This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Volume 724

Number 2, 2010 December 1

Previous issue Next issue

829

, , , , , and

The Solar Mass Ejection Imager (SMEI) has recorded the brightness responses of hundreds of interplanetary coronal mass ejections (CMEs) in the interplanetary medium. Using a three-dimensional (3D) reconstruction technique that derives its perspective views from outward-flowing solar wind, analysis of SMEI data has revealed the shapes, extents, and masses of CMEs. Here, for the first time, and using SMEI data, we report on the 3D reconstruction of a CME that intersects a corotating region marked by a curved density enhancement in the ecliptic. Both the CME and the corotating region are reconstructed and demonstrate that the CME disrupts the otherwise regular density pattern of the corotating material. Most of the dense CME material passes north of the ecliptic and east of the Sun–Earth line: thus, in situ measurements in the ecliptic near Earth and at the Solar-TErrestrial RElations Observatory Behind spacecraft show the CME as a minor density increase in the solar wind. The mass of the dense portion of the CME is consistent with that measured by the Large Angle Spectrometric Coronagraph on board the Solar and Heliospheric Observatory spacecraft, and is comparable to the masses of many other three-dimensionally reconstructed solar wind features at 1 AU observed in SMEI 3D reconstructions.

835

, , , , , , , , , et al

We present 3.6 to 70 μm Spitzer photometry of 154 weak-line T Tauri stars (WTTSs) in the Chamaeleon, Lupus, Ophiuchus, and Taurus star formation regions, all of which are within 200 pc of the Sun. For a comparative study, we also include 33 classical T Tauri stars which are located in the same star-forming regions. Spitzer sensitivities allow us to robustly detect the photosphere in the IRAC bands (3.6 to 8 μm) and the 24 μm MIPS band. In the 70 μm MIPS band, we are able to detect dust emission brighter than roughly 40 times the photosphere. These observations represent the most sensitive WTTSs survey in the mid- to far-infrared to date and reveal the frequency of outer disks (r = 3–50 AU) around WTTSs. The 70 μm photometry for half the c2d WTTSs sample (the on-cloud objects), which were not included in the earlier papers in this series, those of Padgett et al. and Cieza et al., are presented here for the first time. We find a disk frequency of 19% for on-cloud WTTSs, but just 5% for off-cloud WTTSs, similar to the value reported in the earlier works. WTTSs exhibit spectral energy distributions that are quite diverse, spanning the range from optically thick to optically thin disks. Most disks become more tenuous than Ldisk/L* = 2 × 10−3 in 2 Myr and more tenuous than Ldisk/L* = 5 × 10−4 in 4 Myr.

855

The broad-line region (BLR) disappears in many low-luminosity active galactic nuclei (AGNs), the reason of which is still controversial. The BLRs in AGNs are believed to be associated with the outflows from the accretion disks. Most of the low-luminosity AGNs contain advection-dominated accretion flows (ADAFs) which are very hot and have a positive Bernoulli parameter. ADAFs are therefore associated with strong outflows. We estimate the cooling of the outflows from the ADAFs and find that the gases in such hot outflows cannot always be cooled efficiently by bremsstrahlung radiation. The ADAF may co-exist with the standard disk, i.e., the inner ADAF connects to the outer thin accretion disk at radius Rd,tr in the sources accreting at slightly lower than the critical rate $\dot{m}_{\rm crit}$ ($\dot{m}=\dot{M}/\dot{M}_{\rm Edd}$). For the ADAFs with Lbol/LEdd ≳ 0.001, a secondary small inner cold disk is suggested to co-exist with the ADAF due to the condensation process. We estimate the Compton cooling of the outflow, of which the soft seed photons either come from the outer cold disk or the secondary inner cold disk. It is found that the gas in the outflow far from the ADAF may be efficiently cooled to form BLR clouds due to the soft seed photons emitted from the cold disks, provided the transition radius of the ADAF to the outer cold disk is small [rd,tr = Rd,tr/(2GM/c2) ≲ 20] or/and the secondary small cold disk has a luminosity Lsd ≳ 0.003 LEdd. The BLR clouds can still be formed in the outflows from the outer cold thin disks, if the transition radius rtr is not very large. For the sources with Lbol/LEdd ≲ 0.001, the inner small cold disk is evaporated completely in the ADAF and the outer thin accretion disk may be suppressed by the ADAF, which leads to the disappearance of the BLR. The physical implications of this scenario on the double-peaked broad-line emitters are also discussed.

861

, , and

We develop two methods to estimate the bulk Lorentz factor of X-ray flare outflow. In the first method, the outflow is assumed to be baryonic and is accelerated by the thermal pressure, for which the final bulk Lorentz factor is limited by the outflow luminosity as well as the initial radius of the outflow getting accelerated. Such a method may be applied to a considerable fraction of flares. The second method, based on the curvature effect interpretation of the quick decline of the flare, can give a tightly constrained estimate of the bulk Lorentz factor but can only be applied to a few giant flares. The results obtained in these two different ways are consistent with each other. The obtained bulk Lorentz factor (or just upper limit) of the X-ray flare outflows, ranging from ten to a few hundreds, is generally smaller than that of the gamma-ray burst outflows.

866

, , , , , , , , , et al

We report the discovery of HAT-P-15b, a transiting extrasolar planet in the "period valley," a relatively sparsely populated period regime of the known extrasolar planets. The host star, GSC 2883-01687, is a G5 dwarf with V= 12.16. It has a mass of 1.01 ± 0.04 M, radius of 1.08 ± 0.04 R, effective temperature 5568 ± 90 K, and metallicity [Fe/H] = +0.22 ± 0.08. The planetary companion orbits the star with a period P = 10.863502 ± 0.000027 days, transit epoch Tc = 2454638.56019 ± 0.00048 (BJD), and transit duration 0.2285 ± 0.0015 days. It has a mass of 1.946 ± 0.066 MJ and radius of 1.072 ± 0.043 RJ yielding a mean density of 1.96 ± 0.22 g cm-3. At an age of 6.8+2.5−1.6 Gyr, the planet is H/He-dominated and theoretical models require about 2% (10 M) worth of heavy elements to reproduce its measured radius. With an estimated equilibrium temperature of ∼820 K during transit, and ∼1000 K at occultation, HAT-P-15b is a potential candidate to study moderately cool planetary atmospheres by transmission and occultation spectroscopy.

878

, , , , , , and

We measure the clustering of dark matter halos in a large set of collisionless cosmological simulations of the flat ΛCDM cosmology. Halos are identified using the spherical overdensity algorithm, which finds the mass around isolated peaks in the density field such that the mean density is Δ times the background. We calibrate fitting functions for the large-scale bias that are adaptable to any value of Δ we examine. We find a ∼6% scatter about our best-fit bias relation. Our fitting functions couple to the halo mass functions of Tinker et al. such that the bias of all dark matter is normalized to unity. We demonstrate that the bias of massive, rare halos is higher than that predicted in the modified ellipsoidal collapse model of Sheth et al. and approaches the predictions of the spherical collapse model for the rarest halos. Halo bias results based on friends-of-friends halos identified with linking length 0.2 are systematically lower than for halos with the canonical Δ = 200 overdensity by ∼10%. In contrast to our previous results on the mass function, we find that the universal bias function evolves very weakly with redshift, if at all. We use our numerical results, both for the mass function and the bias relation, to test the peak-background split model for halo bias. We find that the peak-background split achieves a reasonable agreement with the numerical results, but ∼20% residuals remain, both at high and low masses.

887

, , , and

A key parameter that controls the crystallization of primordial oceans in large icy moons is the presence of anti-freeze compounds, which may have maintained primordial oceans over the age of the solar system. Here we investigate the influence of methanol, a possible anti-freeze candidate, on the crystallization of Titan's primordial ocean. Using a thermodynamic model of the solar nebula and assuming a plausible composition of its initial gas phase, we first calculate the condensation sequence of ices in Saturn's feeding zone, and show that in Titan's building blocks methanol can have a mass fraction of ∼4 wt% relative to water, i.e., methanol can be up to four times more abundant than ammonia. We then combine available data on the phase diagram of the water–methanol system and scaling laws derived from thermal convection to estimate the influence of methanol on the dynamics of the outer ice I shell and on the heat transfer through this layer. For a fraction of methanol consistent with the building blocks composition we determined, the vigor of convection in the ice I shell is strongly reduced. The effect of 5 wt% methanol is equivalent to that of 3 wt% ammonia. Thus, if methanol is present in the primordial ocean of Titan, the crystallization may stop, and a sub-surface ocean may be maintained between the ice I and high-pressure ice layers. A preliminary estimate indicates that the presence of 4 wt% methanol and 1 wt% ammonia may result in an ocean of thickness at least 90 km.

895

and

We derive the evolution equations describing a thin axisymmetric disk of gas and stars with an arbitrary rotation curve that is kept in a state of marginal gravitational instability and energy equilibrium due to the balance between energy released by accretion and energy lost due to decay of turbulence. Rather than adopting a parameterized α prescription, we instead use the condition of marginal gravitational instability to self-consistently determine the position- and time-dependent transport rates. We show that there is a steady-state configuration for disks dominated by gravitational instability, and that this steady state persists even when star formation is taken into account if the accretion rate is sufficiently large. For disks in this state, we analytically determine the velocity dispersion, surface density, and rates of mass and angular momentum transport as a function of the gas mass fraction, the rotation curve, and the rate of external accretion onto the disk edge. We show that disks that are initially out of steady state will evolve into it on the viscous timescale of the disk, which is comparable to the orbital period if the accretion rate is high. Finally, we discuss the implications of these results for the structure of disks in a broad range of environments, including high-redshift galaxies, the outer gaseous disks of local galaxies, and accretion disks around protostars.

