This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Volume 842

Number 1, 2017 June 10

Previous issue Next issue

1

, , , , , and

Sub-subgiants (SSGs) are a new class of stars that are optically redder than normal main-sequence stars and fainter than normal subgiant stars. SSGs, as well as the possibly related red stragglers (which fall to the red of the giant branch), occupy a region of the color–magnitude diagram that is predicted to be devoid of stars by standard stellar evolution theory. In previous papers we presented the observed demographics of these sources and defined possible theoretical formation channels through isolated binary evolution, the rapid stripping of a subgiant's envelope, and stellar collisions. SSGs offer key tests for single- and binary-star evolution and stellar collision models. In this paper, we synthesize these findings to discuss the formation frequencies through each of these channels. The empirical data, our analytic formation rate calculations, and analyses of SSGs in a large grid of Monte Carlo globular cluster models suggest that the binary evolution channels may be the most prevalent, though all channels appear to be viable routes to SSG creation (especially in higher-mass globular clusters). Multiple formation channels may operate simultaneously to produce the observed SSG population. Finally, many of these formation pathways can produce stars in both the SSG and red straggler (and blue straggler) regions of the color–magnitude diagram, in some cases as different stages along the same evolutionary sequence.

2

and

The turn-around radii of the galaxy groups show the imprint of a long battle between their self-gravitational forces and the accelerating space. The standard ΛCDM cosmology based on the general relativity (GR) predicts the existence of an upper bound on the expectation value of the turn-around radius that is rarely violated by individual galaxy groups. We speculate that a deviation of the gravitational law from GR on the cosmological scale could cause an appreciable shift of the mean turn-around radius to higher values and make the occurrence of the bound violation more probable. Analyzing the data from high-resolution N-body simulations for two specific models with modified gravity (MG) and the standard GR+ΛCDM cosmology, we determine the turn-around radii of the massive Rockstar groups from the peculiar motions of the galactic halos located in the bound zone where the fifth force generated by MG is expected to be, at most, partially shielded. We detect a $4\sigma $ signal of difference in the odds of the bound violations between a fiducial MG and the GR models, which proves that the odds of the bound violations increase with the strength of the fifth force produced by the presence of MG. The advantage of using the odds of the bound violations as a complementary diagnostics to probe the nature of gravity is discussed.

3

, , , and

We quantify the emergence and decay rates of preceder (p) and follower (f) sunspots within 10 active regions from 2010 to 2014 using Space-weather Helioseismic Magnetic Imager Active Region Patch data. The sunspots are small to mid-sized regions and contain a signed flux within a single polarity sunspot of $(1.1\mbox{--}6.5)\times {10}^{21}\,\mathrm{Mx}$. The net unsigned flux within the regions, including plage, ranges from $(5.1\mbox{--}20)\times {10}^{21}\,\mathrm{Mx}$. Rates are calculated with and without intensity contours to differentiate between sunspot formation and flux emergence. Signed flux emergence rates, calculated with intensity contours, for the p (f) spots average $6.8(4.9)\times {10}^{19}\,\mathrm{Mx}$ hr−1, while decay rates are $-1.9(-3.4)\times {10}^{19}\,\mathrm{Mx}$ hr−1. The mean, signed flux emergence rate of the regions, including plage, is $7.1\times {10}^{19}\,\mathrm{Mx}$ hr−1, for a mean peak flux of $5.9\times {10}^{21}\,\mathrm{Mx}$. Using a synthesis of these results and others reported previously, there is a clear trend for larger flux regions to emerge faster than smaller ones. Observed emergence rates ($d\phi /{dt}$, Mx hr−1) scale with total signed peak flux, ${\tilde{\phi }}_{\max },$ as a power law with an exponent of 0.36, i.e., $d\phi /{dt}=A{\tilde{\phi }}_{\max }^{0.36}$. The observed rates may assist in constraining the boundary and initial conditions in simulations which already demonstrate increased rates for flux tubes with higher buoyancy and twist, or in the presence of a strong upflow. Overall, the observed emergence rates are smaller than those in simulations, which may indicate a slower rise of the flux in the interior than what is captured in simulations.

4
The following article is Open access

, , , , , , , , , et al

With its relatively low ionization potential, C+ can be found throughout the interstellar medium (ISM) and provides one of the main cooling channels of the ISM via the [C ii] 157 μm emission. While the strength of the [C ii] line correlates with the star formation rate, the contributions of the various gas phases to the [C ii] emission on galactic scales are not well established. In this study we establish an empirical multi-component model of the ISM, including dense H ii regions, dense photon dissociation regions (PDRs), the warm ionized medium (WIM), low density and ${G}_{0}$ surfaces of molecular clouds (SfMCs), and the cold neutral medium (CNM). We test our model on ten luminous regions within the two nearby galaxies NGC 3184 and NGC 628 on angular scales of 500–600 pc. Both galaxies are part of the Herschel key program KINGFISH, and are complemented by a large set of ancillary ground- and space-based data. The five modeled phases together reproduce the observed [C ii] emission quite well, overpredicting the total flux slightly (about 45%) averaged over all regions. We find that dense PDRs are the dominating component, contributing 68% of the [C ii] flux on average, followed by the WIM and the SfMCs, with mean contributions of about half of the contribution from dense PDRs, each. CNM and dense H ii regions are only minor contributors with less than 5% each. These estimates are averaged over the selected regions, but the relative contributions of the various phases to the [C ii] flux vary significantly between these regions.

5

, , and

We search type 1 active galactic nuclei (AGNs) among emission-line galaxies, that are typically classified as type 2 AGNs based on emission line flux ratios if a broad component in the Hα line profile is not properly investigated. Using ∼24,000 type 2 AGNs at z < 0.1, initially selected from Sloan Digital Sky Survey Data Release 7 by Bae & Woo, we identify a sample of 611 type 1 AGNs based on the spectral fitting results and visual inspection. These hidden type 1 AGNs have relatively low luminosity with a mean broad Hα luminosity, log ${L}_{{\rm{H}}\alpha }=40.73\,\pm 0.32$ erg s−1 and low Eddington ratio with a mean log Lbol/LEdd = −2.04 ± 0.34, while they do follow the black hole mass–stellar velocity dispersion relation defined by the inactive galaxies and the reverberation-mapped type 1 AGNs. We investigate ionized gas outflows based on the [${\rm{O}}\,{\rm{III}}$] λ5007 kinematics, which show relatively high velocity dispersion and velocity shift, indicating that the line-of-sight velocity and velocity dispersion of the ionized gas in type 1 AGNs is, on average, larger than that of type 2 AGNs.

6

, , , , , , and

We have constructed the most comprehensive catalog of photometry and proper motions ever assembled for a globular cluster (GC). The core of ωCen has been imaged over 650 times through WFC3's UVIS and IR channels for the purpose of detector calibration. There exist from 4 to over 60 exposures through each of 26 filters stretching continuously from F225W in the UV to F160W in the infrared. Furthermore, the 11 yr baseline between these data and a 2002 ACS survey has allowed us to more than double the proper-motion accuracy and triple the number of well-measured stars compared to our previous groundbreaking effort. This totally unprecedented complete spectral coverage of over 470,000 stars within the cluster's core, from the tip of the red giant branch down to the white dwarfs, provides the best astro-photometric observational database yet to understand the multiple-population phenomenon in any GC. In this first paper of the series, we describe in detail the data-reduction processes and deliver the astro-photometric catalog to the astronomical community.

7

, , , , , and

We take advantage of the exquisite quality of the Hubble Space Telescope astro-photometric catalog of the core of ωCen presented in the first paper of this series to derive a high-resolution, high-precision, high-accuracy differential-reddening map of the field. The map has a spatial resolution of 2 × 2 arcsec2 over a total field of view of about 4farcm× 4farcm3. The differential reddening itself is estimated via an iterative procedure using five distinct color–magnitude diagrams, which provided consistent results to within the 0.1% level. Assuming an average reddening value E(BV) = 0.12, the differential reddening within the cluster's core can vary by up to ±10%, with a typical standard deviation of about 4%. Our differential-reddening map is made available to the astronomical community in the form of a multi-extension FITS file. This differential-reddening map is essential for a detailed understanding of the multiple stellar populations of ωCen, as presented in the next paper in this series. Moreover, it provides unique insight into the level of small spatial-scale extinction variations in the Galactic foreground.

8

, , , , , , , , , et al

We present ALMA mosaic observations at 1.3 mm (223 GHz) of the Fomalhaut system with a sensitivity of 14 μJy/beam. These observations provide the first millimeter map of the continuum dust emission from the complete outer debris disk with uniform sensitivity, enabling the first conclusive detection of apocenter glow. We adopt an MCMC modeling approach that accounts for the eccentric orbital parameters of a collection of particles within the disk. The outer belt is radially confined with an inner edge of 136.3 ± 0.9 au and width of 13.5 ± 1.8 au. We determine a best-fit eccentricity of 0.12 ± 0.01. Assuming a size distribution power-law index of q = 3.46 ± 0.09, we constrain the dust absorptivity power-law index β to be 0.9 < β < 1.5. The geometry of the disk is robustly constrained with inclination 65fdg6 ± 0fdg3, position angle 337fdg9 ± 0fdg3, and argument of periastron 22fdg5 ± 4fdg3. Our observations do not confirm any of the azimuthal features found in previous imaging studies of the disk with Hubble Space Telescope, SCUBA, and ALMA. However, we cannot rule out structures ≤10 au in size or that only affect smaller grains. The central star is clearly detected with a flux density of 0.75 ± 0.02 mJy, significantly lower than predicted by current photospheric models. We discuss the implications of these observations for the directly imaged Fomalhaut b and the inner dust belt detected at infrared wavelengths.

