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ABSTRACT

We derive the evolution equations describing a thin axisymmetric disk of gas and stars with an arbitrary rotation
curve that is kept in a state of marginal gravitational instability and energy equilibrium due to the balance between
energy released by accretion and energy lost due to decay of turbulence. Rather than adopting a parameterized α
prescription, we instead use the condition of marginal gravitational instability to self-consistently determine the
position- and time-dependent transport rates. We show that there is a steady-state configuration for disks dominated
by gravitational instability, and that this steady state persists even when star formation is taken into account if the
accretion rate is sufficiently large. For disks in this state, we analytically determine the velocity dispersion, surface
density, and rates of mass and angular momentum transport as a function of the gas mass fraction, the rotation curve,
and the rate of external accretion onto the disk edge. We show that disks that are initially out of steady state will
evolve into it on the viscous timescale of the disk, which is comparable to the orbital period if the accretion rate is
high. Finally, we discuss the implications of these results for the structure of disks in a broad range of environments,
including high-redshift galaxies, the outer gaseous disks of local galaxies, and accretion disks around protostars.

Key words: accretion, accretion disks – galaxies: evolution – galaxies: ISM – instabilities – ISM: kinematics and
dynamics – turbulence
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1. INTRODUCTION

In the past few years, observational and theoretical advances
in many areas have led to intense study of the role of accretion
and gravitational instability in determining the structure and
rates of transport through disks. In the high-redshift universe,
clumpy star-forming galaxies at redshifts z ∼ 2–3 (e.g.,
Elmegreen et al. 2004, 2005; Genzel et al. 2008; Förster
Schreiber et al. 2009; Cresci et al. 2009) appear to be undergoing
rapid accretion, and also have velocity dispersions that are
much larger than those present in local galaxies. Numerical
simulations (e.g., Dekel et al. 2009b; Ceverino et al. 2010;
Agertz et al. 2009; Bournaud & Elmegreen 2009; McNally
et al. 2009) suggest that both the large velocity dispersion and
massive clump morphology are produced by a combination of
gravitational instability and rapid external accretion. Around
active galactic nuclei, radiative cooling pushes thin accretion
disks into a state of gravitational instability (Shlosman et al.
1990; Goodman 2003), and in this state their accretion rates
and structures may be determined by gravitationally driven
turbulence (Gammie 2001). Closer to home, accretion disks
around protostars of mass �1 M� are expected to experience
strong gravitational instability for a significant part of their lives
(Kratter et al. 2008) due to a combination of rapid accretion and
strong radiative cooling. Numerical simulations indicate that
the non-circular motions produced by this instability provide the
dominant mechanism for mass and angular momentum transport
in the disk (e.g., Krumholz et al. 2007b, 2009a).

Dozens of simulations of gravitational instability in disks have
been published, both for disks undergoing external accretion
(e.g., Vorobyov & Basu 2007, 2008, 2009; Kratter et al. 2010;
Machida et al. 2010) and for those in isolation (e.g., Lodato
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& Rice 2004, 2005; Kim & Ostriker 2007; Cai et al. 2008;
Cossins et al. 2009; Agertz et al. 2009; see Durisen et al.
2007 for a review of earlier work). Based on these, several
authors have presented one-dimensional time-dependent disk
evolution models in which the effects of gravitational instability
are approximated by an α prescription, with α obtained by fits
to simulation results or by general energy arguments (Goodman
2003; Hueso & Guillot 2005; Kratter et al. 2008; Rice &
Armitage 2009; Rice et al. 2010). Similar order-of-magnitude
energy arguments have been extended to the case of galactic
disks by Dekel et al. (2009a), Klessen & Hennebelle (2010),
and Elmegreen & Burkert (2010). In the realm of purely analytic
work, Bertin & Lodato (1999) present steady-state solutions for
self-gravitating disks with decaying turbulence, while Rafikov
(2009) and Clarke (2009) derived steady-state accretion rates for
disks in balance between radiative cooling and accretion-driven
heating in protostellar disks.