908

, , , , and

We have detected an Hα bow shock nebula around PSR J1741−2054, a pulsar discovered through its GeV γ-ray pulsations. The pulsar is only ∼1farcs5 behind the leading edge of the shock. Optical spectroscopy shows that the nebula is non-radiative, dominated by Balmer emission. The Hα images and spectra suggest that the pulsar wind momentum is equatorially concentrated and implies a pulsar space velocity ≈150 km s−1, directed 15° ± 10° out of the plane of the sky. The complex Hα profile indicates that different portions of the post-shock flow dominate line emission as gas moves along the nebula and provide an opportunity to study the structure of this unusual slow non-radiative shock under a variety of conditions. CXO ACIS observations reveal an X-ray pulsar wind nebula within this nebula, with a compact ∼2farcs5 equatorial structure and a trail extending several arcminutes behind. Together these data support a close (⩽0.5 kpc) distance, a spin geometry viewed edge-on, and highly efficient γ-ray production for this unusual, energetic pulsar.

915

, , , , , , , , , et al

Different theoretical methodologies lead to order-of-magnitude variations in predicted galaxy–galaxy merger rates. We examine how this arises and quantify the dominant uncertainties. Modeling of dark matter and galaxy inspiral/merger times contribute factor of ∼2 uncertainties. Different estimates of the halo–halo merger rate, the subhalo "destruction" rate, and the halo merger rate with some dynamical friction time delay for galaxy–galaxy mergers, agree to within this factor of ∼2, provided proper care is taken to define mergers consistently. There are some caveats: if halo/subhalo masses are not appropriately defined the major-merger rate can be dramatically suppressed, and in models with "orphan" galaxies and under-resolved subhalos the merger timescale can be severely over-estimated. The dominant differences in galaxy–galaxy merger rates between models owe to the treatment of the baryonic physics. Cosmological hydrodynamic simulations without strong feedback and some older semi-analytic models (SAMs), with known discrepancies in mass functions, can be biased by large factors (∼5) in predicted merger rates. However, provided that models yield a reasonable match to the total galaxy mass function, the differences in properties of central galaxies are sufficiently small to alone contribute small (factor of ∼1.5) additional systematics to merger rate predictions. But variations in the baryonic physics of satellite galaxies in models can also have a dramatic effect on merger rates. The well-known problem of satellite "over-quenching" in most current SAMs—whereby SAM satellite populations are too efficiently stripped of their gas—could lead to order-of-magnitude under-estimates of merger rates for low-mass, gas-rich galaxies. Models in which the masses of satellites are fixed by observations (or SAMs adjusted to resolve this "over-quenching") tend to predict higher merger rates, but with factor of ∼2 uncertainties stemming from the uncertainty in those observations. The choice of mass used to define "major" and "minor" mergers also matters: stellar–stellar major mergers can be more or less abundant than halo–halo major mergers by an order of magnitude. At low masses, most true major mergers (mass ratio defined in terms of their baryonic or dynamical mass) will appear to be minor mergers in their stellar mass ratio—observations and models using just stellar criteria could underestimate major-merger rates by factors of ∼3–5. We discuss the uncertainties in relating any merger rate to spheroid formation (in observations or theory): in order to achieve better than factor of ∼3 accuracy, it is necessary to account for the distribution of merger orbital parameters, gas fractions, and the full efficiency of merger-induced effects as a function of mass ratio.

946

, , , and

We present 1420 MHz polarization images of a 5° × 5° region around the planetary nebula (PN) DeHt 5. The images reveal narrow Faraday-rotation structures on the visible disk of DeHt 5, as well as two wider, tail-like, structures "behind" DeHt 5. Though DeHt 5 is an old PN known to be interacting with the interstellar medium (ISM), a tail has not previously been identified for this object. The innermost tail is ∼3 pc long and runs away from the northeast edge of DeHt 5 in a direction roughly opposite that of the sky-projected space velocity of the white dwarf central star, WD 2218+706. We believe this tail to be the signature of ionized material ram-pressure stripped and deposited downstream during a >74,000 yr interaction between DeHt 5 and the ISM. We estimate the rotation measure (RM) through the inner tail to be −15 ± 5 rad m−2, and, using a realistic estimate for the line-of-sight component of the ISM magnetic field around DeHt 5, derive an electron density in the inner tail of ne = 3.6 ± 1.8 cm−3. Assuming the material is fully ionized, we estimate a total mass in the inner tail of 0.68 ± 0.33 M and predict that 0.49 ± 0.33 M was added during the PN–ISM interaction. The outermost tail consists of a series of three roughly circular components, which have a collective length of ∼11.0 pc. This tail is less conspicuous than the inner tail and may be the signature of the earlier interaction between the WD 2218+706 asymptotic giant branch (AGB) progenitor and the ISM. The results for the inner and outer tails are consistent with hydrodynamic simulations and may have implications for the PN missing-mass problem as well as for models which describe the impact of the deaths of intermediate-mass stars on the ISM.

957

, , , , , , , and

We have detected the 158 μm [C ii] line from 12 galaxies at z ∼ 1–2. This is the first survey of this important star formation tracer at redshifts covering the epoch of maximum star formation in the universe and quadruples the number of reported high-z [C ii] detections. The line is very luminous, between <0.024% and 0.65% of the far-infrared (FIR) continuum luminosity of our sources, and arises from photodissociation regions on molecular cloud surfaces. An exception is PKS 0215+015, where half of the [C ii] emission could arise from X-ray-dominated regions near the central active galactic nucleus (AGN). The L[C ii]/LFIR ratio in our star formation-dominated systems is ∼8 times larger than that of our AGN-dominated systems. Therefore this ratio selects for star formation-dominated systems. Furthermore, the L[C ii]/LFIR and L[C ii]/L(CO(1–0)) ratios in our star-forming galaxies and nearby starburst galaxies are the same, so that luminous star-forming galaxies at earlier epochs (z ∼ 1–2) appear to be scaled-up versions of local starbursts entailing kiloparsec-scale starbursts. Most of the FIR and [C ii] radiation from our AGN-dominated sample (excepting PKS 0215+015) also arises from kiloparsec-scale star formation, but with far-UV radiation fields ∼8 times more intense than in our star formation-dominated sample. We speculate that the onset of AGN activity stimulates large-scale star formation activity within AGN-dominated systems. This idea is supported by the relatively strong [O iii] line emission, indicating very young stars, that was recently observed in high-z composite AGN/starburst systems. Our results confirm the utility of the [C ii] line, and in particular, the L[C ii]/L(FIR) and L[C ii]/LCO(1–0) ratios as tracers of star formation in galaxies at high redshifts.

975

, , , , , , , and

To better characterize the abundance patterns produced by the r-process, we have derived new abundances or upper limits for the heavy elements zinc (Zn, Z= 30), yttrium (Y, Z= 39), lanthanum (La, Z= 57), europium (Eu, Z= 63), and lead (Pb, Z= 82). Our sample of 161 metal-poor stars includes new measurements from 88 high-resolution and high signal-to-noise spectra obtained with the Tull Spectrograph on the 2.7 m Smith Telescope at the McDonald Observatory, and other abundances are adopted from the literature. We use models of the s-process in asymptotic giant branch stars to characterize the high Pb/Eu ratios produced in the s-process at low metallicity, and our new observations then allow us to identify a sample of stars with no detectable s-process material. In these stars, we find no significant increase in the Pb/Eu ratios with increasing metallicity. This suggests that s-process material was not widely dispersed until the overall Galactic metallicity grew considerably, perhaps even as high as [Fe/H] =−1.4, in contrast with earlier studies that suggested a much lower mean metallicity. We identify a dispersion of at least 0.5 dex in [La/Eu] in metal-poor stars with [Eu/Fe] <+0.6 attributable to the r-process, suggesting that there is no unique "pure" r-process elemental ratio among pairs of rare earth elements. We confirm earlier detections of an anti-correlation between Y/Eu and Eu/Fe bookended by stars strongly enriched in the r-process (e.g., CS 22892–052) and those with deficiencies of the heavy elements (e.g., HD 122563). We can reproduce the range of Y/Eu ratios using simulations of high-entropy neutrino winds of core-collapse supernovae that include charged-particle and neutron-capture components of r-process nucleosynthesis. The heavy element abundance patterns in most metal-poor stars do not resemble that of CS 22892–052, but the presence of heavy elements such as Ba in nearly all metal-poor stars without s-process enrichment suggests that the r-process is a common phenomenon.

