with a diameter of 160 mm, for different configurations of the Gamma Knife, including 201, 150 and 102 unplugged sources. The code PENELOPE (v. 2001) has been used to perform the Monte Carlo simulations. In addition, the output factors for the 14, 8 and 4 mm helmets have been calculated. The results found for the dose profiles show a qualitatively good agreement with previous ones obtained with EGS4 and PENELOPE (v. 2000) codes and with the predictions of GammaPlan®. The output factors obtained with our model agree within the statistical uncertainties with those calculated with the same Monte Carlo codes and with those measured with different techniques. Owing to the accuracy of the results obtained and to the reduction in the computational time with respect to full geometry simulations (larger than a factor 15), this simplified model opens the possibility of using Monte Carlo tools for planning purposes in the Gamma Knife®.

3455

and

We have developed an automatic critical region shielding (ACRS) algorithm for Gamma Knife radiosurgery of trigeminal neuralgia. The algorithm selectively blocks 201 Gamma Knife sources to minimize the dose to the brainstem while irradiating the root entry area of the trigeminal nerve with 70–90 Gy. An independent dose model was developed to implement the algorithm. The accuracy of the dose model was tested and validated via comparison with the Leksell GammaPlan (LGP) calculations. Agreements of 3% or 3 mm in isodose distributions were found for both single-shot and multiple-shot treatment plans. After the optimized blocking patterns are obtained via the independent dose model, they are imported into the LGP for final dose calculations and treatment planning analyses. We found that the use of a moderate number of source plugs (30–50 plugs) significantly lowered (∼40%) the dose to the brainstem for trigeminal neuralgia treatments. Considering the small effort involved in using these plugs, we recommend source blocking for all trigeminal neuralgia treatments with Gamma Knife radiosurgery.

3465

, and

While the process of IMRT planning involves optimization of the dose distribution, the procedure for selecting the beam inputs for this process continues to be largely trial-and-error. We have developed an integer programming (IP) optimization method to optimize beam orientation using mean organ-at-risk (MOD) data from single-beam plans. Two test cases were selected in which one organ-at-risk (OAR) and four OARs were simulated, respectively, along with a PTV. Beam orientation space was discretized in 10° increments. For each beam orientation, a single-beam plan without intensity modulation and without constraints on OAR dose was generated and normalized to yield a mean PTV dose of 2 Gy and the corresponding MOD was calculated. The degree of OAR sparing was related to the average OAR MODs resulting from the beam orientations utilized with improvements of up to 10% at some dose levels. On the other hand, OAR DVHs in the IMRT plans were insensitive to beam numbers (in the 6–9 range) for similar average single-beam MODs. These MOD data were input to an IP optimization process, which then selected specified numbers of beam angles as inputs to a treatment planning system. Our results show that sets of beam angles with lower average single-beam MODs produce IMRT plans with better OAR sparing than manually selected beam angles. To optimize beam orientations, weights were assigned to each OAR following MOD input to the IP which was subsequently solved using the branch-and-cut algorithm. Seven-beam orientations obtained from solving the IP were applied to the test case with four OARs and the resulting plan with a dose prescription of 63 Gy was compared with an equi-spaced beam plan. The IP selected beams produced dose–volume improvements of up to 40% for OARs proximal to the PTV. Further improvement in the DVH can be obtained by increasing the weights assigned to these OARs but at the expense of the remaining OARs.

3483

, and

Intra-operative dosimetry in prostate brachytherapy requires 3D coordinates of the implanted, radioactive seeds. Since CT is not readily available during the implant operation, projection x-rays are commonly used for intra-operative seed localization. Three x-ray projections are usually used. The requirement of the current seed reconstruction algorithms is that the seeds must be identified on all three projections. However, in practice this is often difficult to accomplish due to the problem of heavily clustered and overlapping seeds. We have developed an algorithm that permits seed reconstruction from an incomplete data set. Instead of all three projections, the new algorithm requires only one of the three projections to be complete. Furthermore, even if all three projections are incomplete, it can reconstruct 100% of the implanted seeds depending on how the undetected seeds are distributed among the projections. The method utilizes the principles of epipolar imaging geometry and pseudo-matching of the undetected seeds. The algorithm was successfully applied to a large number of clinical cases where seeds imperceptibly overlap in some projections.

3495

, , , , and

The water equivalence and stable relative energy response of polymer gel dosimeters are usually taken for granted in the relatively high x-ray energy range of external beam radiotherapy based on qualitative indices such as mass and electron density and effective atomic number. However, these favourable dosimetric characteristics are questionable in the energy range of interest to brachytherapy especially in the case of lower energy photon sources such as 103Pd and 125I that are currently utilized. In this work, six representative polymer gel formulations as well as the most commonly used experimental set-up of a LiF TLD detector–solid water phantom are discussed on the basis of mass attenuation and energy absorption coefficients calculated in the energy range of 10 keV–10 MeV with regard to their water equivalence as a phantom and detector material. The discussion is also supported by Monte Carlo simulation results. It is found that water equivalence of polymer gel dosimeters is sustained for photon energies down to about 60 keV and no corrections are needed for polymer gel dosimetry of 169Yb or 192Ir sources. For 125I and 103Pd sources, however, a correction that is source-distance dependent is required. Appropriate Monte Carlo results show that at the dosimetric reference distance of 1 cm from a source, these corrections are of the order of 3% for 125I and 2% for 103Pd. These have to be compared with corresponding corrections of up to 35% for 125I and 103Pd and up to 15% even for the 169Yb energies for the experimental set-up of the LiF TLD detector–solid water phantom.

NOTE

N259

and

X-ray fluorescence (XRF) has been demonstrated to be an extremely useful technique for measuring trace quantities of heavy metals in various tissues in the body. This study investigates the applicability of XRF to the measurement of silver concentrations in skin. The system chosen employs an 125I source to excite the silver K x-rays, with the source, sample and detector arranged in a 90° geometry. Experiments with silver-doped skin phantoms indicate that a minimum detectable concentration of 3–4 ppm is possible in 10–20 min measurement periods. Based on estimates of silver concentrations in the skin of patients suffering from argyria, the proposed system has sufficient sensitivity to warrant further investigation into its usefulness for non-invasive monitoring of exposed populations. Specifically, such a measurement may well allow for the identification of individuals at risk of subsequently exhibiting argyria, an irreversible skin pigmentation arising from silver exposure.

LETTERS TO THE EDITOR