9

, , , , , , , , , et al

Recent Atacama Large Millimeter/submillimeter Array observations present mounting evidence for the presence of exocometary gas released within Kuiper Belt analogs around nearby main-sequence stars. This represents a unique opportunity to study their ice reservoir at the younger ages when volatile delivery to planets is most likely to occur. We here present the detection of CO J = 2-1 emission colocated with dust emission from the cometary belt in the 440 Myr old Fomalhaut system. Through spectrospatial filtering, we achieve a 5.4σ detection and determine that the ring's sky-projected rotation axis matches that of the star. The CO mass derived ($(0.65\mbox{--}42)\times {10}^{-7}\,{M}_{\oplus }$) is the lowest of any circumstellar disk detected to date and must be of exocometary origin. Using a steady-state model, we estimate the CO+CO2 mass fraction of exocomets around Fomalhaut to be between 4.6% and 76%, consistent with solar system comets and the two other belts known to host exocometary gas. This is the first indication of a similarity in cometary compositions across planetary systems that may be linked to their formation scenario and is consistent with direct interstellar medium inheritance. In addition, we find tentative evidence that $(49\pm 27)$% of the detected flux originates from a region near the eccentric belt's pericenter. If confirmed, the latter may be explained through a recent impact event or CO pericenter glow due to exocometary release within a steady-state collisional cascade. In the latter scenario, we show how the azimuthal dependence of the CO release rate leads to asymmetries in gas observations of eccentric exocometary belts.

10

, , , , , and

We search for γ-ray and optical periodic modulations in distant flat-spectrum radio quasar (FSRQ) PKS 0426–380 (the redshift z = 1.1). Using two techniques (i.e., the maximum likelihood optimization and the exposure-weighted aperture photometry), we obtain γ-ray light curves from Fermi-LAT Pass 8 data covering from 2008 August to 2016 December. We then analyze the light curves with the Lomb–Scargle periodogram and the weighted wavelet Z-transform. A γ-ray quasi-periodicity with a period of 3.35 ± 0.68 yr is found at the significance level of $\simeq 3.6\ \sigma $. The optical–UV flux covering from 2005 August to 2013 April provided by the ASI Science Data Center is also analyzed, but no significant quasi-periodicity is found. It should be pointed out that the result of the optical–UV data could be tentative because of the incompleteness of the data. Further long-term multiwavelength monitoring of this FSRQ is needed to confirm its quasi-periodicity.

11

At the beginning of planetary formation, highly porous dust aggregates are formed through coagulation of dust grains. Outside the snowline, the main component of an aggregate is H2O ice. Because H2O ice is formed in amorphous form, its thermal conductivity is extremely small. Therefore, the thermal conductivity of an icy dust aggregate is low. There is a possibility of heating inside an aggregate owing to the decay of radionuclides. It is shown that the temperature increases substantially inside an aggregate, leading to crystallization of amorphous ice. During the crystallization, the temperature further increases sufficiently to continue sintering. The mechanical properties of icy dust aggregates change, and the collisional evolution of dust aggregates is affected by the sintering.

12

, , , , , , , , , and

Line intensities emerging from the Ne-sequence iron ion (Fe xvii) are measured in the laboratory, by the Large Helical Device at the National Institute for Fusion Science, and in the solar corona by the EUV Imaging Spectrometer (EIS) on board the Hinode mission. The intensity ratios of Fe xviiλ 204.6/λ 254.8 are derived in the laboratory by unblending the contributions of the Fe xiii and xii line intensities. They are consistent with theoretical predictions and solar observations, the latter of which endorses the in-flight radiometric calibrations of the EIS instrument. The still remaining temperature-dependent behavior of the line ratio suggests the contamination of lower-temperature iron lines that are blended with the λ 204.6 line.

13

, , , , and

The spatial and velocity distributions of nuclear species synthesized in the innermost regions of core-collapse supernovae can yield important clues about explosion asymmetries and the operation of the still disputed explosion mechanism. Recent observations of radioactive 44Ti with high-energy satellite telescopes (Nuclear Spectroscopic Telescope Array [NuSTAR], INTEGRAL) have measured gamma-ray line details, which provide direct evidence of large-scale explosion asymmetries in SN 1987A and in Cassiopeia A (Cas A) even by mapping of the spatial brightness distribution (NuSTAR). Here we discuss a 3D simulation of a neutrino-driven explosion, using a parameterized neutrino engine, whose 44Ti distribution is mostly concentrated in one hemisphere pointing opposite to the neutron star (NS) kick velocity. Both exhibit intriguing resemblance to the observed morphology of the Cas A remnant, although neither the progenitor nor the explosion was fine-tuned for a perfect match. Our results demonstrate that the asymmetries observed in this remnant can, in principle, be accounted for by a neutrino-driven explosion, and that the high 44Ti abundance in Cas A may be explained without invoking rapid rotation or a jet-driven explosion, because neutrino-driven explosions generically eject large amounts of high-entropy matter. The recoil acceleration of the NS is connected to mass ejection asymmetries and is opposite to the direction of the stronger explosion, fully compatible with the gravitational tugboat mechanism. Our results also imply that Cas A and SN 1987A could possess similarly "one-sided" Ti and Fe asymmetries, with the difference that Cas A is viewed from a direction with large inclination angle to the NS motion, whereas the NS in SN 1987A should have a dominant velocity component pointing toward us.

14

, , , , , , , , , et al

We present a new matched-filter algorithm for direct detection of point sources in the immediate vicinity of bright stars. The stellar point-spread function (PSF) is first subtracted using a Karhunen-Loéve image processing (KLIP) algorithm with angular and spectral differential imaging (ADI and SDI). The KLIP-induced distortion of the astrophysical signal is included in the matched-filter template by computing a forward model of the PSF at every position in the image. To optimize the performance of the algorithm, we conduct extensive planet injection and recovery tests and tune the exoplanet spectra template and KLIP reduction aggressiveness to maximize the signal-to-noise ratio (S/N) of the recovered planets. We show that only two spectral templates are necessary to recover any young Jovian exoplanets with minimal S/N loss. We also developed a complete pipeline for the automated detection of point-source candidates, the calculation of receiver operating characteristics (ROC), contrast curves based on false positives, and completeness contours. We process in a uniform manner more than 330 data sets from the Gemini Planet Imager Exoplanet Survey and assess GPI typical sensitivity as a function of the star and the hypothetical companion spectral type. This work allows for the first time a comparison of different detection algorithms at a survey scale accounting for both planet completeness and false-positive rate. We show that the new forward model matched filter allows the detection of 50% fainter objects than a conventional cross-correlation technique with a Gaussian PSF template for the same false-positive rate.

15

, , and

We study broad redshifted emission in chromospheric and transition region lines that appears to correspond to a form of post-flare coronal rain. Profiles of Mg ii, C ii, and Si iv lines were obtained using IRIS before, during, and after the X2.1 flare of 2015 March 11 (SOL2015-03-11T16:22). We analyze the profiles of the five transitions of Mg ii (the $3p-3s$h and k transitions, and three lines belonging to the $3d-3p$ transitions). We use analytical methods to understand the unusual profiles, together with higher-resolution observational data of similar phenomena observed by Jing et al. The peculiar line ratios indicate anisotropic emission from the strands that have cross-strand line center optical depths (k line) of between 1 and 10. The lines are broadened by unresolved Alfvénic motions whose energy exceeds the radiation losses in the Mg ii lines by an order of magnitude. The decay of the line widths is accompanied by a decay in the brightness, suggesting a causal connection. If the plasma is ≲99% ionized, ion–neutral collisions can account for the dissipation; otherwise, a dynamical process seems necessary. Our work implies that the motions are initiated during the impulsive phase, to be dissipated as radiation over a period of an hour, predominantly by strong chromospheric lines. The coronal "rain" we observe is far more turbulent than most earlier reports have indicated, with implications for plasma heating mechanisms.

16

, , , , , and

The signatures of energy release and energy transport for a kink-unstable coronal flux rope are investigated via forward modeling. Synthetic intensity and Doppler maps are generated from a 3D numerical simulation. The CHIANTI database is used to compute intensities for three Hinode/EIS emission lines that cover the thermal range of the loop. The intensities and Doppler velocities at simulation-resolution are spatially degraded to the Hinode/EIS pixel size (1''), convolved using a Gaussian point-spread function (3''), and exposed for a characteristic time of 50 s. The synthetic images generated for rasters (moving slit) and sit-and-stare (stationary slit) are analyzed to find the signatures of the twisted flux and the associated instability. We find that there are several qualities of a kink-unstable coronal flux rope that can be detected observationally using Hinode/EIS, namely the growth of the loop radius, the increase in intensity toward the radial edge of the loop, and the Doppler velocity following an internal twisted magnetic field line. However, EIS cannot resolve the small, transient features present in the simulation, such as sites of small-scale reconnection (e.g., nanoflares).

17

, , , , and

We modeled the radio non-detection of two Type Ia supernovae (SNe), SN 2011fe and SN 2014J, considering synchrotron emission from the interaction between SN ejecta and the circumstellar medium. For ejecta whose outer parts have a power-law density structure, we compare synchrotron emission with radio observations. Assuming that 20% of the bulk shock energy is being shared equally between electrons and magnetic fields, we found a very low-density medium around both the SNe. A less tenuous medium with particle density ∼1 cm−3, which could be expected around both SNe, can be estimated when the magnetic field amplification is less than that presumed for energy equipartition. This conclusion also holds if the progenitor of SN 2014J was a rigidly rotating white dwarf (WD) with a main-sequence (MS) or red giant companion. For a He star companion, or a MS for SN 2014J, with 10% and 1% of bulk kinetic energy in magnetic fields, we obtain mass-loss rates of $\lt {10}^{-9}$ and $\lt \sim 4\times {10}^{-9}\,{M}_{\odot }\,{\mathrm{yr}}^{-1}$ for a wind velocity of 100 $\,\mathrm{km}\,{{\rm{s}}}^{-1}$. The former requires a mass accretion efficiency of >99% onto the WD, but is less restricted for the latter case. However, if the tenuous medium is due to a recurrent nova, it is difficult from our model to predict synchrotron luminosities. Although the formation channels of SNe 2011fe and 2014J are not clear, the null detection in radio wavelengths could point toward a low amplification efficiency for magnetic fields in SN shocks.