While the analytic and one-dimensional models have pro-
vided a good understanding of the basic mechanism of gravita-
tionally driven turbulence and transport in disks, they also suf-
fer from significant weaknesses. No analytic models published
to date consider the case of gravitational instability-dominated
disks that are time-dependent rather than in steady state. Most
previous work has been limited to a particular rotation curve
(e.g., Keplerian or flat), to a disk of pure gas without stars, and
to a disk that is vertically supported by thermal pressure rather
than supersonic turbulence. As a result of these limitations, it is
not clear under what circumstances disks that are not in equilib-
rium can be expected to evolve into it, and it is not even clear
what the equilibrium state is for a star-forming, supersonically
turbulent disk such as a galactic disk.

Our goal is to improve this situation by developing a first-
principles theory for the evolution of a thin, supersonically
turbulent disk of star-forming gas in a state of marginal
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gravitational stability, driven by a specified rate of external ac-
cretion. The only assumptions we make are (1) that the disk
maintains a state of marginal gravitational instability (Q = 1)
at all times and (2) the rate of energy loss due to radiative cool-
ing can be parameterized as a certain fraction of the energy per
crossing time of the disk scale height. We do not assume that the
disk is in steady state or that it is characterized by any particular
rotation curve. From these assumptions, in Section 2 we de-
rive equations describing the instantaneous, position-dependent
rates of mass, energy, and angular momentum transport, and the
time evolution of the disk surface density and velocity disper-
sion. In Section 3, we show that these equations admit an exact
steady-state solution, and we derive the steady-state profiles of
surface density, velocity dispersion, and transport of mass, en-
ergy, and angular momentum. In Section 4, we show that disks
that are not in the steady state will evolve toward it, and that for
high accretion rates this evolution occurs on an orbital timescale.
Finally, in Section 5 we discuss the implications of our findings,
and we summarize in Section 6.

2. EVOLUTION EQUATIONS

2.1. Mass, Angular Momentum, and Energy Transport

We begin from the equations describing the evolution of a
viscous fluid in a gravitational field that is in the process of
turning its mass into collisionless stars. These are the equation
of continuity, the Navier–Stokes equation, and the first law of
thermodynamics:

1

ρ

Dρ

Dt
= − ∇ · v − ρ̇∗

ρ
, (1)

ρ
Dv
Dt

= − ∇p − ρ∇ψ + ∇ · T, (2)

ρ
De

Dt
= − p∇ · v + Φ + Γ − Λ. (3)

Here ρ, v, e, and p are the gas density, velocity, specific internal
energy, and pressure, respectively, ρ̇∗ is the rate per unit volume
at which gas mass turns into stellar mass, ψ is the gravitational
potential, T is the viscous stress tensor, Φ = T ij (∂vi/∂xj )
is the dissipation function, and Γ and Λ are the volumetric
rates of energy gain and loss due to non-fluid (e.g., radiative or
chemical) processes, respectively. Note that no terms associated
with star formation appear in the first law of thermodynamics
or the Navier–Stokes equations because star formation does not
alter the bulk velocity or specific internal energy of the gas.

We consider a thin, axisymmetric disk centered on the origin
lying in the plane z = 0. At every radius r, the disk is
characterized by a surface density Σ and a total thermal plus
non-thermal velocity dispersion σ . The material orbits the origin
with the angular velocity vφ and has a radial velocity vr � vφ .
In Appendix A, we show that for such a star-forming disk
Equations (1)–(3) imply

∂

∂t
Σ +

1

r

∂

∂r
(rΣvr ) = − Σ̇∗, (4)

Σ
(

∂j

∂t
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∂

∂r
j

)
= 1

2πr

∂

∂r
T , (5)

1

2
Σ

[
∂

∂t

(
v2

φ + 3σ 2
)

+ vr

∂

∂r

(
v2

φ + 3σ 2 + 2ψ
)]

+
1

r

∂

∂r
(rΣvrσ

2) = 1

2πr

∂

∂r
(ΩT ) + G − L, (6)

where

T = 2π

∫
r2Trφ dz (7)

is the viscous torque, j = rvφ is the specific angular momentum,
Ω = vφ/r is the angular velocity, β = ∂ ln vφ/∂ ln r , and
G = ∫

Γ dz and L = ∫
Λ dz are the vertically integrated rates of

non-fluid energy gain and loss, respectively. Equations (4)–(6)
are the standard equations of mass, angular momentum, and
energy conservation, respectively, for a thin disk (e.g., Balbus
& Hawley 1998) generalized to the case of a supersonically
turbulent gas that is forming stars.