994

, , , and

As part of an effort to study gas-grain chemical models in star-forming regions as they relate to molecules containing cyanide (–C≡N) groups, we present here a search for the molecules 2-cyanoethanol (OHCH2CH2CN) and methoxyacetonitrile (CH3OCH2CN) in the galactic center region SgrB2. These species are structural isomers of each other and are targeted to investigate the cross-coupling of pathways emanating from the photolysis products of methanol and ammonia with pathways involving cyano-containing molecules. Methanol and ammonia ices are two of the main repositories of the elements C, O, and N in cold clouds and understanding their link to cyanide chemistry could give important insights into prebiotic molecular evolution. Neither species was positively detected, but the upper limits we determined allow comparison to the general patterns gleaned from chemical models. Our results indicate the need for an expansion of the model networks to better deal with cyano-chemistry, in particular with respect to pathways including products of methanol photolysis. In addition to these results, the two main observational routes for detecting new interstellar molecules are discussed. One route is by decreasing detection limits at millimeter wavelength through spatial filtering with interferometric studies at the Atacama Large Millimeter Array (ALMA), and the second is by searching for intense torsional states at THz frequencies using the Herschel Space Observatory. 2-cyanoethanol and methoxyacetonitrile would both be good test beds for exploring the capabilities of ALMA and Herschel in the study of complex interstellar chemistry.

1006

, , and

The formation and evolution of the circumstellar disk in unmagnetized molecular clouds is investigated using three-dimensional hydrodynamic simulations from the prestellar core until the end of the main accretion phase. In collapsing cloud cores, the first (adiabatic) core with a size of ≳3 AU forms prior to the formation of the protostar. At its formation, the first core has a thick disk-like structure and is mainly supported by the thermal pressure. After the protostar formation, it decreases the thickness gradually and becomes supported by the centrifugal force. We found that the first core is a precursor of the circumstellar disk with a size of >3 AU. This means that unmagnetized protoplanetary disk smaller than <3 AU does not exist. Reflecting the thermodynamics of the collapsing gas, at the protostar formation epoch, the first core (or the circumstellar disk) has a mass of ∼0.005–0.1 M, while the protostar has a mass of ∼10−3M. Thus, just after the protostar formation, the circumstellar disk is about 10–100 times more massive than the protostar. In the main accretion phase that lasts for ∼105 yr, the circumstellar disk mass initially tends to dominate the protostellar mass. Such a massive disk is unstable to gravitational instability and tends to show fragmentation. Our calculations indicate that the low-mass companions may form in the circumstellar disk in the main accretion phase. In addition, the mass accretion rate onto the protostar shows a strong time variability that is caused by the torque from the low-mass companions and/or the spiral arms in the circumstellar disk. Such variability provides an important signature for detecting the substellar mass companion in the circumstellar disk around very young protostars.

1021

Meridional circulation is an important ingredient in flux transport dynamo models. We have studied its importance on the period, the amplitude of the solar cycle, and also in producing Maunder-like grand minima in these models. First, we model the periods of the last 23 sunspot cycles by varying the meridional circulation speed. If the dynamo is in a diffusion-dominated regime, then we find that most of the cycle amplitudes also get modeled up to some extent when we model the periods. Next, we propose that at the beginning of the Maunder minimum the amplitude of meridional circulation dropped to a low value and then after a few years it increased again. Several independent studies also favor this assumption. With this assumption, a diffusion-dominated dynamo is able to reproduce many important features of the Maunder minimum remarkably well. If the dynamo is in a diffusion-dominated regime, then a slower meridional circulation means that the poloidal field gets more time to diffuse during its transport through the convection zone, making the dynamo weaker. This consequence helps to model both the cycle amplitudes and the Maunder-like minima. We, however, fail to reproduce these results if the dynamo is in an advection-dominated regime.

1030

, , , , , , , , , et al

In an attempt to constrain evolutionary models of the asymptotic giant branch (AGB) phase at the limit of low masses and low metallicities, we have examined the luminosity functions and number ratios between AGB and red giant branch (RGB) stars from a sample of resolved galaxies from the ACS Nearby Galaxy Survey Treasury. This database provides Hubble Space Telescope optical photometry together with maps of completeness, photometric errors, and star formation histories for dozens of galaxies within 4 Mpc. We select 12 galaxies characterized by predominantly metal-poor populations as indicated by a very steep and blue RGB, and which do not present any indication of recent star formation in their color–magnitude diagrams. Thousands of AGB stars brighter than the tip of the RGB (TRGB) are present in the sample (between 60 and 400 per galaxy), hence, the Poisson noise has little impact in our measurements of the AGB/RGB ratio. We model the photometric data with a few sets of thermally pulsing AGB (TP-AGB) evolutionary models with different prescriptions for the mass loss. This technique allows us to set stringent constraints on the TP-AGB models of low-mass, metal-poor stars (with M < 1.5 M, $\mbox{\rm [{\rm Fe}/{\rm H}]}\lesssim -1.0$). Indeed, those which satisfactorily reproduce the observed AGB/RGB ratios have TP-AGB lifetimes between 1.2 and 1.8 Myr, and finish their nuclear burning lives with masses between 0.51 and 0.55 M. This is also in good agreement with recent observations of white dwarf masses in the M4 old globular cluster. These constraints can be added to those already derived from Magellanic Cloud star clusters as important mileposts in the arduous process of calibrating AGB evolutionary models.

1044

, , and

Data from the Fermi-LAT reveal two large gamma-ray bubbles, extending 50° above and below the Galactic center (GC), with a width of about 40° in longitude. The gamma-ray emission associated with these bubbles has a significantly harder spectrum (dN/dEE−2) than the inverse Compton emission from electrons in the Galactic disk, or the gamma rays produced by the decay of pions from proton–interstellar medium collisions. There is no significant spatial variation in the spectrum or gamma-ray intensity within the bubbles, or between the north and south bubbles. The bubbles are spatially correlated with the hard-spectrum microwave excess known as the WMAP haze; the edges of the bubbles also line up with features in the ROSAT X-ray maps at 1.5–2 keV. We argue that these Galactic gamma-ray bubbles were most likely created by some large episode of energy injection in the GC, such as past accretion events onto the central massive black hole, or a nuclear starburst in the last ∼10 Myr. Dark matter annihilation/decay seems unlikely to generate all the features of the bubbles and the associated signals in WMAP and ROSAT; the bubbles must be understood in order to use measurements of the diffuse gamma-ray emission in the inner Galaxy as a probe of dark matter physics. Study of the origin and evolution of the bubbles also has the potential to improve our understanding of recent energetic events in the inner Galaxy and the high-latitude cosmic ray population.

1083

, , , , , and

The interaction between emerging magnetic flux and the pre-existing ambient field has become a "hot" topic for both numerical simulations and high-resolution observations of the solar atmosphere. The appearance of brightenings and surges during episodes of flux emergence is believed to be a signature of magnetic reconnection processes. We present an analysis of a small-scale flux emergence event in NOAA 10971, observed simultaneously with the Swedish 1 m Solar Telescope on La Palma and the Hinode satellite during a joint campaign in 2007 September. Extremely high-resolution G-band, Hα, and Ca ii H filtergrams, Fe i and Na i magnetograms, EUV raster scans, and X-ray images show that the emerging region was associated with chromospheric, transition region and coronal brightenings, as well as with chromospheric surges. We suggest that these features were caused by magnetic reconnection at low altitude in the atmosphere. To support this idea, we perform potential and linear force-free field extrapolations using the FROMAGE service. The extrapolations show that the emergence site is cospatial with a three-dimensional null point, from which a spine originates. This magnetic configuration and the overall orientation of the field lines above the emerging flux region are compatible with the structures observed in the different atmospheric layers and remain stable against variations of the force-free field parameter. Our analysis supports the predictions of recent three-dimensional numerical simulations that energetic phenomena may result from the interaction between emerging flux and the pre-existing chromospheric and coronal field.

1099

, , , , , , and

Type III radio bursts are produced near the local electron plasma frequency fp and near its harmonic 2fp by fast electrons ejected from the solar active regions and moving through the corona and solar wind. The coronal bursts have dynamic spectra with frequency rapidly falling with time, the typical duration being about 1–3 s. In the present paper, 37 well-defined coronal type III radio bursts (25–450 MHz) are analyzed. The results obtained substantiate an earlier statement that the dependence of the central frequency of the emission on time can be fitted to a power-law model, f(t) ∝ (tt0)−α, where α can be as low as 1. In the case of negligible plasma acceleration and conical flow, it means that the electron number density within about 1 solar radius above the photosphere will decrease as r−2, like in the solar wind. For the data set chosen, the index α varies in the range from 0.2 to 7 or bigger, with mean and median values of 1.2 and 0.5, respectively. A surprisingly large fraction of events, 84%, have α ⩽ 1.2. These results provide strong evidence that in the type III source regions the electron number density scales as n(r) ∝ (rr0)−β, with minimum, mean, and median β = 2α of 0.4, 2.4, and 1.0, respectively. Hence, the typical density profiles are more gently sloping than those given by existing empirical coronal models. Several events are found with a wind-like dependence of burst frequency on time. Smaller power-law indices could result from the effects of non-conical geometry of the plasma flow tubes, deceleration of coronal plasma, and/or the curvature of the magnetic field lines. The last effect is shown to be too weak to explain such low power-law indices. A strong tendency is found for bursts from the same group to have similar power-law indices, thereby favoring the hypothesis that they are usually produced by the same source region.