18

and

Synchrotron emission from a supernova (SN) necessitates a magnetic field, but it is unknown how strong the relevant magnetic fields are, and what mechanism generates them. In this study, we perform high-resolution numerical gas dynamics calculations in axisymmetry to determine the growth of turbulence due to Rayleigh–Taylor (RT) instability, and the resulting kinetic energy in turbulent fluctuations, as a means of inferring how strong magnetic fields can become when amplified by this turbulence. Assuming rough equipartition between kinetic and magnetic energy in the turbulence, we find that RT instability may produce turbulent fluctuations strong enough to amplify magnetic fields to a few percent of equipartition with the thermal energy. This turbulence stays concentrated near the reverse shock, but averaging this magnetic energy throughout the shocked region (weighting by emissivity) sets the magnetic fields at a minimum of 0.3 percent of equipartition. This line of argument predicts a minimum effective magnetic field strength (${\epsilon }_{B}\gt 0.003$) that should be present in all interacting SNe. This provides a prediction for what should be found in highly resolved, three-dimensional magnetohydrodynamics calculations. The strength and spatial distribution of turbulently generated magnetic fields would have implications for the shape and luminosity of SN radio light curves.

19

, , , , and

We investigate the nature of the spectral line profiles for transition-region (TR) ions observed with the Interface Region Imaging Spectrograph (IRIS). In this context, we analyzed an active-region observation performed by IRIS in its 1400 Å spectral window. The TR lines are found to exhibit significant wings in their spectral profiles, which can be well fitted with a non-Maxwellian κ distribution. The fit with a κ distribution can perform better than a double-Gaussian fit, especially for the strongest line, Si iv 1402.8 Å. Typical values of κ found are about 2, occurring in a majority of spatial pixels where the TR lines are symmetric, i.e., the fit can be performed. Furthermore, all five spectral lines studied (from Si iv, O iv, and S iv) appear to have the same full-width at half-maximum irrespective of whether the line is an allowed or an intercombination transition. A similar value of κ is obtained for the electron distribution by the fitting of the line intensities relative to Si iv 1402.8 Å, if photospheric abundances are assumed. The κ distributions, however, do not remove the presence of non-thermal broadening. Instead, they actually increase the non-thermal width. This is because, for κ distributions, TR ions are formed at lower temperatures. The large observed non-thermal width lowers the opacity of the Si iv line sufficiently enough for this line to become optically thin.

20

, , , , and

We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observed colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.

21

, , , , , , , and

We present the analysis and results of a spectroscopic follow-up program of a mass-selected sample of six galaxies at $3\lt z\lt 4$ using data from Keck-NIRPSEC and VLT-Xshooter. We confirm the $z\gt 3$ redshifts for half of the sample through the detection of strong nebular emission lines, and improve the zphot accuracy for the remainder of the sample through the combination of photometry and spectra. The modeling of the emission-line-corrected spectral energy distributions (SEDs) adopting improved redshifts confirms the very large stellar masses of the sample (${M}_{* }\sim 1.5\mbox{--}4\times {10}^{11}{M}_{\odot }$) in the first 2 Gyr of cosmic history, with a diverse range in stellar ages, star-formation rates, and dust content. From the analysis of emission-line luminosities and widths, and far-infrared (FIR) fluxes, we confirm that $\gtrsim 80 \% $ of the sample are hosts to luminous hidden active galactic nuclei (AGNs), with bolometric luminosities of ∼1044–46 erg s−1. We find that the MIPS 24 μm photometry is largely contaminated by AGN continuum, rendering the SFRs derived using only 24 μm photometry to be severely overestimated. By including the emission from the AGN in the modeling of the UV-to-FIR SEDs, we confirm that the presence of the AGN does not considerably bias the stellar masses ($\lt 0.3$ dex at 1σ). We show evidence for a rapid increase of the AGN fraction from ∼30% to ∼60%–100% over the 1 Gyr between $z\sim 2$ and $z\sim 3$. Although we cannot exclude some enhancement of the AGN fraction for our sample due to selection effects, the small measured [O iii] contamination to the observed K-band fluxes suggests that our sample is not significantly biased toward massive galaxies hosting AGNs.

22

, , , , and

3C 400.2 belongs to the mixed-morphology supernova remnant class, showing center-filled X-ray and shell-like radio morphology. We present a study of 3C 400.2 with archival Suzaku and Fermi-LAT observations. We find recombining plasma (RP) in the Suzaku spectra of north–east and south–east regions. The spectra of these regions are well described by two-component thermal plasma models: the hard component is in RP, while the soft component is in collisional ionization equilibrium (CIE) conditions. The RP has enhanced abundances, indicating that the X-ray emission has an ejecta origin, while the CIE has solar abundances associated with the interstellar material. The X-ray spectra of north–west and south–west regions are best fitted by a two-component thermal plasma model: an ionizing and a CIE plasma. We have detected GeV gamma-ray emission from 3C 400.2 at the level of ∼5σ, assuming a point-like source model with a power-law (PL) type spectrum. We have also detected a new GeV source at the level of ∼13σ, assuming a Gaussian extension model with a PL-type spectrum in the neighborhood of the supernova remnant. We report the analysis results of 3C 400.2 and the new extended gamma-ray source, and discuss the nature of gamma-ray emission of 3C 400.2 in the context of existing NANTEN CO data, Dominion Radio Astrophysical Observatory H i data, and the Suzaku X-ray analysis results.

23

and

Pulsars are magnetized rotating compact objects. They spin down due to magnetic dipole radiation and wind emission. If a photon has nonzero mass, the spin-down rate will be lower than in the zero-mass case. We show that an upper limit of the photon mass, i.e., ${m}_{\gamma }\lesssim h/{{Pc}}^{2}$, may be placed if a pulsar with period P is observed to spin down. Recently, a white dwarf (WD)–M dwarf binary, AR Scorpii, was discovered to emit pulsed broadband emission. The spin-down luminosity of the WD can comfortably power non-thermal radiation from the system. Applying our results to the WD pulsar with P = 117 s, we obtain a stringent upper limit of the photon mass between ${m}_{\gamma }\lt 6.3\times {10}^{-50}\,{\rm{g}}$, assuming a vacuum dipole spindown, and ${m}_{\gamma }\lt 9.6\times {10}^{-50}\,{\rm{g}}$, assuming spindown due to a fully developed pulsar wind.

24

, , , , , , and

NGC 5986 is a poorly studied but relatively massive Galactic globular cluster that shares several physical and morphological characteristics with "iron-complex" clusters known to exhibit significant metallicity and heavy-element dispersions. In order to determine whether NGC 5986 joins the iron-complex cluster class, we investigated the chemical composition of 25 red giant branch and asymptotic giant branch cluster stars using high-resolution spectra obtained with the Magellan-M2FS instrument. Cluster membership was verified using a combination of radial velocity and [Fe/H] measurements, and we found the cluster to have a mean heliocentric radial velocity of +99.76 km s−1 (σ = 7.44 km s−1). We derived a mean metallicity of [Fe/H] = −1.54 dex (σ = 0.08 dex), but the cluster's small dispersion in [Fe/H] and low [La/Eu] abundance preclude it from being an iron-complex cluster. NGC 5986 has $\langle [\mathrm{Eu}/\mathrm{Fe}]\rangle =+0.76\,\mathrm{dex}$ (σ = 0.08 dex), which is among the highest ratios detected in a Galactic cluster, but the small [Eu/Fe] dispersion is puzzling because such high values near [Fe/H] ∼ −1.5 are typically only found in dwarf galaxies exhibiting large [Eu/Fe] variations. NGC 5986 exhibits classical globular cluster characteristics, such as uniformly enhanced [α/Fe] ratios, a small dispersion in Fe-peak abundances, and (anti)correlated light-element variations. Similar to NGC 2808, we find evidence that NGC 5986 may host at least four to five populations with distinct light-element compositions, and the presence of a clear Mg–Al anticorrelation along with an Al–Si correlation suggests that the cluster gas experienced processing at temperatures ≳65–70 MK. However, the current data do not support burning temperatures exceeding ∼100 MK. We find some evidence that the first- and second-generation stars in NGC 5986 may be fully spatially mixed, which could indicate that the cluster has lost a significant fraction of its original mass.

25

, , , , , , , , , et al

We present an analysis of the positions and ages of young star clusters in eight local galaxies to investigate the connection between the age difference and separation of cluster pairs. We find that star clusters do not form uniformly but instead are distributed so that the age difference increases with the cluster pair separation to the 0.25–0.6 power, and that the maximum size over which star formation is physically correlated ranges from ∼200 pc to ∼1 kpc. The observed trends between age difference and separation suggest that cluster formation is hierarchical both in space and time: clusters that are close to each other are more similar in age than clusters born further apart. The temporal correlations between stellar aggregates have slopes that are consistent with predictions of turbulence acting as the primary driver of star formation. The velocity associated with the maximum size is proportional to the galaxy's shear, suggesting that the galactic environment influences the maximum size of the star-forming structures.

26

, , , , , and

In this paper we collect 19 hydrogen-deficient superluminous supernovae (SLSNe) and fit their light curves, temperature evolution, and velocity evolution based on the magnetar-powered model. To obtain the best-fitting parameters, we incorporate the Markov chain Monte Carlo approach. We get rather good fits for seven events (χ2/dof = 0.24–0.96) and good fits for another seven events (χ2/dof = 1.37–3.13). We find that the initial periods (P0) and magnetic strength (Bp) of the magnetars that supposedly power these SLSNe are in the range of ∼1.2–8.3 ms and $\sim (0.2\mbox{--}8.8)\times {10}^{14}$ G, respectively; the inferred masses of the ejecta of these SLSNe are between 1 and $27.6\,{M}_{\odot }$, and the values of the gamma-ray opacity ${\kappa }_{\gamma }$ are between 0.01 and 0.82 cm2 g−1. We also calculate the fraction of the initial rotational energy of the magnetars harbored in the centers of the remnants of these SLSNe that is converted to the kinetic energy of the ejecta and find that the fraction is ∼19%–97% for different values of P0 and Bp, indicating that the acceleration effect cannot be neglected. Moreover, we find that the initial kinetic energies of most of these SLSNe are so small ($\lesssim 2\times {10}^{51}$ erg) that they can be easily explained by the neutrino-driven mechanism. These results can help clarify some important issues related to the energy-source mechanisms and explosion mechanisms and reveal the nature of SLSNe.