If we assume that the disk is always close to radial force
balance and that the potential varies slowly in time then we
have ∂ψ/∂r ≈ v2

φ/r and ∂j/∂t ≈ 0. Using these conditions in
Equations (4)–(6), we arrive at the evolution equations for Σ and
σ :

∂Σ
∂t

= 1

2π (β + 1)rvφ

[
β(β + 1) + r

∂β

∂r

(β + 1)r

(
∂T
∂r

)
− ∂2T

∂r2

]
− Σ̇∗,

(8)
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∂t
= G − L

3σΣ
+

1

6πrΣ

[
(β − 1)

vφ

r2σ
T

+
β2σ + σ

(
r

dβ

dr
+ β

)
− 5(β + 1)r ∂σ

∂r

(β + 1)2rvφ

(
∂T
∂r

)

− σ

(β + 1)vφ

(
∂2T
∂r2

)]
. (9)

Finally, we note that the underlying assumption of our model
is that we can represent the transport processes in a disk
dominated by gravitational instability using a local viscosity.
This assumption is only valid in certain circumstances, and this
sets limits on the applicability of our model that we discuss in
Section 5.5.

2.2. Star Formation and Radiative Gain and Loss

Equations (8) and (9) fully specify the time evolution of the
system. The only physical approximations we have made thus
far are that the disk is thin and axisymmetric, and that turbulent
eddies on size scales of the disk scale height provide an effective
pressure proportional to the square of the turbulent velocity
dispersion. However, we have not yet determined the functions
describing the star formation rate Σ̇∗, the rates of radiative gain
and loss G and L, and the torque T . Since the physics involved
in these terms is complex, we proceed in a simple parameterized
manner.

For the star formation rate, we note that both observation
(e.g., Krumholz & Tan 2007; Bigiel et al. 2008; Evans et al.
2009) and theory (e.g., Krumholz & McKee 2005; Krumholz
et al. 2009b; Padoan & Nordlund 2010; Hennebelle & Chabrier
2009) indicate that molecular gas forms stars at a rate of ∼1% of
its mass per free-fall time. We compute the free-fall time using
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the mid-plane density; since the scale height is H = σ/Ω, this
is ρ = ΣΩ/σ . Thus, we adopt a star formation rate

Σ̇∗ = εffΣ
√

Gρ = εff

(
GΣ3Ω

σ

)1/2

, (10)

where εff ≈ 0.01. The true value of εff is likely to be
slightly higher than this, because the clouds where stars form
are generally denser than the mean mid-plane density in the
disk. Even with this correction, however, we can be confident
that εff � 0.1. Moreover, if a significant fraction of the
interstellar medium (ISM) is atomic rather than molecular, the
star formation rate is greatly reduced (e.g., Wyder et al. 2009;
Blanc et al. 2009), in which case εff can be much smaller.
More complex and accurate star formation laws are possible
(e.g., Krumholz et al. 2009b), but we will see below that such
increased accuracy is not necessary at this stage. However, we
do note that for a gaseous disk with Q = 1 (see Section 2.3,
Equation (13)) and a flat rotation curve (β = 0), Equation (10)
gives a star formation rate Σ̇∗ = 0.0067ΣΩ; in comparison,
Kennicutt (1998) reports an observed star formation rate Σ̇∗ =
0.011ΣΩ, identical to within the errors.5