1108

, , , , , , , , , et al

We report on the discovery and the Rossiter–McLaughlin (R-M) effect of Kepler-8b, a transiting planet identified by the NASA Kepler Mission. Kepler photometry and Keck-HIRES radial velocities yield the radius and mass of the planet around this F8IV subgiant host star. The planet has a radius RP = 1.419 RJ and a mass MP = 0.60 MJ, yielding a density of 0.26 g cm−3, one of the lowest planetary densities known. The orbital period is P = 3.523 days and the orbital semimajor axis is 0.0483+0.0006−0.0012 AU. The star has a large rotational vsin i of 10.5 ± 0.7 km s−1 and is relatively faint (V ≈ 13.89 mag); both properties are deleterious to precise Doppler measurements. The velocities are indeed noisy, with scatter of 30 m s−1, but exhibit a period and phase that are consistent with those implied by transit photometry. We securely detect the R-M effect, confirming the planet's existence and establishing its orbit as prograde. We measure an inclination between the projected planetary orbital axis and the projected stellar rotation axis of λ = −26fdg4 ± 10fdg1, indicating a significant inclination of the planetary orbit. R-M measurements of a large sample of transiting planets from Kepler will provide a statistically robust measure of the true distribution of spin–orbit orientations for hot Jupiters around F and early G stars.

1120

, , , , , , , , , and

We present the results from new Nobeyama Millimeter Array observations of CO(1–0), HCN(1–0), and 89 GHz continuum emission toward NGC 604, known as the supergiant H ii region in the nearby galaxy M33. Our high spatial resolution images (4farcs2 × 2farcs6, corresponding to 17 pc × 11 pc physical size) of CO emission allowed us to uncover 10 individual molecular clouds that have masses of (0.8–7.4) ×105M and sizes of 5–29 pc, comparable to those of typical Galactic giant molecular clouds. Moreover, we detected for the first time HCN emission in the two most massive clouds and 89 GHz continuum emission at the rims of the "Hα shells." The HCN and 89 GHz continuum emission are offset from the CO peak and are distributed in the direction of the central cluster. Three out of ten CO clouds are well correlated with the Hα shells both in spatial and velocity domains, implying an interaction between molecular gas and the expanding H ii region. The CO clouds show varieties in star formation efficiencies (SFEs), which are estimated from the 89 GHz emission and combination of Hα and Spitzer 24 μm data. Furthermore, we found that the SFEs decrease with increasing projected distance measured from the heart of the central OB star cluster in NGC 604, suggesting radial changes in the evolutionary stages of the molecular clouds in the course of stellar cluster formation. Our results provide further support to the picture of sequential star formation in NGC 604 initially proposed by Tosaki et al. with the higher spatially resolved molecular clouds, in which an isotropic expansion of the H ii region pushes gases outward, which accumulates to form dense molecular clouds, and then induces massive star formations.

1133

, , , , , , , , , et al

We present a three-dimensional density model of coronal prominence cavities, and a morphological fit that has been tightly constrained by a uniquely well-observed cavity. Observations were obtained as part of an International Heliophysical Year campaign by instruments from a variety of space- and ground-based observatories, spanning wavelengths from radio to soft X-ray to integrated white light. From these data it is clear that the prominence cavity is the limb manifestation of a longitudinally extended polar-crown filament channel, and that the cavity is a region of low density relative to the surrounding corona. As a first step toward quantifying density and temperature from campaign spectroscopic data, we establish the three-dimensional morphology of the cavity. This is critical for taking line-of-sight projection effects into account, since cavities are not localized in the plane of the sky and the corona is optically thin. We have augmented a global coronal streamer model to include a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel length. We have developed a semi-automated routine that fits ellipses to cross-sections of the cavity as it rotates past the solar limb, and have applied it to Extreme Ultraviolet Imager observations from the two Solar Terrestrial Relations Observatory spacecraft. This defines the morphological parameters of our model, from which we reproduce forward-modeled cavity observables. We find that cavity morphology and orientation, in combination with the viewpoints of the observing spacecraft, explain the observed variation in cavity visibility for the east versus west limbs.

1147

and

The physical mechanisms responsible for the production of non-thermal emission in accreting black holes (BHs) should be imprinted in the observational appearances of the power-law tails in the X-ray spectra from these objects. Phenomenology of different spectral states exhibited by galactic BH binaries allows us to establish the physics of the photon upscattering under different accretion regimes. We revisit the data collected by the Rossi X-ray Timing Explorer from the BH X-ray binary XTE J1550−564 during two periods of X-ray activity in 1998 and 2000 focusing on the behavior of the high-energy cutoff of the power-law part of the spectrum. For the 1998 outburst, the transition from the low-hard state to the intermediate state was accompanied by a gradual decrease in the cutoff energy. This was followed by an extended minimum which then showed an abrupt reversal to a clear increasing trend as the source evolved to the very high and high-soft states. The 2000 outburst showed only the decreasing and extended minimum portions of this pattern. We attribute this difference in the cutoff energy behavior to the different partial contributions of the thermal and non-thermal (bulk motion) Comptonization. Namely, during the 1998 event the higher accretion rate presumably provided more cooling to the Comptonizing media and thus reducing the effectiveness of the thermal upscattering process. Under these conditions, the bulk motion takes a leading role in boosting the input soft photons. Recent Monte Carlo simulations by Laurent & Titarchuk strongly support this scenario.

1153

, , , , and

The standard model of planet formation considers an initial phase in which planetesimals form from a dust disk, followed by a phase of mutual planetesimal–planetesimal collisions, leading eventually to the formation of planetary embryos. However, there is a potential transition phase (which we call the "snowball phase"), between the formation of the first planetesimals and the onset of mutual collisions amongst them, which has often been either ignored or underestimated in previous studies. In this snowball phase, isolated planetesimals move in Keplerian orbits and grow solely via the direct accretion of subcentimeter-sized dust entrained with the gas in the protoplanetary disk. Using a simplified model in which planetesimals are progressively produced from the dust, we consider the expected sizes to which the planetesimals can grow before mutual collisions commence and derive the dependence of this size on a number of critical parameters, including the degree of disk turbulence, the planetesimal size at birth, and the rate of planetesimal creation. For systems in which turbulence is weak and the planetesimals are created at a low rate and with relatively small birth size, we show that the snowball growth phase can be very important, allowing planetesimals to grow by a factor of 106 in mass before mutual collisions take over. In such cases, the snowball growth phase can be the dominant mode to transfer mass from the dust to planetesimals. Moreover, such growth can take place within the typical lifetime of a protoplanetary gas disk. A noteworthy result is that, for a wide range of physically reasonable parameters, mutual collisions between planetesimals become significant when they reach sizes ∼100 km, irrespective of their birth size. This could provide an alternative explanation for the turnover point in the size distribution of the present-day asteroid belt. For the specific case of close binaries such as α Centauri, the role of snowball growth could be even more important. Indeed, it provides a safe way for bodies to grow through the problematic ∼1–50 km size range for which the perturbed environment of the binary can prevent mutual accretion of planetesimals. From a more general perspective, these preliminary results suggest that an efficient snowball growth phase provides a large amount of "room at the bottom" for theories of planet formation.

1165

and

We develop a general theory of buoyancy instabilities in the electron–ion plasma with the electron heat flux based not upon magnetohydrodynamic (MHD) equations, but using a multicomponent plasma approach in which the momentum equation is solved for each species. We investigate the geometry in which the background magnetic field is perpendicular to the gravity and stratification. General expressions for the perturbed velocities are given without any simplifications. Collisions between electrons and ions are taken into account in the momentum equations in a general form, permitting us to consider both weakly and strongly collisional objects. However, the electron heat flux is assumed to be directed along the magnetic field, which implies a weakly collisional case. Using simplifications justified for an investigation of buoyancy instabilities with electron thermal flux, we derive simple dispersion relations for both collisionless and collisional cases for arbitrary directions of the wave vector. Our dispersion relations considerably differ from that obtained in the MHD framework and conditions of instability are similar to Schwarzschild's criterion. This difference is connected with simplified assumptions used in the MHD analysis of buoyancy instabilities and with the role of the longitudinal electric field perturbation which is not captured by the ideal MHD equations. The results obtained can be applied to clusters of galaxies and other astrophysical objects.

1182

, , , , , , , , , and

We present the discovery of an extremely bright and extended lensed source from the second Red Sequence Cluster Survey (RCS2). RCSGA 032727-132609 is spectroscopically confirmed as a giant arc and counterimage of a background galaxy at z = 1.701, strongly lensed by the foreground galaxy cluster RCS2 032727-132623 at z = 0.564. The giant arc extends over ∼38'' and has an integrated r-band magnitude of 19.1, making it ∼20 times larger and ∼3.5 times brighter than the prototypical lensed galaxy MS1512-cB58. This is the brightest distant lensed galaxy in the universe known to date. We have collected photometry in nine bands, ranging from u to Ks, which densely sample the rest-frame UV and optical light, including the age-sensitive 4000 Å break. A lens model is constructed for the system and results in a robust total magnification of 2.04 ± 0.16 for the counterimage; we estimate an average magnification of 17.2 ± 1.4 for the giant arc based on the relative physical scales of the arc and counterimage on the sky. Fits of single-component spectral energy distribution models to the photometry result in a moderately young age, t = 80 ± 40 Myr, small amounts of dust, E(BV) ⩽ 0.11, and an exponentially declining star formation history with e-folding time τ = 10 − 50 Myr. After correcting for the lensing magnification, we find a stellar mass of M* ∼ 1010M and a current star formation rate (SFR) ⩽77 M yr−1. Allowing for episodic star formation, an underlying old burst could contain up to twice the mass inferred from single-component modeling. RCSGA 032727-132609 is typical of the known population of star-forming galaxies near this redshift in terms of its age and stellar mass. Its large magnification and spatial extent provide a unique opportunity to study the physical properties of an individual high-redshift star-forming galaxy in great detail, opening up a new window to the process of galaxy evolution between z = 1.7 and our local universe.