27

, , , , and

In this paper, we report our multiwavelength observations of the large-amplitude longitudinal oscillations of a filament observed on 2015 May 3. Located next to active region 12335, the sigmoidal filament was observed by the ground-based Hα telescopes from the Global Oscillation Network Group and by the Atmospheric Imaging Assembly instrument on board the Solar Dynamics Observatory. The filament oscillations were most probably triggered by the magnetic reconnection in the filament channel, which is characterized by the bidirectional flows, brightenings in EUV and soft X-ray, and magnetic cancellation in the photosphere. The directions of oscillations have angles of 4°–36° with respect to the filament axis. The whole filament did not oscillate in phase as a rigid body. Meanwhile, the oscillation periods (3100–4400 s) have a spatial dependence, implying that the curvature radii (R) of the magnetic dips are different at different positions. The values of R are estimated to be 69.4–133.9 Mm, and the minimum transverse magnetic field of the dips is estimated to be 15 G. The amplitudes of S5-S8 grew with time, while the amplitudes of S9-S14 damped with time. The oscillation amplitudes range from a few to ten Mm, and the maximum velocity can reach 30 km s−1. Interestingly, the filament experienced mass drainage southward at a speed of ∼27 km s−1. The oscillations continued after the mass drainage and lasted for more than 11 hr. After the mass drainage, the oscillation phases did not change much. The periods of S5-S8 decreased, while the periods of S9-S14 increased. The amplitudes of S5-S8 damped with time, while the amplitudes of S9-S14 grew. Most of the damping (growing) ratios are between −9 and 14. We offer a schematic cartoon to explain the complex behaviors of oscillations by introducing thread-thread interaction.

28

, , , , , , , , , et al

We present the first 3D measurements of the velocity of various ejecta knots in Tycho's supernova remnant, known to result from a Type Ia explosion. Chandra X-ray observations over a 12 yr baseline from 2003 to 2015 allow us to measure the proper motion of nearly 60 "tufts" of Si-rich ejecta, giving us the velocity in the plane of the sky. For the line-of-sight velocity, we use two different methods: a nonequilibrium ionization model fit to the strong Si and S lines in the 1.2–2.8 keV regime, and a fit consisting of a series of Gaussian lines. These methods give consistent results, allowing us to determine the redshift or blueshift of each of the knots. Assuming a distance of 3.5 kpc, we find total velocities that range from 2400 to 6600 km s−1, with a mean of 4430 km s−1. We find several regions where the ejecta knots have overtaken the forward shock. These regions have proper motions in excess of 6000 km s−1. Some SN Ia explosion models predict a velocity asymmetry in the ejecta. We find no such velocity asymmetries in Tycho, and we discuss our findings in light of various explosion models, favoring those delayed-detonation models with relatively vigorous and symmetrical deflagrations. Finally, we compare measurements with models of the remnant's evolution that include both smooth and clumpy ejecta profiles, finding that both ejecta profiles can be accommodated by the observations.

29

, , , , , , , , , et al

We report the discovery by the intermediate Palomar Transient Factory (iPTF) of a candidate tidal disruption event (TDE) iPTF16axa at z = 0.108 and present its broadband photometric and spectroscopic evolution from three months of follow-up observations with ground-based telescopes and Swift. The light curve is well fitted with a t−5/3 decay, and we constrain the rise time to peak to be <49 rest-frame days after disruption, which is roughly consistent with the fallback timescale expected for the ∼5 × 106M black hole inferred from the stellar velocity dispersion of the host galaxy. The UV and optical spectral energy distribution is well described by a constant blackbody temperature of T ∼ 3 × 104 K over the monitoring period, with an observed peak luminosity of 1.1 × 1044 erg s−1. The optical spectra are characterized by a strong blue continuum and broad He ii and Hα lines, which are characteristic of TDEs. We compare the photometric and spectroscopic signatures of iPTF16axa with 11 TDE candidates in the literature with well-sampled optical light curves. Based on a single-temperature fit to the optical and near-UV photometry, most of these TDE candidates have peak luminosities confined between log(L [erg s−1]) = 43.4–44.4, with constant temperatures of a few ×104 K during their power-law declines, implying blackbody radii on the order of 10 times the tidal disruption radius, that decrease monotonically with time. For TDE candidates with hydrogen and helium emission, the high helium-to-hydrogen ratios suggest that the emission arises from high-density gas, where nebular arguments break down. We find no correlation between the peak luminosity and the black hole mass, contrary to the expectations for TDEs to have $\dot{M}\propto {M}_{\mathrm{BH}}^{-1/2}$.

30

, , , and

On the basis of the modern understanding of MHD turbulence, we propose a new way of using synchrotron radiation: using synchrotron intensity gradients (SIGs) for tracing astrophysical magnetic fields. We successfully test the new technique using synthetic data obtained with 3D MHD simulations and provide the demonstration of the practical utility of the technique by comparing the directions of magnetic fields that are obtained with PLANCK synchrotron intensity data to the directions obtained with PLANCK synchrotron polarization data. We demonstrate that the SIGs can reliably trace magnetic fields in the presence of noise and can provide detailed maps of magnetic field directions. We also show that the SIGs are relatively robust for tracing magnetic fields while the low spatial frequencies of the synchrotron image are removed. This makes the SIGs applicable to the tracing of magnetic fields using interferometric data with single-dish measurement absent. We discuss the synergy of using the SIGs together with synchrotron polarization in order to find the actual direction of the magnetic fields and quantify the effects of Faraday rotation as well as with other ways of studying astrophysical magnetic fields. We test our method in the presence of noise and the resolution effects. We stress the complementary nature of the studies using the SIG technique and those employing the recently introduced velocity gradient techniques that trace magnetic fields using spectroscopic data.

31

, , , , , , , , , et al

The ARGO-YBJ detector, located at the Yangbajing Cosmic Ray Laboratory (4300 m a. s. l., Tibet, China), was a "full coverage" (central carpet with an active area of ∼93%) air shower array dedicated to gamma-ray astronomy and cosmic-ray studies. The wide field of view (∼2 sr) and high duty cycle (>86%), made ARGO-YBJ suitable to search for short and unexpected gamma-ray emissions like gamma-ray bursts (GRBs). Between 2007 November 6 and 2013 February 7, 156 satellite-triggered GRBs (24 of them with known redshift) occurred within the ARGO-YBJ field of view (zenith angle θ ≤ 45°). A search for possible emission associated with these GRBs has been made in the two energy ranges 10–100 GeV and 10–1000 GeV. No significant excess has been found in time coincidence with the satellite detections nor in a set of different time windows inside the interval of one hour after the bursts. Taking into account the EBL absorption, upper limits to the energy fluence at a 99% confidence level have been evaluated, with values ranging from ∼10−5 erg cm−2 to ∼10−1 erg cm−2. The Fermi-GBM burst GRB 090902B, with a high-energy photon of 33.4 GeV detected by Fermi-LAT, is discussed in detail.

32

, , , , , , and

There are two accepted mechanisms to explain the origin of runaway OB-type stars: the binary supernova (SN) scenario and the cluster ejection scenario. In the former, an SN explosion within a close binary ejects the secondary star, while in the latter close multibody interactions in a dense cluster cause one or more of the stars to be ejected from the region at high velocity. Both mechanisms have the potential to affect the surface composition of the runaway star. tlusty non-LTE model atmosphere calculations have been used to determine the atmospheric parameters and the C, N, Mg, and Si abundances for a sample of B-type runaways. These same analytical tools were used by Hunter et al. for their analysis of 50 B-type open-cluster Galactic stars (i.e., nonrunaways). Effective temperatures were deduced using the Si-ionization balance technique, surface gravities from Balmer line profiles, and microturbulent velocities derived using the Si spectrum. The runaways show no obvious abundance anomalies when compared with stars in the open clusters. The runaways do show a spread in composition that almost certainly reflects the Galactic abundance gradient and a range in the birthplaces of the runaways in the Galactic disk. Since the observed Galactic abundance gradients of C, N, Mg, and Si are of a similar magnitude, the abundance ratios (e.g., N/Mg) are as obtained essentially uniform across the sample.

33

, , , and

We present the results of chemical modeling of complex organic molecules (COMs) under conditions typical for prestellar cores. We utilize an advanced gas-grain astrochemical model with updated gas-phase chemistry, with a multilayer approach to ice-surface chemistry and an up-to-date treatment of reactive desorption (RD) based on recent experiments of Minissale et al. With the chemical model, radial profiles of molecules, including COMs, are calculated for the case of the prototypical prestellar core L1544 at the timescales when the modeled depletion factor of CO becomes equal to that observed. We find that COMs can be formed efficiently in L1544 up to the fractional abundances of 10(−10) wrt. total hydrogen nuclei. Abundances of many COMs such as CH3OCH3, HCOOCH3, and others peak at similar radial distances of 2000–4000 au. Gas-phase abundances of COMs depend on the efficiency of RD, which in turn depends on the composition of the outer monolayers of icy mantles. In prestellar cores, the outer monolayers of mantles likely include large fractions of CO and its hydrogenation products, which may increase the efficiency of RD according to Minissale et al., and makes the formation of COMs efficient under conditions typical for prestellar cores, though this assumption is yet to be confirmed experimentally. The hydroxyl radical (OH) appears to play an important role in gas-phase chemistry of COMs, which makes it deserving of further detailed studies.