For the energy loss rate, we note that numerous simulations of
turbulence show that it decays via radiative shocks on roughly
a crossing timescale (e.g., Stone et al. 1998; Mac Low et al.
1998). For the purpose of estimating the loss rate, we take the
characteristic length scale of the turbulence to be comparable
to the gas scale height H, so the crossing time is 1/Ω. This is
consistent with observations that show that turbulent power is
dominated by the largest scales. We also limit our attention to
galaxies where the total velocity dispersion is significantly in
excess of the thermal value, since these are the only galaxies
where one needs to explain the observed velocity dispersion by
appealing to physics other than radiative balance. Thus, we take
the kinetic energy per unit area to be (3/2)Σσ 2. The condition
that the disk lose this amount of energy per crossing time of the
disk scale height then reduces to

L = ηΣσ 2Ω, (11)

where η is a dimensionless number of order unity. As a fiducial
parameter we adopt η = 3/2, which corresponds to radiating
away the full kinetic energy every scale height-crossing time. In
disks where the velocity dispersion is primarily thermal rather
than non-thermal, the loss rate will assume a different functional
form (e.g., Rafikov 2009), but the remainder of our analysis will
be unchanged.

The gain rate is much more complex, since it involves
turbulent motions generated by star formation. Since we are
interested in systems where gravitationally driven turbulence
dominates, however, we make the extreme assumption that
G = 0. We return to the question of the real value of G in
Section 5.3.

2.3. Gravitational Stability and the Torque Equation

We now turn to the central hypothesis of our model, which is
that a self-gravitating disk will adjust its torque, and therefore its
radial mass flux, so as to remain in a state of marginal stability.
This hypothesis has also been investigated in the models of

5 The coefficient reported in Kennicutt (1998) is 0.017 rather than 0.011. The
reduction to 0.011 comes from replacing the Salpeter (1955) IMF used in
Kennicutt’s work with a Chabrier (2005) IMF.

Burkert et al. (2010). For a disk of gas plus stars, the parameter
that describes its stability is (Rafikov 2001)

Q(q)−1 = 2Q−1
∗

1

q

[
1 − e−q2

I0(q2)
]

+2Q−1
g R

q

1 + q2R2
, (12)

where

Q∗ = κσ∗
πGΣ∗

Qg = κσ

πGΣ
R = σ

σ∗
, (13)

and I0 is the Bessel function of order zero. Here Σ∗ and σ∗ are
the surface density and velocity dispersion of stars, respectively,
κ = [2(β + 1)]1/2Ω is the epicyclic frequency, and q = kσ∗/κ is
the dimensionless wavenumber of the mode in question. Modes
for which Q(q) < 1 are unstable. Note that Romeo et al. (2010)
have proposed a generalization of this condition for the case
of gas with a scale-dependent velocity dispersion, as expected
for turbulence, but for simplicity we use the Rafikov (2001)
criterion instead.

It is not generally possible to find the minimum value of Q(q)
analytically. However, we can obtain a significant simplification
if we focus on the most interesting cases for gravitationally
driven turbulence. In disks at high redshift there has not been
time for the stars and gas to evolve so that their velocity
dispersions are very different—see Section 5.2 for a further
discussion of this point. For these disks, we therefore adopt
σ∗ = σ . In this case, the expression

Q = min(Q(q)) ≈
(

1

Qg

+
1

Q∗

)−1

= κσ

πG(Σ + Σ∗)
(14)

is accurate to better than 7%. With this approximation, the
condition for a disk to remain marginally stable at Q = 1
becomes

0 = ∂Q

∂σ

∂σ

∂t
+

∂Q

∂Σ
∂Σ
∂t

+
∂Q

∂Σ∗

∂Σ∗
∂t

(15)

= 1

σ

∂σ

∂t
− 1

Σ + Σ∗

(
∂Σ
∂t

+
∂Σ∗
∂t

)
. (16)

Plugging in our expressions for the temporal derivatives of σ , Σ,
and Σ∗, we obtain an equation that describes the torque required
to maintain Q = 1:

f2
∂2T
∂r2

+ f1
∂T
∂r

+ f0T = F (17)

with

f0 =
[

β − 1

6
√

2(β + 1)

]
G

fgr2σ 3
, (18)

f1 = − (3fg − 1)rσ dβ

dr
− (β + 1)