1193

, , , , , , , and

H2 pure-rotational emission lines are detected from warm (100–1500 K) molecular gas in 17/55 (31% of) radio galaxies at redshift z < 0.22 observed with the Spitzer IR Spectrograph. The summed H2 0–0 S(0)–S(3) line luminosities are L(H2) = 7 × 1038–2 × 1042 erg s−1, yielding warm H2 masses up to 2 × 1010M. These radio galaxies, of both FR radio morphological types, help to firmly establish the new class of radio-selected molecular hydrogen emission galaxies (radio MOHEGs). MOHEGs have extremely large H2 to 7.7 μm polycyclic aromatic hydrocarbon (PAH) emission ratios: L(H2)/L(PAH7.7) = 0.04–4, up to a factor 300 greater than the median value for normal star-forming galaxies. In spite of large H2 masses, MOHEGs appear to be inefficient at forming stars, perhaps because the molecular gas is kinematically unsettled and turbulent. Low-luminosity mid-IR continuum emission together with low-ionization emission line spectra indicates low-luminosity active galactic nuclei (AGNs) in all but three radio MOHEGs. The AGN X-ray emission measured with Chandra is not luminous enough to power the H2 emission from MOHEGs. Nearly all radio MOHEGs belong to clusters or close pairs, including four cool-core clusters (Perseus, Hydra, A2052, and A2199). We suggest that the H2 in radio MOHEGs is delivered in galaxy collisions or cooling flows, then heated by radio-jet feedback in the form of kinetic energy dissipation by shocks or cosmic rays.

1218

and

We characterize the changes in the longitudinal photospheric magnetic field during 38 X-class and 39 M-class flares within 65° of disk center using 1 minute GONG magnetograms. In all 77 cases, we identify at least one site in the flaring active region where clear, permanent, stepwise field changes occurred. The median duration of the field changes was about 15 minutes and was approximately equal for X-class and for M-class flares. The absolute values of the field changes ranged from the detection limit of ∼10 G to as high as ∼450 G in two exceptional cases. The median value was 69 G. Field changes were significantly stronger for X-class than for M-class flares and for limb flares than for disk-center flares. Longitudinal field changes less than 100 G tended to decrease longitudinal field strengths, both close to disk center and close to the limb, while field changes greater than 100 G showed no such pattern. Likewise, longitudinal flux strengths tended to decrease during flares. Flux changes, particularly net flux changes near disk center, correlated better than local field changes with GOES peak X-ray flux. The strongest longitudinal field and flux changes occurred in flares observed close to the limb. We estimate the change of Lorentz force associated with each flare and find that this is large enough in some cases to power seismic waves. We find that longitudinal field decreases would likely outnumber increases at all parts of the solar disk within 65° of disk center, as in our observations, if photospheric field tilts increase during flares as predicted by Hudson et al.

1238

, , , , , , , , and

We combine nulling interferometry at 10 μm using the MMT and Keck Telescopes with spectroscopy, imaging, and photometry from 3 to 100 μm using Spitzer to study the debris disk around β Leo over a broad range of spatial scales, corresponding to radii of 0.1 to ∼100 AU. We have also measured the close binary star o Leo with both Keck and MMT interferometers to verify our procedures with these instruments. The β Leo debris system has a complex structure: (1) relatively little material within 1 AU; (2) an inner component with a color temperature of ∼600 K, fitted by a dusty ring from about 2–3 AU; and (3) a second component with a color temperature of ∼120 K fitted by a broad dusty emission zone extending from about ∼5 AU to ∼55 AU. Unlike many other A-type stars with debris disks, β Leo lacks a dominant outer belt near 100 AU.

1256

, , , , and

We report the observation of a spectral enhancement in the magnetic field fluctuations measured by the MAG instrument on the Voyager 2 spacecraft during 4.5 hr on DOY 7, 1979 at a heliocentric radial position of 4.5 AU. This time period is contained within a solar wind rarefaction when the large-scale interplanetary magnetic field was nearly radial. The frequency range and polarization of the enhanced fluctuations are consistent with waves generated by newly ionized interstellar H+ and He+. We show sunward propagation of the waves via a cross-helicity analysis. We compare the observation with a theoretical model and find reasonable agreement given the model assumptions. This event is the first indication of pickup ion-generated waves seen at Voyager. It is also the first identification of pickup He+ waves by any spacecraft.

1262

and

We introduce an exact Bayesian approach to search for non-Gaussianity of local type in cosmic microwave background (CMB) radiation data. Using simulated CMB temperature maps, the newly developed technique is compared against the conventional frequentist bispectrum estimator. Starting from the joint probability distribution, we obtain analytic expressions for the conditional probabilities of the primordial perturbations given the data, and for the level of non-Gaussianity, fNL, given the data and the perturbations. We propose Hamiltonian Monte Carlo sampling as a means to derive realizations of the primordial fluctuations from which we in turn sample fNL. Although computationally expensive, this approach allows us to construct exactly the full target posterior probability distribution. When compared to the frequentist estimator, applying the Bayesian method to Gaussian CMB maps provides consistent results. For the analysis of non-Gaussian maps, however, the error bars on fNL do not show excess variance within the Bayesian framework. This finding is of particular relevance in the light of upcoming high-precision CMB measurements obtained by the Planck satellite mission.

1270

, , , , , , , , , et al

We present results from Submillimeter Array (SMA) 860 μm subarcsecond astrometry and multiwavelength observations of the brightest millimeter (S1.1mm = 8.4 mJy) source, SSA22-AzTEC1, found near the core of the SSA22 protocluster that is traced by Lyα-emitting galaxies at z = 3.09. We identify a 860 μm counterpart with a flux density of S860 μm = 12.2 ± 2.3 mJy and absolute positional accuracy that is better than 0farcs3. At the SMA position, we find radio-to-mid-infrared counterparts, whilst no object is found in Subaru optical and near-infrared deep images at wavelengths ⩽1 μm (J > 25.4 in AB, 2σ). The photometric redshift estimate, using flux densities at ⩾24 μm, indicates zphot = 3.19+0.26−0.35, consistent with the protocluster redshift. We then model the near-to-mid-infrared spectral energy distribution (SED) of SSA22-AzTEC1, and find that the SED modeling requires a large extinction (AV≈ 3.4 mag) of starlight from a stellar component with Mstar ∼ 1010.9M, assuming z = 3.1. Additionally, we find a significant X-ray counterpart with a very hard spectrum (Γeff = −0.34+0.57−0.61), strongly suggesting that SSA22-AzTEC1 harbors a luminous active galactic nuclei (AGNs; LX ≈ 3 × 1044 erg s−1) behind a large hydrogen column (NH ∼ 1024 cm−2). The AGN, however, is responsible for only ∼10% of the bolometric luminosity of the host galaxy, and therefore the star formation activity likely dominates the submillimeter emission. It is possible that SSA22-AzTEC1 is the first example of a protoquasar growing at the bottom of the gravitational potential underlying the SSA22 protocluster.

1283

and

Particle-in-cell (PIC) simulations of relativistic shocks are in principle capable of predicting the spectra of photons that are radiated incoherently by the accelerated particles. The most direct method evaluates the spectrum using the fields given by the Liénard–Wiechart potentials. However, for relativistic particles this procedure is computationally expensive. Here we present an alternative method that uses the concept of the photon formation length. The algorithm is suitable for evaluating spectra both from particles moving in a specific realization of a turbulent electromagnetic field or from trajectories given as a finite, discrete time series by a PIC simulation. The main advantage of the method is that it identifies the intrinsic spectral features and filters out those that are artifacts of the limited time resolution and finite duration of input trajectories.

1296

, , , , and

K-shell photoabsorption cross sections for the isonuclear C i–C iv ions have been computed using the R-matrix method. Above the K-shell threshold, the present results are in good agreement with the independent-particle results of Reilman & Manson. Below threshold, we also compute the strong 1snp absorption resonances with the inclusion of important spectator Auger broadening effects. For the lowest 1s → 2p, 3p resonances, comparisons to available C ii, C iii, and C iv experimental results show good agreement in general for the resonance strengths and positions. Our results also provide detailed information on the C i K-shell photoabsorption cross section including the strong resonance features, since very limited laboratory experimental data exist. The resultant R-matrix cross sections are then used to model the Chandra X-ray absorption spectrum of the blazar Mkn 421.

1305

The next generation of proposed galaxy surveys will increase the number of galaxies with photometric redshift identifications by two orders of magnitude, drastically expanding both the redshift range and detection threshold from the current state of the art. Obtaining spectra for a fair subsample of these new data could be cumbersome and expensive. However, adequate calibration of the true redshift distribution of galaxies is vital to tapping the potential of these surveys to illuminate the processes of galaxy evolution and to constrain the underlying cosmology and growth of structure. We examine here an alternative to direct spectroscopic follow-up: calibration of the redshift distribution of photometric galaxies via cross-correlation with an overlapping spectroscopic survey whose members trace the same density field. We review the theory, develop a pipeline to implement the method, apply it to mock data from N-body simulations, and examine the properties of this redshift distribution estimator. We demonstrate that the method is generally effective, but the estimator is weakened by two main factors. One is that the correlation function of the spectroscopic sample must be measured in many bins along the line of sight, which renders the measurement noisy and interferes with high-quality reconstruction of the photometric redshift distribution. Also, the method is not able to disentangle the photometric redshift distribution from redshift dependence in the bias of the photometric sample. We establish the impact of these factors using our mock catalogs. We conclude that it may still be necessary to spectroscopically follow up a fair subsample of the photometric survey data. Nonetheless, it is significant that the method has been successfully implemented on mock data, and with further refinement it may appreciably decrease the number of spectra that will be needed to calibrate future surveys.