34

We derive stringent constraints on the persistent source associated with FRB 121102: size $0.3\lt {R}_{17.5}\,=(R/{10}^{17.5}\,\mathrm{cm})\lt 3$, age $\lt {10}^{2.5}$ year, energy $E\approx {10}^{49}{({\varepsilon }_{e}/0.2\mathrm{GeV})}^{3}$ erg, characteristic electron energy $0.1\leqslant {\varepsilon }_{e}/1\,\mathrm{GeV}\leqslant 0.5;$ the radiating plasma is confined by a cold plasma of mass ${M}_{c}\lt {10}^{-1.5}{R}_{17.5}^{4}\,{M}_{\odot };$ these properties are inconsistent with typical "magnetar wind nebulae" model predictions. The fact that ${\varepsilon }_{e}\sim {m}_{p}{c}^{2}$ suggests that the hot plasma was created by the ejection of a mildly relativistic, $M\approx E/{c}^{2}\approx {10}^{-5}\,{M}_{\odot }$ shell, which propagated into an extended ambient medium or collided with a pre-ejected shell. Independent of the persistent source model, we suggest a physical mechanism for the generation of fast radio bursts (FRBs): the ejection from an underlying compact object, ${R}_{s}={10}^{6}{R}_{s,6}$ cm, of highly relativistic shells with energy ${E}_{s}={10}^{41}{E}_{41}$ erg and Lorentz factor ${\gamma }_{s}={10}^{3}{E}_{41}^{1/8}{R}_{s,6}^{-3/8}$, into a surrounding e − p plasma with density $n\sim {10}^{-1}\,{\mathrm{cm}}^{-3}$ (consistent with that inferred for the persistent source). For Es similar to observed FRB energies, plasma conditions appropriate for strong synchrotron maser emission at ${\nu }_{\mathrm{coh}.}\approx 0.5{E}_{41}^{1/4}{R}_{s,6}^{-3/4}\,\mathrm{GHz}$ are formed. A significant fraction of the deposited energy is converted to an FRB with duration ${R}_{s}/c$, accompanied by ∼10 MeV gamma-rays carrying less energy than the FRB. The inferred energy and mass associated with the source suggest some type of a "weak stellar explosion," where a neutron star is formed with relatively low mass and energy ejection. However, the current upper limit on R does not allow one to rule out ${M}_{c}\sim 1\,{M}_{\odot }$, or the ejection of a larger mass well before the ejection of the confining shell.

35

, , , , , and

Focus on the Repeating Fast Radio Burst FRB 121102

The amplitudes of fast radio bursts (FRBs) can be strongly modulated by plasma lenses in their host galaxies, including that of the repeating FRB 121102 at ∼1 Gpc luminosity distance. Caustics require the lens' dispersion measure depth (${\mathrm{DM}}_{{\ell }}$), scale size (a), and distance from the source (${d}_{\mathrm{sl}}$) to satisfy ${\mathrm{DM}}_{{\ell }}{d}_{\mathrm{sl}}/{a}^{2}\gtrsim 0.65\,{\mathrm{pc}}^{2}\,{\mathrm{au}}^{-2}\,{\mathrm{cm}}^{-3}$. Caustics produce strong magnifications ($\lesssim {10}^{2}$) on short timescales ($\lesssim $ hours to days) that appear as narrow spectral peaks (0.1–1 GHz). They also suppress the flux density in longer-duration (∼months) troughs. Multiply imaged bursts will arrive differentially by $\lt 1\,\mu {\rm{s}}$ to tens of ms with different apparent dispersion measures, $\delta \mathrm{DM}\sim 1$ pc cm−3. When differing by less than the burst width, interference effects in dynamic spectra will be seen. Larger arrival time perturbations may mask any underlying periodicity with period $\lesssim 1\,{\rm{s}}$. Strong lensing requires sources smaller than ${(\mathrm{Fresnel}\mathrm{scale})}^{2}/a$, which includes compact objects such as neutron star magnetospheres but excludes active galactic nuclei. We discuss constraints on densities, magnetic fields, and locations of plasma lenses related to the conditions needed for lensing to occur. Much of the phenomenology of the repeating FRB source FRB 121102 can be accounted for in this picture, which can be tested by obtaining wideband spectra of bursts (from $\lt 1$ to 10 GHz and possibly higher) that will also help characterize the plasma environment near FRB sources. A rich variety of phenomena is expected from an ensemble of lenses near an FRB source.

36

and

This paper presents a series of stratified-shearing-box simulations of collisionless accretion disks in the recently developed framework of kinetic magnetohydrodynamics (MHD), which can handle finite non-gyrotropy of a pressure tensor. Although a fully kinetic simulation predicted a more efficient angular-momentum transport in collisionless disks than in the standard MHD regime, the enhanced transport has not been observed in past kinetic-MHD approaches to gyrotropic pressure anisotropy. For the purpose of investigating this missing link between the fully kinetic and MHD treatments, this paper explores the role of non-gyrotropic pressure and makes the first attempt to incorporate certain collisionless effects into disk-scale, stratified disk simulations. When the timescale of gyrotropization was longer than, or comparable to, the disk-rotation frequency of the orbit, we found that the finite non-gyrotropy selectively remaining in the vicinity of current sheets contributes to suppressing magnetic reconnection in the shearing-box system. This leads to increases both in the saturated amplitude of the MHD turbulence driven by magnetorotational instabilities and in the resultant efficiency of angular-momentum transport. Our results seem to favor the fast advection of magnetic fields toward the rotation axis of a central object, which is required to launch an ultra-relativistic jet from a black hole accretion system in, for example, a magnetically arrested disk state.

37

, , , and

Before using three-dimensional (3D) magnetohydrodynamical (MHD) simulations of the solar photosphere in the determination of elemental abundances, one has to ensure that the correct amount of magnetic flux is present in the simulations. The presence of magnetic flux modifies the thermal structure of the solar photosphere, which affects abundance determinations and the solar spectral irradiance. The amount of magnetic flux in the solar photosphere also constrains any possible heating in the outer solar atmosphere through magnetic reconnection. We compare the polarization signals in disk-center observations of the solar photosphere in quiet-Sun regions with those in Stokes spectra computed on the basis of 3D MHD simulations having average magnetic flux densities of about 20, 56, 112, and 224 G. This approach allows us to find the simulation run that best matches the observations. The observations were taken with the Hinode SpectroPolarimeter (SP), the Tenerife Infrared Polarimeter (TIP), the Polarimetric Littrow Spectrograph (POLIS), and the GREGOR Fabry–Pèrot Interferometer (GFPI), respectively. We determine characteristic quantities of full Stokes profiles in a few photospheric spectral lines in the visible (630 nm) and near-infrared (1083 and 1565 nm). We find that the appearance of abnormal granulation in intensity maps of degraded simulations can be traced back to an initially regular granulation pattern with numerous bright points in the intergranular lanes before the spatial degradation. The linear polarization signals in the simulations are almost exclusively related to canopies of strong magnetic flux concentrations and not to transient events of magnetic flux emergence. We find that the average vertical magnetic flux density in the simulation should be less than 50 G to reproduce the observed polarization signals in the quiet-Sun internetwork. A value of about 35 G gives the best match across the SP, TIP, POLIS, and GFPI observations.

38

, , , , , , , and

How the solar corona is heated to high temperatures remains an unsolved mystery in solar physics. In the present study we analyze observations of 50 whole active region loops taken with the Extreme-ultraviolet Imaging Spectrometer on board the Hinode satellite. Eleven loops were classified as cool loops (<1 MK) and 39 as warm loops (1–2 MK). We study their plasma parameters, such as densities, temperatures, filling factors, nonthermal velocities, and Doppler velocities. We combine spectroscopic analysis with linear force-free magnetic field extrapolation to derive the 3D structure and positioning of the loops, their lengths and heights, and the magnetic field strength along the loops. We use density-sensitive line pairs from Fe xii, Fe xiii, Si x, and Mg vii ions to obtain electron densities by taking special care of intensity background subtraction. The emission measure loci method is used to obtain the loop temperatures. We find that the loops are nearly isothermal along the line of sight. Their filling factors are between 8% and 89%. We also compare the observed parameters with the theoretical Rosner–Tucker–Vaiana (RTV) scaling law. We find that most of the loops are in an overpressure state relative to the RTV predictions. In a follow-up study, we will report a heating model of a parallel-cascade-based mechanism and will compare the model parameters with the loop plasma and structural parameters derived here.

39

, , and

The origin of the extended X-ray emission in the large-scale jets of active galactic nuclei (AGNs) poses challenges to conventional models of acceleration and emission. Although electron synchrotron radiation is considered the most feasible radiation mechanism, the formation of the continuous large-scale X-ray structure remains an open issue. As astrophysical jets are expected to exhibit some turbulence and shearing motion, we here investigate the potential of shearing flows to facilitate an extended acceleration of particles and evaluate its impact on the resultant particle distribution. Our treatment incorporates systematic shear and stochastic second-order Fermi effects. We show that for typical parameters applicable to large-scale AGN jets, stochastic second-order Fermi acceleration, which always accompanies shear particle acceleration, can play an important role in facilitating the whole process of particle energization. We study the time-dependent evolution of the resultant particle distribution in the presence of second-order Fermi acceleration, shear acceleration, and synchrotron losses using a simple Fokker–Planck approach and provide illustrations for the possible emergence of a complex (multicomponent) particle energy distribution with different spectral branches. We present examples for typical parameters applicable to large-scale AGN jets, indicating the relevance of the underlying processes for understanding the extended X-ray emission and the origin of ultrahigh-energy cosmic rays.

40

and

Sub-Neptunes around FGKM dwarfs are evenly distributed in log orbital period down to ∼10 days, but dwindle in number at shorter periods. Both the break at ∼10 days and the slope of the occurrence rate down to ∼1 day can be attributed to the truncation of protoplanetary disks by their host star magnetospheres at corotation. We demonstrate this by deriving planet occurrence rate profiles from empirical distributions of pre-main-sequence stellar rotation periods. Observed profiles are better reproduced when planets are distributed randomly in disks—as might be expected if planets formed in situ—rather than piled up near disk edges, as would be the case if they migrated in by disk torques. Planets can be brought from disk edges to ultra-short (<1 day) periods by asynchronous equilibrium tides raised on their stars. Tidal migration can account for how ultra-short-period planets are more widely spaced than their longer-period counterparts. Our picture provides a starting point for understanding why the sub-Neptune population drops at ∼10 days regardless of whether the host star is of type FGK or early M. We predict planet occurrence rates around A stars to also break at short periods, but at ∼1 day instead of ∼10 days because A stars rotate faster than stars with lower masses (this prediction presumes that the planetesimal building blocks of planets can drift inside the dust sublimation radius).