[
(3fg − 1)βσ + 5r ∂σ

∂r

]
6
√

2(β + 1)5
,

× G

fgrv
2
φσ

(19)

f2 =
[

3fg − 1

6
√

2(β + 1)3

]
G

fgv
2
φσ

, (20)
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F = ηvφ

3r
, (21)

where fg = Σ/(Σ + Σ∗) is the gas fraction in the disk, and
we have used Q = 1 to replace any dependence on Σ with a
dependence on σ and fg. We refer to this as the torque equation.
Note that in deriving Equation (17) we have implicitly assumed
that stars do not migrate radially from their formation locations.
If we were to make the opposite assumption that stars and gas
move together, then the combined gas plus star disk would act
essentially like a purely gaseous one, except that the stars would
be dissipation free. The corresponding torque equation is simply
Equation (17) with η replaced by ηfg , and fg → 1 in all other
terms.

The other interesting location to consider for gravitationally
driven turbulence is in outer parts of present-day disks. In these
regions, star formation occurs at a negligible rate, and σ∗ � σ .
In this case Q ≈ Qg , and a little calculation shows that the
torque equation is simply (17) with fg = 1 everywhere. The
stars simply become irrelevant for gravitational stability. Thus,
Equation (17), with the appropriate choice of fg and η, is capable
of representing both a present-day outer galaxy disk and a high-
redshift disk.

To finish specifying the torque, we must provide boundary
conditions for Equation (17). One boundary condition comes
from fixing the external accretion rate onto the galaxy to a value
Ṁ = Ṁext (so ∂T /∂r = −vφ(β +1)Ṁext) at the disk outer edge,
r = R. We imagine the inflow rate at this radius to be set by
cosmological infall, which occurs at a rate unaffected by what
happens in the disk. The other boundary condition depends on
how we handle the inner boundary. If we imagine that our model
applies all the way to r = 0, we must find a solution that remains
regular in the vicinity of the singular point there. We show below
that there does exist a steady-state solution that is regular at
r = 0 and has the specified accretion rate Ṁ = Ṁext at r = R.
Outside of that steady state it is not possible to simultaneously
have regularity at r = 0 and an externally imposed accretion
rate at r = R, so we must instead truncate the model at some
radius r0 > 0, where we imagine that a stellar bulge or some
other non-disky structure forms. In that case, we require that
the torque have a small value at r = r0, so that the inner bulge
region does not do work on the disk.

The evolution of the system is now fully specified. At any
given time, Equation (17) specifies the viscous torque. That
torque in turn sets the time evolution of Σ, σ , and Σ∗ via
Equations (8), (9), and (10), respectively. Before moving on,
however, we pause to point out some of the important physical
properties embodied in Equation (17). First, the star formation
rate does not appear explicitly in the torque equation. This is
because for σ∗ ≈ σ changing gas into stars does not significantly
affect the stability of the disk, and with our approximate form
for Q it does not affect the stability at all. Star formation
enters the problem solely through its effects on fg. Second, if
η = 0 then clearly T = 0 is a solution for Ṁext = 0. Physically,
this represents the fact that if there is neither dissipation of
turbulence nor accretion, then the disk can remain marginally
stable without any mass transport.

2.4. Non-dimensional Equations

It is helpful at this point to non-dimensionalize our equations
and derive some characteristic numbers. If we make a change
of variables r = xR, σ = svφ(R), vφ = uvφ(R), and

T = τṀextvφ(R)R, then we can rewrite Equation (17) as

τ ′′ + h1τ
′ + h0τ = H, (22)

with

h0 =
(

β2 − 1

3fg − 1

)
u2

x2s2
(23)

h1 = − 5(β + 1)xs ′ + (3fg − 1)s(β + β2 + xβ ′)
(3fg − 1)(β + 1)sx

(24)

H = η

χ

(
2fg

√
2(β + 1)3

3fg − 1

)
su3

x
, (25)

subject to the boundary condition τ ′ = −β − 1 at x = 1. Here
primes indicate differentiation with respect to x, and we have
defined

χ = GṀext

vφ(R)3
. (26)

The form of Equation (22) is instructive. The coefficients h0 and
h1 appearing on the left-hand side depend on the current state
of the disk without reference to external accretion or turbulent
dissipation. These affect only the inhomogeneous term H on the
right-hand side, which is proportional to η/χ . We may view H
as the driving term for the system, with more rapid dissipation
of turbulence (i.e., larger η) and lower accretion rates (lower χ )
both tending to produce larger torques.