1316

, , and

We present a model for the unusual X-ray pulse profiles of PSR J0821−4300, the compact central object in supernova remnant Puppis A. We show that a pair of thermal, antipodal hot spots on the neutron star (NS) surface is able to fully account for the pulsar's double blackbody spectrum and energy-dependent pulse profile, including the observed 180° phase reversal at ≈1.2 keV. By comparing the recorded pulse modulation and phase to the model predictions, we strongly constrain the hot-spot pole (ξ) and the line-of-sight (ψ) angles with respect to the spin axis. For a nominal radius of R = 12 km and distance D = 2.2 kpc, we find (ξ, ψ) = (86°, 6°), with 1σ error ellipse of (2°, 1°); this solution is degenerate in the two angles. The best-fit spectral model for this geometry requires that the temperatures of the two emission spots differ by a factor of 2 and their areas by a factor of ∼20. Including a cosine-beamed pattern for the emitted intensity modifies the result, decreasing the angles to (84°, 3°); however this model is not statistically distinguishable from the isotropic emission case. We also present a new upper limit on the period derivative of $\dot{P} < 3.5 \times 10^{-16}$ (2σ), which limits the global dipole magnetic field to Bs < 2.0 × 1011 G, confirming PSR J0821−4300 as an "anti-magnetar." We discuss the results in the context of observations and theories of nonuniform surface temperature on isolated NSs of both weak and strong magnetic field. To explain the nonuniform temperature of PSR J0821−4300 may require a crustal field that is much stronger than the external, global dipole field.

1325

, , , , , and

We present the column densities of heavy elements and dust depletion studies in two strong Mg ii absorption systems at z ∼ 1.4 displaying the 2175 Å dust extinction feature. Column densities are measured from low-ionization absorption lines using an Apparent Optical Depth Method on the Keck/ESI spectra. We find that the dust depletion patterns resemble that of cold diffuse clouds in the Milky Way (MW). The values, [Fe/Zn] ≈−1.5 and [Si/Zn]<−0.67, are among the highest dust depletion measured for quasar absorption line systems. In another 2175 Å absorber at z = 1.64 toward the quasar SDSS J160457.50+220300.5, Noterdaeme et al. reported a similar dust depletion measurement ([Fe/Zn] = −1.47 and [Si/Zn] = −1.07) and detected C i and CO absorption lines on its VLT/UVES spectrum. We conclude that heavy dust depletion (i.e., a characteristic of cold dense clouds in MW) is required to produce a pronounced 2175 Å extinction bump.

1336

, , , , , and

We present results of a 12CO J = 3–2 survey of 125 nearby galaxies obtained with the 10 m Heinrich Hertz Telescope, with the aim to characterize the properties of warm and dense molecular gas in a large variety of environments. With an angular resolution of 22'', 12CO 3–2 emission was detected in 114 targets. Based on 61 galaxies observed with equal beam sizes the 12CO 3–2/1–0 integrated line intensity ratio R31 is found to vary from 0.2 to 1.9, with an average value of 0.81. No correlations are found for R31 to Hubble-type and far-infrared luminosity. Possible indications for a correlation with inclination angle and the 60 μm/100 μm color temperature of the dust are not significant. Higher R31 ratios than in "normal" galaxies, hinting at enhanced molecular excitation, may be found in galaxies hosting active galactic nuclei. Even higher average values are determined for galaxies with bars or starbursts, the latter being identified by the ratio of infrared luminosity versus isophotal area, log [(LFIR/L)/(D225/kpc2)] > 7.25. (U)LIRGs are found to have the highest averaged R31 value. This may be a consequence of particularly vigorous star formation activity, triggered by galaxy interaction and merger events. The nuclear CO luminosities are slightly sublinearly correlated with the global FIR luminosity in both the 12CO J = 3–2 and the 1–0 lines. The slope of the log–log plots rises with compactness of the respective galaxy sub-sample, indicating a higher average density and a larger fraction of thermalized gas in distant luminous galaxies. While linear or sublinear correlations for the 12CO J = 3–2 line can be explained, if the bulk of the observed J = 3–2 emission originates from the molecular gas with densities below the critical one, the case of the 12CO J = 1–0 line with its small critical density remains a puzzle.

1357

, , , , , , , and

Observational and theoretical evidence suggests that high-energy Galactic cosmic rays are primarily accelerated by supernova remnants. If also true for low-energy cosmic rays, the ionization rate near a supernova remnant should be higher than in the general Galactic interstellar medium (ISM). We have searched for H+3 absorption features in six sight lines which pass through molecular material near IC 443—a well-studied case of a supernova remnant interacting with its surrounding molecular material—for the purpose of inferring the cosmic-ray ionization rate in the region. In two of the sight lines (toward ALS 8828 and HD 254577) we find large H+3 column densities, N(H+3) ≈ 3 × 1014 cm−2, and deduce ionization rates of ζ2 ≈ 2 × 10−15 s−1, about five times larger than inferred toward average diffuse molecular cloud sight lines. However, the 3σ upper limits found for the other four sight lines are consistent with typical Galactic values. This wide range of ionization rates is likely the result of particle acceleration and propagation effects, which predict that the cosmic-ray spectrum and thus ionization rate should vary in and around the remnant. While we cannot determine if the H+3 absorption arises in post-shock (interior) or pre-shock (exterior) gas, the large inferred ionization rates suggest that IC 443 is in fact accelerating a large population of low-energy cosmic rays. Still, it is unclear whether this population can propagate far enough into the ISM to account for the ionization rate inferred in diffuse Galactic sight lines.

1366

and

Fermi Gamma-ray Space Telescope measurements of spectra, variability timescales, and maximum photon energies give lower limits to the apparent jet powers and, through γγ opacity arguments, the bulk Lorentz factors of relativistic jets. The maximum cosmic-ray particle energy is limited by these two quantities in Fermi acceleration scenarios. Recent data are used to constrain the maximum energies of cosmic-ray protons and Fe nuclei accelerated in colliding shells of gamma-ray bursts (GRBs) and blazars. The Fermi results indicate that Fe rather than protons are more likely to be accelerated to ultra-high energies in active galactic nuclei (AGNs), whereas powerful GRBs can accelerate both protons and Fe to ≳1020 eV. Emissivity of nonthermal radiation from radio galaxies and blazars is estimated from the First Fermi AGN Catalog, and shown to favor BL Lac objects and FR1 radio galaxies over flat spectrum radio quasars, FR2 radio galaxies, and long-duration GRBs as the sources of ultra-high-energy cosmic rays.

1373

, , , , , , , , , and

We present results for 19 "Lyman-break analogs" observed with Keck/OSIRIS with an adaptive-optics-assisted spatial resolution of less than 200 pc. We detect satellites/companions, diffuse emission, and velocity shear, all with high signal-to-noise ratios. These galaxies present remarkably high velocity dispersion along the line of sight (∼70 km s−1), much higher than standard star-forming spirals in the low-redshift universe. We artificially redshift our data to z ∼ 2.2 to allow for a direct comparison with observations of high-z Lyman-break galaxies and find striking similarities between both samples. This suggests that either similar physical processes are responsible for their observed properties, or, alternatively, that it is very difficult to distinguish between different mechanisms operating in the low- versus high-redshift starburst galaxies based on the available data. The comparison between morphologies in the UV/optical continuum and our kinemetry analysis often shows that neither is by itself sufficient to confirm or completely rule out the contribution from recent merger events. We find a correlation between the kinematic properties and stellar mass, in that more massive galaxies show stronger evidence for a disk-like structure. This suggests a co-evolutionary process between the stellar mass buildup and the formation of morphological and dynamical substructure within the galaxy.

1389

, , and

We present a map of the diffuse ultraviolet cosmic background in two wavelength bands (FUV: 1530 Å and NUV: 2310 Å) over almost 75% of the sky using archival data from the Galaxy Evolution Explorer (GALEX) mission. Most of the diffuse flux is due to dust-scattered starlight and follows a cosecant law with slopes of 545 photons cm−2 s−1 sr−1 Å−1 and 433 photons cm−2 s−1 sr−1 Å−1 in the FUV and NUV bands, respectively. There is a strong correlation with the 100 μm Infrared Astronomy Satellite (IRAS) flux with an average UV/IR ratio of 300 photons cm−2 s−1 sr−1 Å−1 (MJy sr−1)−1 in the FUV band and that of 220 photons cm−2 s−1 sr−1 Å−1 (MJy sr−1)−1 in the NUV band but with significant variations over the sky. In addition to the large-scale distribution of the diffuse light, we note a number of individual features including bright spots around the hot stars Spica and Achernar.