41

, , and

Earth-like, potentially habitable exoplanets are prime targets in the search for extraterrestrial life. Information about their atmospheres and surfaces can be derived by analyzing the light of the parent star reflected by the planet. We investigate the influence of the surface albedo As, the optical thickness bcloud, the altitude of water clouds, and the mixing ratio of biosignature O2 on the strength of the O2 A-band (around 760 nm) in the flux and polarization spectra of starlight reflected by Earth-like exoplanets. Our computations for horizontally homogeneous planets show that small mixing ratios (η < 0.4) will yield moderately deep bands in flux and moderate-to-small band strengths in polarization, and that clouds will usually decrease the band depth in flux and the band strength in polarization. However, cloud influence will be strongly dependent on properties such as optical thickness, top altitude, particle phase, coverage fraction, and horizontal distribution. Depending on the surface albedo and cloud properties, different O2 mixing ratios η can give similar absorption-band depths in flux and band strengths in polarization, especially if the clouds have moderate-to-high optical thicknesses. Measuring both the flux and the polarization is essential to reduce the degeneracies, although it will not solve them, especially not for horizontally inhomogeneous planets. Observations at a wide range of phase angles and with a high temporal resolution could help to derive cloud properties and, once those are known, the mixing ratio of O2 or any other absorbing gas.

42

, , and

We present a new photometric method by which improved high-precision reddenings and true distance moduli can be determined to individual Galactic Cepheids once distance measurements are available. We illustrate that the relative positioning of stars in the Cepheid period–luminosity (PL) relation (Leavitt law) is preserved as a function of wavelength. This information then provides a powerful constraint for determining reddenings to individual Cepheids, as well as their distances. As a first step, we apply this method to the 59 Cepheids in the compilation of Fouqué et al. Updated reddenings, distance moduli (or parallaxes), and absolute magnitudes in seven (optical through near-infrared) bands are given. From these intrinsic quantities, multiwavelength PL and color–color relations are derived. We find that the V-band period–luminosity–color relation has an rms scatter of only 0.06 mag, so that individual Cepheid distances can be measured to 3%, compared with dispersions of 6 to 13% for the one-parameter K through B PL relations, respectively. This method will be especially useful in conjunction with the new accurate parallax sample upcoming from Gaia.

43

and

A magnetic field dragged from the galactic disk, along with inflowing gas, can provide vertical support to the geometrically and optically thick pc-scale torus in AGNs. Using the Soloviev solution initially developed for Tokamaks, we derive an analytical model for a rotating torus that is supported and confined by a magnetic field. We further perform three-dimensional magneto-hydrodynamic simulations of X-ray irradiated, pc-scale, magnetized tori. We follow the time evolution and compare models that adopt initial conditions derived from our analytic model with simulations in which the initial magnetic flux is entirely contained within the gas torus. Numerical simulations demonstrate that the initial conditions based on the analytic solution produce a longer-lived torus that produces obscuration that is generally consistent with observed constraints.

44

, , , , and

Low-metallicity active galactic nuclei (AGNs) are interesting to study for the early phase of AGN evolution. However, most AGNs are chemically matured, and accordingly, low-metallicity AGNs are extremely rare. One approach to search for low-metallicity AGNs systematically is utilizing the so-called BPT diagram that consists of the [O iii]λ5007/Hβ$\lambda 4861$ and [N ii]$\lambda 6584$/Hα$\lambda 6563$ flux ratios. Specifically, photoionization models predict that low-metallicity AGNs show a high [O iii]λ5007/Hβλ4861 ratio and a relatively low [N ii]λ6584/Hαλ6563 ratio that corresponds to the location between the sequence of star-forming galaxies and that of usual AGNs on the BPT diagram (hereafter "the BPT valley"). However, other populations of galaxies such as star-forming galaxies and AGNs with a high electron density or a high-ionization parameter could be also located in the BPT valley, not only low-metallicity AGNs. In this paper, we examine whether most of the emission-line galaxies at the BPT valley are low-metallicity AGNs or not. We select 70 BPT-valley objects from 212,866 emission-line galaxies obtained by the Sloan Digital Sky Survey. Among the 70 BPT-valley objects, 43 objects show firm evidence of the AGN activity, i.e., the He iiλ4686 emission and/or weak but significant broad Hα emission. Our analysis shows that those 43 BPT-valley AGNs are not characterized by a very high gas density nor ionization parameter, inferring that at least 43 among 70 BPT-valley objects (i.e., $\gt 60$%) are low-metallicity AGNs. This suggests that the BPT diagram is an efficient tool to search for low-metallicity AGNs.

45

, , , , , , and

The polarization characteristics of zebra patterns (ZPs) in type IV solar bursts were studied. We analyzed 21 ZP events observed by the Assembly of Metric-band Aperture Telescope and Real-time Analysis System between 2010 and 2015 and identified the following characteristics: a degree of circular polarization (DCP) in the range of 0%–70%, a temporal delay of 0–70 ms between the two circularly polarized components (i.e., the right- and left-handed components), and dominant ordinary-mode emission in about 81% of the events. For most events, the relation between the dominant and delayed components could be interpreted in the framework of fundamental plasma emission and depolarization during propagation, though the values of DCP and delay were distributed across wide ranges. Furthermore, it was found that the DCP and delay were positively correlated (rank correlation coefficient R = 0.62). As a possible interpretation of this relationship, we considered a model based on depolarization due to reflections at sharp density boundaries assuming fundamental plasma emission. The model calculations of depolarization including multiple reflections and group delay during propagation in the inhomogeneous corona showed that the DCP and delay decreased as the number of reflections increased, which is consistent with the observational results. The dispersive polarization characteristics could be explained by the different numbers of reflections causing depolarization.

46

, , and

A tensor-type cosmological perturbation, defined as a transverse and traceless spatial fluctuation, is often interpreted as gravitational waves. While decoupled from the scalar-type perturbations in linear order, the tensor perturbations can be sourced from the scalar-type in nonlinear order. The tensor perturbations generated by the quadratic combination of a linear scalar-type cosmological perturbation are widely studied in the literature, but all previous studies are based on a zero-shear gauge without proper justification. Here, we show that, being second order in perturbation, such an induced tensor perturbation is generically gauge dependent. In particular, the gravitational wave power spectrum depends on the hypersurface (temporal gauge) condition taken for the linear scalar perturbation. We further show that, during the matter-dominated era, the induced tensor modes dominate over the linearly evolved primordial gravitational wave amplitude for $k\gtrsim {10}^{-2}\,[h/\mathrm{Mpc}]$ even for the gauge that gives the lowest induced tensor modes with the optimistic choice of primordial gravitational waves (r = 0.1). The induced tensor modes, therefore, must be modeled correctly specific to the observational strategy for the measurement of primordial gravitational waves from large-scale structure via, for example, the parity-odd mode of weak gravitational lensing, or clustering fossils.

47

, , , , , , , , , et al

We study the spectrophotometric properties of a highly magnified ($\mu \simeq 40\mbox{--}70$) pair of stellar systems identified at z = 3.2222 behind the Hubble Frontier Field galaxy cluster MACS J0416. Five multiple images (out of six) have been spectroscopically confirmed by means of VLT/MUSE and VLT/X-Shooter observations. Each image includes two faint (${m}_{{UV}}\simeq 30.6$), young ($\lesssim 100$ Myr), low-mass ($\lt {10}^{7}$${M}_{\odot }$), low-metallicity (12 + Log(O/H) ≃ 7.7, or 1/10 solar), and compact (30 pc effective radius) stellar systems separated by $\simeq 300$ pc after correcting for lensing amplification. We measured several rest-frame ultraviolet and optical narrow (${\sigma }_{v}\lesssim 25$ km s−1) high-ionization lines. These features may be the signature of very hot ($T\gt {\rm{50,000}}$ K) stars within dense stellar clusters, whose dynamical mass is likely dominated by the stellar component. Remarkably, the ultraviolet metal lines are not accompanied by Lyα emission (e.g., C iv/Lyα$\gt \,15$), despite the fact that the Lyα line flux is expected to be 150 times brighter (inferred from the Hβ flux). A spatially offset, strongly magnified ($\mu \gt 50$) Lyα emission with a spatial extent $\lesssim 7.6$ kpc2 is instead identified 2 kpc away from the system. The origin of such a faint emission could be the result of fluorescent Lyα induced by a transverse leakage of ionizing radiation emerging from the stellar systems and/or may be associated with an underlying and barely detected object (with ${m}_{{UV}}\gt 34$ de-lensed). This is the first confirmed metal-line emitter at such low-luminosity and redshift without Lyα emission—suggesting that, at least in some cases, a non-uniform covering factor of the neutral gas might hamper the Lyα detection.

48

, , , , and

The circumstellar disk density distributions for a sample of 63 Be southern stars from the BeSOS survey were found by modeling their Hα emission line profiles. These disk densities were used to compute disk masses and disk angular momenta for the sample. Average values for the disk mass are 3.4 × 10−9 and 9.5 × 10−10M for early (B0–B3) and late (B4–B9) spectral types, respectively. We also find that the range of disk angular momentum relative to the star is (150–200)J/M and (100–150)J/M, again for early- and late-type Be stars, respectively. The distributions of the disk mass and disk angular momentum are different between early- and late-type Be stars at a 1% level of significance. Finally, we construct the disk mass distribution for the BeSOS sample as a function of spectral type and compare it to the predictions of stellar evolutionary models with rapid rotation. The observed disk masses are typically larger than the theoretical predictions, although the observed spread in disk masses is typically large.

49

, , , , , , , , , et al

We utilize elemental-abundance information for Galactic red giant stars in five open clusters (NGC 7789, NGC 6819, M67, NGC 188, and NGC 6791) from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) DR13 data set to age-date the chemical evolution of the high- and low-α element sequences of the Milky Way (MW). Key to this time-stamping is the cluster NGC 6791, whose stellar members have mean abundances that place it in the high-α, high-[Fe/H] region of the [α/Fe]–[Fe/H] plane. Based on the cluster's age (∼8 Gyr), Galactocentric radius, and height above the Galactic plane, as well as comparable chemistry reported for APOGEE stars in Baade's Window, we suggest that the two most likely origins for NGC 6791 are as an original part of the thick disk, or as a former member of the Galactic bulge. Moreover, because NGC 6791 lies at the high-metallicity end ([Fe/H] ∼ 0.4) of the high-α sequence, the age of NGC 6791 places a limit on the youngest age of stars in the high-metallicity, high-α sequence for the cluster's parent population (i.e., either the bulge or the disk). In a similar way, we can also use the age and chemistry of NGC 188 to set a limit of ∼7 Gyr on the oldest age of the low-α sequence of the MW. Therefore, NGC 6791 and NGC 188 are potentially a pair of star clusters that bracket both the timing and the duration of an important transition point in the chemical history of the MW.