We can similarly non-dimensionalize the evolution equation
for the gas surface density and velocity dispersion by defining
Σ = SṀext/(vφ(R)R) and t = T [2πR/vφ(R)], so that the
evolution equations become

∂S

∂T
= (β2 + β + xβ ′)τ ′ − x(β + 1)τ ′′

(β + 1)2ux2
− dS∗

dT
, (27)

∂s

∂T
= 1

3(β + 1)2sSux3
{u2(β + 1)2(β − 1)τ

+ sx[s(β + β2 + xβ ′) − 5(β + 1)xs ′]τ ′

− (β + 1)s2x2τ ′′ − 2π (β + 1)2ηs2Su2x2}, (28)

where
dS∗
dT

= 2πεff

√
uS3χ

sx
. (29)

We have defined Σ∗ = S∗Ṁext/(vφ(R)R) in analogy with S, and
the Q = 1 condition in the dimensionless form is

√
2(β + 1)us

πχx(S + S∗)
= 1. (30)

In these units the orbital period is 1, and the fraction of the disk
mass that accretion adds per orbit is 〈S + S∗〉−1, where the angle
brackets indicate an average over the disk area.

3. STEADY-STATE DISKS

3.1. The Steady-state Solution

Having derived the basic equations that govern the system,
we now search for steady-state solutions, which we can obtain
analytically. A true steady state is obviously not possible in a real
disk that undergoes mass accretion and star formation, but we
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can find solutions which are steady for time periods that are short
compared to the star formation and accretion timescales. We will
therefore set εff = 0, and in Section 3.2 we will check that this is
a reasonable approximation. In this case, a steady-state solution
is one for which ∂Ṁ/∂r = 0, or in the dimensionless form

d

dx

[
τ ′

(β + 1)u

]
= 0. (31)

Combined with the boundary condition that τ ′ = −(β+1) at x =
1, this implies that the steady-state solution is τ ′ = −(β + 1)u.
One can immediately verify using Equation (27) that such a
torque gives ∂S/∂T = 0.

To make further progress toward an analytic solution, we
concentrate our attention on cases where β has a constant value.
This is a reasonable limitation, since most galaxies have flat
rotation curves (β = 0), while Keplerian disks have β = −1/2.
For constant β, we have u = xβ , and we can analytically
integrate the steady solution for τ ′ to obtain τ = −xβ+1 + c,
where c is a constant to be determined by the regularity condition
at the inner boundary. In Appendix B, we provide this analysis
for two of the most physically important cases, β = 0 (flat
rotation) and β = −1/2 (Keplerian rotation), which shows that
c = 0 in both the cases. Of course, β cannot have a constant
value of 0 or −1/2 all the way to r = 0, since the rotation
velocity would diverge, but our approximation is appropriate in
cases where β has a constant value over a large dynamic range
in radius, and changes only at small radii where a bulge forms
(in the case of a flat rotation-curve galaxy) or a boundary layer
joins a disk to a star (for a Keplerian disk).

Given the value that τ must have in order to produce a steady
state, we can plug it into the torque equation to determine
the corresponding disk properties that are required. For a flat
rotation curve, β = 0, we have

τ ′′ −
(

5

3fg − 1

)
s ′

s
τ ′ − 1

(3fg − 1)s2x2
τ =

(
23/2fg

3fg − 1

)(
η

χ

)
s

x
.