1396

, , , , , , , , , et al

Type-IIn supernovae (SNe IIn), which are characterized by strong interaction of their ejecta with the surrounding circumstellar matter (CSM), provide a unique opportunity to study the mass-loss history of massive stars shortly before their explosive death. We present the discovery and follow-up observations of an SN IIn, PTF 09uj, detected by the Palomar Transient Factory (PTF). Serendipitous observations by Galaxy Evolution Explorer (GALEX) at ultraviolet (UV) wavelengths detected the rise of the SN light curve prior to the PTF discovery. The UV light curve of the SN rose fast, with a timescale of a few days, to a UV absolute AB magnitude of about −19.5. Modeling our observations, we suggest that the fast rise of the UV light curve is due to the breakout of the SN shock through the dense CSM (n ≈ 1010 cm−3). Furthermore, we find that prior to the explosion the progenitor went through a phase of high mass-loss rate (∼0.1 M yr−1) that lasted for a few years. The decay rate of this SN was fast relative to that of other SNe IIn.

1402

and

The study of cold atomic hydrogen (H i) in molecular clouds has the potential to significantly improve our understanding of the formation of molecular clouds, the atomic to molecular hydrogen conversion process, and star formation. Results from the first large survey of H i Narrow Self Absorption (HINSA) features outside of the Taurus Molecular Cloud Complex are presented. Previous hypotheses that cold atomic hydrogen represents the third largest constituent of molecular clouds are confirmed with a mean abundance of 10−2.8 in comparison with the total proton column density. HINSA features are observed in over 80% of the observed clouds, accompanied by indications that cold H i probably exists in all clouds. We find that HINSA features are observable to distances of at least 700 pc. Nine clouds have been mapped in detail revealing that HINSA abundances can vary significantly within a cloud both spatially and in an individual velocity component. Possible explanations for this phenomenon are briefly discussed.

1430

and

Neutral outflows have been detected in many ultraluminous infrared galaxies (ULIRGs) via the Na i D λλ5890, 5896 absorption-line doublet. For the first time, we have mapped and analyzed the two-dimensional kinematics of a cool neutral outflow in a ULIRG, F10565+2448, using the integral field unit on Gemini North to observe the Na i D feature. At the same time, we have mapped the ionized outflow with the [N ii] and Hα emission lines. We find a systemic rotation curve that is consistent with the rotation of the molecular disk determined from previous CO observations. The absorption lines show evidence of a nuclear outflow with a radial extent of at least 3 kpc, consistent with previous observations. The strength of the Na i D lines have a strong, spatially resolved correlation with reddening, suggesting that dust is present in the outflow. Surprisingly, the outflow velocities of the neutral gas show a strong asymmetry in the form of a major-axis gradient that is opposite in sign to disk rotation. This is inconsistent with entrained material rotating along with the galaxy or with a tilted minor-axis outflow. We hypothesize that this unusual behavior is due to an asymmetry in the distribution of the ambient gas. We also see evidence of asymmetric ionized outflow in the emission-line velocity map, which appears to be decoupled from the neutral outflow. Our results strengthen the hypothesis that ULIRG outflows differ in morphology from those in more quiescent disk galaxies.

1441

, , , , , , , , , et al

X-ray charge-coupled devices (CCDs) are the workhorse detectors of modern X-ray astronomy. Typically covering the 0.3–10.0 keV energy range, CCDs are able to detect photoelectric absorption edges and K shell lines from most abundant metals. New CCDs also offer resolutions of 30–50 (EE), which is sufficient to detect lines in hot plasmas and to resolve many lines shaped by dynamical processes in accretion flows. The spectral capabilities of X-ray CCDs have been particularly important in detecting relativistic emission lines from the inner disks around accreting neutron stars and black holes. One drawback of X-ray CCDs is that spectra can be distorted by photon "pile-up," wherein two or more photons may be registered as a single event during one frame time. We have conducted a large number of simulations using a statistical model of photon pile-up to assess its impacts on relativistic disk line and continuum spectra from stellar-mass black holes and neutron stars. The simulations cover the range of current X-ray CCD spectrometers and operational modes typically used to observe neutron stars and black holes in X-ray binaries. Our results suggest that severe photon pile-up acts to falsely narrow emission lines, leading to falsely large disk radii and falsely low spin values. In contrast, our simulations suggest that disk continua affected by severe pile-up are measured to have falsely low flux values, leading to falsely small radii and falsely high spin values. The results of these simulations and existing data appear to suggest that relativistic disk spectroscopy is generally robust against pile-up when this effect is modest.

1456

and

The propagation trajectories of the highest energy cosmic rays (HECRs) are deflected by not only intergalactic magnetic field but also Galactic magnetic field (GMF). These magnetic fields can weaken the positive correlation between the arrival directions of HECRs and the positions of their sources. In order to explore the effect of GMF on the expected correlation, we simulate the arrival distribution of protons with energy above 6 × 1019 eV taking several GMF models into account, and then test the correlation between the protons and their sources assumed in the simulation. The dependence of the correlation signals on GMF models is also investigated. The correlation can be observed by accumulating ∼200 protons in a half-hemisphere. The typical angular scale at which the positive signal of the correlation is maximized depends on the spiral component of the GMF model. That angular scale is ∼5° for bisymmetric spiral (BS) GMF models and ∼7° for axisymmetric spiral (AS) GMF models if the number density of HECR sources, ns, is ∼10−4 Mpc−3. An additional vertical (dipole) component of GMF affects these angular scales by 0fdg5–1°. The difference between the correlation signal for the BS models and that for the AS models is prominent in the northern sky. The significance of the positive correlation depends on source distribution. The probability that the number of simulated HECR events correlating with sources is smaller than the number of random events correlating with the same sources by chance is much less than 10−3 (∼3σ) in almost all the source distributions with ns = 10−4 Mpc−3 for detection of under 200 protons, but ∼10% of source distributions predict a chance probability more than 10−3 in the AS GMF model. In addition, we also briefly discuss the effect of GMF for heavy-nuclei-dominated composition.

1473

, , , , , , , , , and

Variations in the spatial configuration of the interstellar magnetic field (ISMF) near the Sun can be constrained by comparing the ISMF direction at the heliosphere found from the Interstellar Boundary Explorer (IBEX) spacecraft observations of a "Ribbon" of energetic neutral atoms (ENAs), with the ISMF direction derived from optical polarization data for stars within ∼40 pc. Using interstellar polarization observations toward ∼30 nearby stars within ∼90° of the heliosphere nose, we find that the best fits to the polarization position angles are obtained for a magnetic pole directed toward ecliptic coordinates of λ, β ∼ 263°, 37° (or galactic coordinates of ℓ, b ∼ 38°, 23°), with uncertainties of ±35° based on the broad minimum of the best fits and the range of data quality. This magnetic pole is 33° from the magnetic pole that is defined by the center of the arc of the ENA Ribbon. The IBEX ENA ribbon is seen in sight lines that are perpendicular to the ISMF as it drapes over the heliosphere. The similarity of the polarization and Ribbon directions for the local ISMF suggests that the local field is coherent over scale sizes of tens of parsecs. The ISMF vector direction is nearly perpendicular to the flow of local interstellar material (ISM) through the local standard of rest, supporting a possible local ISM origin related to an evolved expanding magnetized shell. The local ISMF direction is found to have a curious geometry with respect to the cosmic microwave background dipole moment.

1480

, , and

Based on the recent very deep near-infrared imaging of the Hubble Ultra Deep Field with WFC3 on the Hubble Space Telescope, five groups published the most probable samples of galaxies at z ∼ 8, selected by the so-called dropout method or photometric redshift; e.g., Y105-dropouts (Y105J125 > 0.8). These studies are highly useful for investigating both the early star formation history of galaxies and the sources of cosmic re-ionization. In order to better understand these issues, we carefully examine whether there are low-z interlopers in the samples of z ∼ 8 galaxy candidates. We focus on the strong emission-line galaxies at z ∼ 2 in this paper. Such galaxies may be selected as Y105-dropouts since the [O iii] λ5007 emission line is redshifted into the J125 band. We have found that the contamination from such low-z interlopers is negligibly small. Therefore, all objects found by the five groups are free from this type of contamination. However, it remains difficult to extract real z ∼ 8 galaxies because all the sources are very faint and the different groups have found different candidates. With this in mind, we construct a robust sample of eight galaxies at z ∼ 8 from the objects found by the five groups: each of these eight objects has been selected by at least two groups. Using this sample, we discuss their UV continuum slope. We also discuss the escape fraction of ionizing photons adopting various metallicities. Our analysis suggests that massive stars forming in low-metallicity gas (Z ∼ 5 × 10−4Z) can be responsible for the completion of cosmic re-ionization if the escape fraction of the ionizing continuum from galaxies is as large as 0.5, and this is consistent with the observed blue UV continua.

1491

and

From Two Micron All Sky Survey infrared photometry, we find two red clump (RC) populations coexisting in fields toward the Galactic bulge at latitudes |b|>5fdg5, ranging over ∼13° in longitude and 20° in latitude. These RC peaks indicate two stellar populations separated by ∼2.3 kpc; at (l, b) = (+1, − 8) the two RCs are located at 6.5 and 8.8 ± 0.2 kpc. The double-peaked RC is inconsistent with a tilted bar morphology. Most of our fields show the two RCs at roughly constant distance with longitude, also inconsistent with a tilted bar; however, an underlying bar may be present. Stellar densities in the two RCs change dramatically with longitude: on the positive longitude side the foreground RC is dominant, while the background RC dominates negative longitudes. A line connecting the maxima of the foreground and background populations is tilted to the line of sight by ∼20°±4°, similar to claims for the tilt of a Galactic bar. The distance between the two RCs decreases toward the Galactic plane; seen edge-on the bulge is X-shaped, resembling some extragalactic bulges and the results of N-body simulations. The center of this X is consistent with the distance to the Galactic center, although better agreement would occur if the bulge is 2–3 Gyr younger than 47 Tuc. Our observations may be understood if the two RC populations emanate, nearly tangentially, from the Galactic bar ends, in a funnel shape. Alternatively, the X, or double funnel, may continue to the Galactic center. From the Sun, this would appear peanut/box shaped, but X-shaped when viewed tangentially.