50

It is suggested that the decline with energy of the boron-to-carbon abundance ratio in Galactic cosmic rays is due, in part, to a correlation between the maximum energy attainable by shock acceleration in a given region of the Galactic disk and the grammage traversed before escape. In this case the energy dependence of the escape rate from the Galaxy may be less than previously thought and the spectrum of antiprotons becomes easier to understand.

51

, , , , , , and

Desorption energy is a relevant parameter when studying the desorption kinetics of an ice under astrophysical conditions. Values reported are generally calculated using at least a desorption experiment and a further data analysis at present. In this work the establishment of a simple rule that relates the desorption energy of a species to the temperature of its desorption peak is explored. The paper presents the results obtained from zeroth-order desorption experiments, based on the use of a quartz crystal microbalance to monitor the loss of weight during desorption of the accreted ice sample under high-vacuum conditions, of nine different molecules covering a wide range of desorption energies. During these experiments, the ice desorption rate reaches a maximum at a certain temperature depending on the molecule. The formula obtained in this study facilitates the estimation of the desorption energy and is valid for all the investigated molecules. Based on these experimental results and simulations, the theoretical expression obtained is valid to calculate desorption energy for zeroth- and first-order desorption experiments under high- or ultrahigh-vacuum conditions using different ice thickness films.

52

, , , , , and

Observational studies reveal that complex organic molecules (COMs) can be found in various objects associated with different star formation stages. The identification of COMs in prestellar cores, i.e., cold environments in which thermally induced chemistry can be excluded and radiolysis is limited by cosmic rays and cosmic-ray-induced UV photons, is particularly important as this stage sets up the initial chemical composition from which ultimately stars and planets evolve. Recent laboratory results demonstrate that molecules as complex as glycolaldehyde and ethylene glycol are efficiently formed on icy dust grains via nonenergetic atom addition reactions between accreting H atoms and CO molecules, a process that dominates surface chemistry during the "CO freeze-out stage" in dense cores. In the present study we demonstrate that a similar mechanism results in the formation of the biologically relevant molecule glycerol—HOCH2CH(OH)CH2OH—a three-carbon-bearing sugar alcohol necessary for the formation of membranes of modern living cells and organelles. Our experimental results are fully consistent with a suggested reaction scheme in which glycerol is formed along a chain of radical–radical and radical–molecule interactions between various reactive intermediates produced upon hydrogenation of CO ice or its hydrogenation products. The tentative identification of the chemically related simple sugar glyceraldehyde—HOCH2CH(OH)CHO—is discussed as well. These new laboratory findings indicate that the proposed reaction mechanism holds much potential to form even more complex sugar alcohols and simple sugars.

53

, , , , , , , , , et al

A glitch of a pulsar is known as a sudden increase in the spin frequency and spin-down rate (frequency time derivative), and it can be caused by a sudden release of the stress built up in the solid crust of the star or pinned vortices in the superfluid interior. PSR J2021+4026 is the first pulsar that shows a significant change in the gamma-ray flux and pulse profile at the glitch that occurred around 2011 October 16. We report the results of timing and spectral analysis of PSR J2021+4026 using ∼8 yr Fermi Large Area Telescope data. We find that the pulsar stayed at a high spin-down rate ($\sim 4 \% $ higher than the pre-glitch value) and a low gamma-ray state ($\sim 18 \% $ lower) for about 3 yr after the glitch. Around 2014 December, the spin-down rate and gamma-ray flux gradually returned to pre-glitch values within a timescale of a few months. The phase-resolved spectra and pulse profiles after the relaxation are also consistent with those before the glitch. The observed long-term evolution of the spin-down rate and the gamma-ray flux indicates that the glitch triggered a mode change in the global magnetosphere. We speculate that the glitch changed the local magnetic field structure around the polar cap and/or the inclination angle of the dipole axis, leading to a change in the electric current circulating in the magnetosphere.

54

, , , , , and

We performed numerical calculations to test the suggestion by Desiati and Lazarian that the anisotropies of TeV cosmic rays may arise from their interactions with the heliosphere. For this purpose, we used a magnetic field model of the heliosphere and performed direct numerical calculations of particle trajectories. Unlike earlier papers testing the idea, we did not employ time-reversible techniques that are based on Liouville's theorem. We showed numerically that for scattering by the heliosphere, the conditions of Liouville's theorem are not satisfied, and the adiabatic approximation and time-reversibility of the particle trajectories are not valid. Our results indicate sensitivity to the magnetic structure of the heliospheric magnetic field, and we expect that this will be useful for probing this structure in future research.

55

, , , , , , , , , et al

We investigate gas contents of star-forming galaxies associated with protocluster 4C23.56 at z = 2.49 by using the redshifted CO (3–2) and 1.1 mm dust continuum with the Atacama Large Millimeter/submillimeter Array. The observations unveil seven CO detections out of 22 targeted Hα emitters (HAEs) and four out of 19 in 1.1 mm dust continuum. They have high stellar mass (${M}_{\star }\gt 4\times {10}^{10}$M) and exhibit a specific star-formation rate typical of main-sequence star-forming galaxies at $z\sim 2.5$. Different gas-mass estimators from CO (3–2) and 1.1 mm yield consistent values for simultaneous detections. The gas mass (${M}_{\mathrm{gas}}$) and gas fraction (${f}_{\mathrm{gas}}$) are comparable to those of field galaxies, with ${M}_{\mathrm{gas}}=[0.3,1.8]\times {10}^{11}\times ({\alpha }_{\mathrm{CO}}/(4.36\times A(Z)$)) ${M}_{\odot }$, where ${\alpha }_{\mathrm{CO}}$ is the CO-to-H2 conversion factor and A(Z) is the additional correction factor for the metallicity dependence of ${\alpha }_{\mathrm{CO}}$, and $\langle {f}_{\mathrm{gas}}\rangle =0.53\pm 0.07$ from CO (3–2). Our measurements place a constraint on the cosmic gas density of high-z protoclusters, indicating that the protocluster is characterized by a gas density higher than that of the general fields by an order of magnitude. We found $\rho ({H}_{2})\sim 5\times {10}^{9}\,{M}_{\odot }\,{\mathrm{Mpc}}^{-3}$ with the CO(3–2) detections. The five ALMA CO detections occur in the region of highest galaxy surface density, where the density positively correlates with global star-forming efficiency (SFE) and stellar mass. Such correlations possibly indicate a critical role of the environment on early galaxy evolution at high-z protoclusters, though future observations are necessary for confirmation.

56

, , and

Bars in galaxies may develop through a global instability or as a result of an interaction with another system. We study bar formation in disky dwarf galaxies orbiting a Milky Way-like galaxy. We employ N-body simulations to study the impact of the initial orbital parameters: the size of the dwarf galaxy orbit, and the inclination of its disk with respect to the orbital plane. In all cases, a bar develops in the center of the dwarf during the first pericenter on its orbit around the host. Between subsequent pericenter passages, the bars are stable, but at the pericenters, they are usually weakened and shortened. The initial properties and details of the further evolution of the bars depend heavily on the orbital configuration. We find that for the exactly prograde orientation, the strongest bar is formed for the intermediate-sized orbit. On the tighter orbit, the disk is too disturbed and stripped to form a strong bar. On the wider orbit, the tidal interaction is too weak. The dependence on the disk inclination is such that weaker bars form in more inclined disks. The bars experience either a very weak buckling or none at all. We do not observe any secular evolution, possibly because the dwarfs are perturbed at each pericenter passage. The rotation speed of the bars can be classified as slow (RCR/lbar ∼ 2–3). We attribute this to the loss of a significant fraction of the disk rotation during the encounter with the host galaxy.

57

and

We investigated the properties of a sample of red Quasi-stellar Objects (QSOs) using optical, radio, and infrared data. These QSOs were selected from the Sloan Digital Sky Survey Data Release 7 quasar catalog. We only selected sources with sky coverage in the Very Large Array Faint Images of the Radio Sky at Twenty-centimeters survey, and searched for sources with Wide-field Infrared Survey Explorer counterparts. We defined the spectral color of the QSOs based on the flux ratio of the rest-frame 4000 to 3000 Å continuum emission to select red QSOs and typical QSOs. In accordance with this criterion, only QSOs with redshifts between 0.3 and 1.2 could be selected. We found that red QSOs have stronger infrared emission than typical QSOs. We noted that the number ratios of red QSOs to typical QSOs decrease with increasing redshifts, although the number of typical QSOs increase with redshifts. Furthermore, at high redshifts, the luminosity distributions of typical QSOs and red QSOs seem to have similar peaks; however, at low redshifts, the luminosities of red QSOs seem to be lower than those of  typical QSOs. These findings suggest that there might be at least two types of red QSOs in our QSO samples.

58

, , , , , , and

In order to understand the onset phase of a solar eruption, plasma parameter measurements in the early phases are key to constraining models. There are two current instrument types that allow us to make such measurements: narrow-band imagers and spectrometers. In the former case, even narrow-band filters contain multiple emission lines, creating some temperature confusion. With imagers, however, rapid cadences are achievable and the field of view can be large. Velocities of the erupting structures can be measured by feature tracking. In the spectrometer case, slit spectrometers can provide spectrally pure images by "rastering" the slit to build up an image. This method provides limited temporal resolution, but the plasma parameters can be accurately measured, including velocities along the line of sight. Both methods have benefits and are often used in tandem. In this paper we demonstrate for the first time that data from the wide slot on the Hinode EUV Imaging Spectrometer, along with imaging data from AIA, can be used to deconvolve velocity information at the start of an eruption, providing line-of-sight velocities across an extended field of view. Using He ii 256 Å slot data at flare onset, we observe broadening or shift(s) of the emission line of up to ±280 km s−1. These are seen at different locations—the redshifted plasma is seen where the hard X-ray source is later seen (energy deposition site). In addition, blueshifted plasma shows the very early onset of the fast rise of the filament.

59
The following article is Open access

, , , , , , , , , and

Solar chromospheric observations of sunspot umbrae offer an exceptional view of magnetohydrodynamic wave phenomena. In recent years, a wealth of wave signatures related to propagating magneto-acoustic modes have been presented, which demonstrate complex spatial and temporal structuring of the wave components. Theoretical modeling has demonstrated how these ubiquitous waves are consistent with an m = 0 slow magneto-acoustic mode, which is excited by trapped sub-photospheric acoustic (p-mode) waves. However, the spectrum of umbral waves is broad, suggesting that the observed signatures represent the superposition of numerous frequencies and/or modes. We apply Fourier filtering, in both spatial and temporal domains, to extract chromospheric umbral wave characteristics consistent with an m = 1 slow magneto-acoustic mode. This identification has not been described before. Angular frequencies of $0.037\pm 0.007\,\mathrm{rad}\,{{\rm{s}}}^{-1}$ ($2.1\pm 0.4\,\deg \,{{\rm{s}}}^{-1}$, corresponding to a period ≈170 s) for the m = 1 mode are uncovered for spatial wavenumbers in the range of $0.45\lt k\lt 0.90$ arcsec−1 (5000−9000 km). Theoretical dispersion relations are solved, with corresponding eigenfunctions computed, which allows the density perturbations to be investigated and compared with our observations. Such magnetohydrodynamic modeling confirms our interpretation that the identified wave signatures are the first direct observations of an m = 1 slow magneto-acoustic mode in the chromospheric umbra of a sunspot.

60

, , , , , , , and

We present the discovery of 1568 RR Lyrae stars in three of the most luminous M31 satellites: And VII (573), NGC 147 (177), and NGC 185 (818). We use their properties to study the formation history of Local Group spiral haloes, and in particular, to infer about the nature of their possible building blocks by comparison with available data for RR Lyrae stars in the halo and in a sample of satellites of M31 and the Milky Way. We find that the brightest satellites and the halos of both galaxies host a number of High Amplitude Short Period (HASP) RR Lyrae variable stars, which are missing in the faintest satellites. HASP variable stars have been shown by Fiorentino et al. to be tracers of a population of stars as metal-rich as [Fe/H] ≃ −1.5 and older than $\simeq 10\,\mathrm{Gyr}$. This suggests that the metal-rich M31 and MW halo component, which manifests through the HASP phenomenon, comes from massive dwarf galaxy building blocks, as the low-mass dwarfs did not chemically enrich fast enough to produce them. All detected variable stars are new discoveries; in particular, this work presents the first detections of RR Lyrae stars in And VII. Moreover, a number of candidate Anomalous Cepheids, and binary and long-period variable stars have been detected. We provide pulsation properties (period, amplitude, mean magnitude), light curves, and time series photometry for all of the variable stars in the three galaxies.

61

and

We consider the dynamics of porous icy dust aggregates in a turbulent gas disk and investigate the stability of the disk. We evaluate the random velocity of porous dust aggregates by considering their self-gravity, collisions, aerodynamic drag, turbulent stirring, and scattering due to gas. We extend our previous work by introducing the anisotropic velocity dispersion and the relaxation time of the random velocity. We find the minimum mass solar nebula model to be gravitationally unstable if the turbulent viscosity parameter α is less than about $4\times {10}^{-3}$. The upper limit of α for the onset of gravitational instability is derived as a function of the disk parameters. We discuss the implications of the gravitational instability for planetesimal formation.

62

, , , , and

We report an improved technique for diffuse foreground minimization from Cosmic Microwave Background (CMB) maps using a new multiphase iterative harmonic space internal-linear-combination (HILC) approach. Our method nullifies a foreground leakage that was present in the old and usual iterative HILC method. In phase 1 of the multiphase technique, we obtain an initial cleaned map using the single iteration HILC approach over the desired portion of the sky. In phase 2, we obtain a final CMB map using the iterative HILC approach; however, now, to nullify the leakage, during each iteration, some of the regions of the sky that are not being cleaned in the current iteration are replaced by the corresponding cleaned portions of the phase 1 map. We bring all input frequency maps to a common and maximum possible beam and pixel resolution at the beginning of the analysis, which significantly reduces data redundancy, memory usage, and computational cost, and avoids, during the HILC weight calculation, the deconvolution of partial sky harmonic coefficients by the azimuthally symmetric beam and pixel window functions, which in a strict mathematical sense, are not well defined. Using WMAP 9 year and Planck 2015 frequency maps, we obtain foreground-cleaned CMB maps and a CMB angular power spectrum for the multipole range $2\leqslant {\ell }\leqslant 2500$. Our power spectrum matches the published Planck results with some differences at different multipole ranges. We validate our method by performing Monte Carlo simulations. Finally, we show that the weights for HILC foreground minimization have the intrinsic characteristic that they also tend to produce a statistically isotropic CMB map.

63

, , , and

We perform three-dimensional ideal magnetohydrodynamic (MHD) simulations to study the parametric decay instability (PDI) of Alfvén waves in turbulent plasmas and explore its possible applications in the solar wind. We find that, over a broad range of parameters in background turbulence amplitudes, the PDI of an Alfvén wave with various amplitudes can still occur, though its growth rate in turbulent plasmas tends to be lower than both the theoretical linear theory prediction and that in the non-turbulent situations. Spatial–temporal FFT analyses of density fluctuations produced by the PDI match well with the dispersion relation of the slow MHD waves. This result may provide an explanation of the generation mechanism of slow waves in the solar wind observed at 1 au. It further highlights the need to explore the effects of density variations in modifying the turbulence properties as well as in heating the solar wind plasmas.

64

, , , and

We show the combined spectral analysis of Chandra high-energy transmission grating and XMM-Newton reflection-grating spectrometer observations of the broad-line radio galaxy 3C 111. This source is known to show excess neutral absorption with respect to the one estimated from 21 cm radio surveys of atomic H i in the Galaxy. However, previous works were not able to constrain the origin of such an absorber as local to our Milky Way or intrinsic to the source (z = 0.0485). The high signal-to-noise grating spectra allow us to constrain the excess absorption as being due to intervening gas in the Milky Way, and we estimate a time-averaged total column density of ${N}_{{\rm{H}}}=(7.4\pm 0.1)\times {10}^{21}$ cm−2, a factor of two higher than the tabulated H i value. We recommend using the total average Galactic column density estimated here when studying 3C 111. The origin of the extra Galactic absorption of ${N}_{{\rm{H}}}=4.4\times {10}^{21}$ cm−2 is likely due to molecular gas associated with the Taurus molecular cloud complex toward 3C 111, which is our nearest star-forming region. We also detect a weak (EW = 16 ± 10 eV) and narrow (FWMH < 5500 km s−1, consistent with optical Hα) Fe Kα emission line at E = 6.4 keV, likely from the torus in the central regions of 3C 111, and we place an upper limit on the column density of a possible intrinsic warm absorber of NH < 2.5 × 1020 cm−2. These complexities make 3C 111 a very promising object for studying both the intrinsic properties of this active radio galaxy and the Galactic interstellar medium, if used as a background source.

65

, , and

We have obtained low-resolution optical (0.7–0.98 μm) and near-infrared (1.11–1.34 μm and 0.8–2.5 μm) spectra of 12 isolated planetary-mass candidates (J = 18.2–19.9 mag) of the 3 Myr σ Orionis star cluster with the aim of determining the spectroscopic properties of very young, substellar dwarfs and assembling a complete cluster mass function. We have classified our targets by visual comparison with high- and low-gravity standards and by measuring newly defined spectroscopic indices. We derived L0–L4.5 and M9–L2.5 using high- and low-gravity standards, respectively. Our targets reveal clear signposts of youth, thus corroborating their cluster membership and planetary masses (6–13 MJup). These observations complete the σ Orionis mass function by spectroscopically confirming the planetary-mass domain to a confidence level of ∼75%. The comparison of our spectra with BT-Settl solar metallicity model atmospheres yields a temperature scale of 2350–1800 K and a low surface gravity of log g ≈ 4.0 [cm s−2], as would be expected for young planetary-mass objects. We discuss the properties of the cluster's least-massive population as a function of spectral type. We have also obtained the first optical spectrum of S Ori 70, a T dwarf in the direction of σ Orionis. Our data provide reference optical and near-infrared spectra of very young L dwarfs and a mass function that may be used as templates for future studies of low-mass substellar objects and exoplanets. The extrapolation of the σ Orionis mass function to the solar neighborhood may indicate that isolated planetary-mass objects with temperatures of ∼200–300 K and masses in the interval 6–13 MJup may be as numerous as very low-mass stars.

66

, , , , , , , , , et al

We present the first results from the B-fields In STar-forming Region Observations (BISTRO) survey, using the Sub-millimetre Common-User Bolometer Array 2 camera, with its associated polarimeter (POL-2), on the James Clerk Maxwell Telescope in Hawaii. We discuss the survey's aims and objectives. We describe the rationale behind the survey, and the questions that the survey will aim to answer. The most important of these is the role of magnetic fields in the star formation process on the scale of individual filaments and cores in dense regions. We describe the data acquisition and reduction processes for POL-2, demonstrating both repeatability and consistency with previous data. We present a first-look analysis of the first results from the BISTRO survey in the OMC 1 region. We see that the magnetic field lies approximately perpendicular to the famous "integral filament" in the densest regions of that filament. Furthermore, we see an "hourglass" magnetic field morphology extending beyond the densest region of the integral filament into the less-dense surrounding material, and discuss possible causes for this. We also discuss the more complex morphology seen along the Orion Bar region. We examine the morphology of the field along the lower-density northeastern filament. We find consistency with previous theoretical models that predict magnetic fields lying parallel to low-density, non-self-gravitating filaments, and perpendicular to higher-density, self-gravitating filaments.

67

and

Most studies suggest that the pollution of white dwarf (WD) atmospheres arises from the accretion of minor planets, but the exact properties of polluting material, and in particular the evidence for water in some cases, are not yet understood. Here we study the water retention of small icy bodies in exo-solar planetary systems, as their respective host stars evolve through and off the main sequence and eventually become WDs. We explore, for the first time, a wide range of star masses and metallicities. We find that the mass of the WD progenitor star is of crucial importance for the retention of water, while its metallicity is relatively unimportant. We predict that minor planets around lower-mass WD progenitors would generally retain more water and would do so at closer distances from the WD than compared with high-mass progenitors. The dependence of water retention on progenitor mass and other parameters has direct implications for the origin of observed WD pollution, and we discuss how our results and predictions might be tested in the future as more observations of WDs with long cooling ages become available.