1503

, , and

Super star clusters (Mecl > 105M) are the largest stellar nurseries in our local Universe, containing hundreds of thousands to millions of young stars within a few light years. Many of these systems are found in external galaxies, especially in pairs of interacting galaxies, and in some dwarf galaxies, but relatively few in disk galaxies like our own Milky Way. We show that a possible explanation for this difference is the presence of shear in normal spiral galaxies which impedes the formation of the very large and dense super star clusters but prefers the formation of loose OB associations possibly with a less massive cluster at the center. In contrast, in interacting galaxies and in dwarf galaxies, regions can collapse without having a large-scale sense of rotation. This lack of rotational support allows the giant clouds of gas and stars to concentrate into a single, dense, and gravitationally bound system.

1509

, , , , , , , , , and

We report results from the observations of the well-studied TeV blazar Mrk 421 with the Swift and the Suzaku satellites in 2008 December. During the observation, Mrk 421 was found in a relatively low activity state, with the corresponding 2–10 keV flux of 3 × 10−10 erg s−1 cm−2. For the purpose of robustly constraining the UV-to-X-ray emission continuum we selected only the data corresponding to truly simultaneous time intervals between Swift and Suzaku, allowing us to obtain a good-quality, broadband spectrum despite a modest length (0.6 ks) exposure. We analyzed the spectrum with the parametric forward-fitting SYNCHROTRON model implemented in XSPEC assuming two different representations of the underlying electron energy distribution, both well motivated by the current particle acceleration models: a power-law distribution above the minimum energy γmin with an exponential cutoff at the maximum energy γmax, and a modified ultra-relativistic Maxwellian with an equilibrium energy γeq. We found that the latter implies unlikely physical conditions within the blazar zone of Mrk 421. On the other hand, the exponentially moderated power-law electron distribution gives two possible sets of the model parameters: (1) flat spectrum dN'e/dγ ∝ γ−1.91 with low minimum electron energy γmin < 103, and (2) steep spectrum ∝γ−2.77 with high minimum electron energy γmin ≃ 2 × 104. We discuss different interpretations of both possibilities in the context of a diffusive acceleration of electrons at relativistic, sub- or superluminal shocks. We also comment on exactly how the γ-ray data can be used to discriminate between the different proposed scenarios.

1517

, , and

Non-blazar active galactic nuclei (AGNs) have been recently established as a class of gamma-ray sources. M87, a nearby representative of this class, shows fast TeV variability on timescales of a few days. We suggest a scenario of flare gamma-ray emission in non-blazar AGNs based on a red giant (RG) interacting with the jet at the base. We solve the hydrodynamical equations that describe the evolution of the envelope of an RG blown by the impact of the jet. If the RG is at least slightly tidally disrupted by the supermassive black hole, enough stellar material will be blown by the jet, expanding quickly until a significant part of the jet is shocked. This process can render suitable conditions for energy dissipation and proton acceleration, which could explain the detected day-scale TeV flares from M87 via proton–proton collisions. Since the radiation produced would be unbeamed, such an event should be mostly detected from non-blazar AGNs. They may be frequent phenomena, detectable in the GeV–TeV range even up to distances of ∼1 Gpc for the most powerful jets. The counterparts at lower energies are expected to be not too bright. M87, and nearby non-blazar AGNs in general, can be fast variable sources of gamma-rays through RG/jet interactions.

1524

, , , , , , and

We investigate the stellar populations of Lyα emitters (LAEs) at z = 5.7 and 6.6 in a 0.65 deg2 sky of the Subaru/XMM-Newton Deep Survey (SXDS) Field, using deep images taken with the Subaru/Suprime-Cam, United Kingdom Infrared Telescope/Wide Field Infrared Camera, and Spitzer/Infrared Array Camera (IRAC). We produce stacked multiband images at each redshift from 165 (z = 5.7) and 91 (z = 6.6) IRAC-undetected objects to derive typical spectral energy distributions (SEDs) of z ∼ 6–7 LAEs for the first time. The stacked LAEs have as blue UV continua as the Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3) z-dropout galaxies of similar MUV, with a spectral slope β ∼ −3, but at the same time they have red UV-to-optical colors with detection in the 3.6 μm band. Using SED fitting we find that the stacked LAEs have low stellar masses of ∼(3–10) × 107M, very young ages of ∼1–3 Myr, negligible dust extinction, and strong nebular emission from the ionized interstellar medium, although the z = 6.6 object is fitted similarly well with high-mass models without nebular emission; inclusion of nebular emission reproduces the red UV-to-optical colors while keeping the UV colors sufficiently blue. We infer that typical LAEs at z ∼ 6–7 are building blocks of galaxies seen at lower redshifts. We find a tentative decrease in the Lyα escape fraction from z = 5.7 to 6.6, which may imply an increase in the intergalactic medium neutral fraction. From the minimum contribution of nebular emission required to fit the observed SEDs, we place an upper limit on the escape fraction of ionizing photons of fionesc ∼ 0.6 at z = 5.7 and ∼0.9 at z = 6.6. We also compare the stellar populations of our LAEs with those of stacked HST/WFC3 z-dropout galaxies.

1536

, , , and

We explore the effect of the magnetic field when using realistic three-dimensional convection experiments to determine solar element abundances. By carrying out magnetoconvection simulations with a radiation-hydro code (the Copenhagen stagger code) and through a posteriori spectral synthesis of three Fe i lines, we obtain evidence that moderate amounts of mean magnetic flux cause a noticeable change in the derived equivalent widths compared with those for a non-magnetic case. The corresponding Fe abundance correction for a mean flux density of 200 G reaches up to ∼0.1 dex in magnitude. These results are based on space- and time-averaged line profiles over a time span of 2.5 solar hours in the statistically stationary regime of the convection. The main factors causing the change in equivalent widths, namely the Zeeman broadening and the modification of the temperature stratification, act in different amounts and, for the iron lines considered here, in opposite directions; yet, the resulting |Δlog epsilon(Fe)| coincides within a factor of 2 in all of them, even though the sign of the total abundance correction is different for the visible and infrared lines. We conclude that magnetic effects should be taken into account when discussing precise values of the solar and stellar abundances and that an extended study is warranted.

1542

, , , , and

We consider the generation of electric currents in the solar chromosphere where the ionization level is typically low. We show that ambient electrons become magnetized even for weak magnetic fields (30 G); that is, their gyrofrequency becomes larger than the collision frequency while ion motions continue to be dominated by ion–neutral collisions. Under such conditions, ions are dragged by neutrals, and the magnetic field acts as if it is frozen-in to the dynamics of the neutral gas. However, magnetized electrons drift under the action of the electric and magnetic fields induced in the reference frame of ions moving with the neutral gas. We find that this relative motion of electrons and ions results in the generation of quite intense electric currents. The dissipation of these currents leads to resistive electron heating and efficient gas ionization. Ionization by electron–neutral impact does not alter the dynamics of the heavy particles; thus, the gas turbulent motions continue even when the plasma becomes fully ionized, and resistive dissipation continues to heat electrons and ions. This heating process is so efficient that it can result in typical temperature increases with altitude as large as 0.1–0.3 eV km−1. We conclude that this process can play a major role in the heating of the chromosphere and corona.

1551

, , , , , and

The diffuse high-latitude Hα background is widely believed to be predominantly the result of in situ recombination of ionized hydrogen in the warm interstellar medium of the Galaxy. Instead, we show that both a substantial fraction of the diffuse high-latitude Hα intensity in regions dominated by Galactic cirrus dust and much of the variance in the high-latitude Hα background are the result of scattering by interstellar dust of Hα photons originating elsewhere in the Galaxy. We provide an empirical relation, which relates the expected scattered Hα intensity to the IRAS 100 μm diffuse background intensity, applicable to about 81% of the entire sky. The assumption commonly made in reductions of cosmic microwave background observations, namely that the observed all-sky map of diffuse Hα light is a suitable template for Galactic free–free foreground emission, is found to be in need of reexamination.

1561

, , , and

This paper considers gravitational perturbations in geometrically thin disks with rotation curves dominated by a central object, but with substantial contributions from magnetic pressure and tension. The treatment is general, but the application is to the circumstellar disks that arise during the gravitational collapse phase of star formation. We find the dispersion relation for spiral density waves in these generalized disks and derive the stability criterion for axisymmetric (m = 0) disturbances (the analog of the Toomre parameter QT) for any radial distribution of the mass-to-flux ratio λ. The magnetic effects work in two opposing directions: on one hand, magnetic tension and pressure stabilize the disk against gravitational collapse and fragmentation; on the other hand, they also lower the rotation rate making the disk more unstable. For disks around young stars the first effect generally dominates, so that magnetic fields allow disks to be stable for higher surface densities and larger total masses. These results indicate that magnetic fields act to suppress the formation of giant planets through gravitational instability. Finally, even if gravitational instability can form a secondary body, it must lose an enormous amount of magnetic flux in order to become a planet; this latter requirement represents an additional constraint for planet formation via gravitational instability and places a lower limit on the electrical resistivity.