(32)

and the steady-state condition τ = −x then implies

s ′ = 2
√

2fgηs3 − χ

5sxχ
. (33)

Clearly,

s = 1√
2

(
χ

ηfg

)1/3

or σ = 1√
2

(
GṀext

ηfg

)1/3

(34)

is an exact solution, and numerical integration shows that all
solutions converge to this value very quickly at x < 1 regardless
of the value of s at x = 1. The corresponding surface density
and inward velocity of the material are, from Equations (A2)
and (14),

Σ = vφ

πGr

(
f 2

g GṀext

η

)1/3

, (35)

vr = − η
σ 2

vφ

, (36)

and the corresponding dimensionless viscosity parameter
(Shakura & Sunyaev 1973) and viscous evolution timescales
are

α = GṀ

3σ 3
= 2

√
2

3
ηfg, (37)

tvisc = R

vr (R)
=

(
f 2

g

ηχ2

)1/3
torb

π
, (38)

where torb = 2πR/vφ(R) is the outer disk orbital period. (We
omit a factor of Q in the equation for α because it is set to unity in
our model.) For the corresponding Keplerian case (β = −1/2),
it is easy to verify by a similar procedure, and using the analysis
of the singular point provided in Appendix B, that the steady
solution is τ = −√

x, s = [3χ/(4ηfg)]1/3.
Our result is easy to understand intuitively. For σ � cs , the

rate per unit mass at which the turbulence decays is ησ 2Ω,
so the turbulent decay time is of order the orbital timescale
times η. To keep the velocity dispersion constant, mass must
move inward at a rate such that the decrease in gravitational
potential energy balances this radiative loss. For a flat rotation
curve, the decrease in potential involved in moving from radius
r0 to radius r is v2

φ ln(r/r0), so the inward drift at a velocity
vr causes the potential energy per unit mass to decrease at
a rate v2

φ(vr/r). Equating the rates of dissipation and energy
increase gives ησ 2Ω = v2

φ(vr/r), and it follows immediately
that vr = ησ 2/vφ .

It is also worth noting that this result is very similar to that
of Gammie (2001), who finds that, in steady state in a disk
that cools on a timescale τc, gravitationally induced turbulence
produces an effective viscosity α = [γ (γ − 1)(9/4)Ωτc]−1.
Our effective “cooling time” for the supersonic turbulence is
τc = 1/(ηΩ), and the remainder of our result differs from his
only in that we have modeled disks with a stellar component,
and that our pressure and internal energy are appropriate for
supersonically turbulent motion on scales comparable to the
disk scale height, rather than for an adiabatic gas described
by a polytropic equation of state. The former introduces a
dependence on fg, and the latter produces a slight change in
leading coefficient. That Gammie’s result can be obtained on
energetic grounds, rather than by computing stresses as in his
derivation, has also been pointed out by Rice et al. (2005) and
Rafikov (2009).

3.2. Conditions for Steady State

In deriving the steady solution, we have ignored the change
in the total disk mass due to accretion. More subtly, our steady
solution has constant Ṁ all the way in to r = 0, so the mass
effectively vanishes through the origin. These approximations
are only reasonable for timescales over which the total disk mass
changes a little. We can define the accretion timescale for our
steady solution as

tacc =
∫ R

0 2πr(Σ + Σ∗) dr

Ṁext
= torb

π (ηfgχ2)1/3
= torb

2πηfgs2
. (39)

Note that tacc is the time required for external accretion to
double the disk mass, and is distinct from the viscous accretion
time defined by Equation (38). To avoid confusion, we will
always refer to that quantity as the viscous timescale and use
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the accretion time solely to refer to the mass-doubling time
produced by external infall. For our fiducial η = 3/2, we have

tacc � 1.3f −1/3
g χ

−2/3
0.1 torb, (40)

where χ0.1 = χ/0.1. Similarly, we have neglected star forma-
tion, which is only reasonable for time short compared to the star
formation timescale. We can define the star formation timescale
as the mean ratio of star formation rate to gas surface density in
the disk:

tSF = torb

π

∫ 1

0
(2πx)

S

dS∗/dT
dx = torb

(162π2)1/4f
1/2
g εff

. (41)

For our fiducial εff = 0.01, this gives

tSF � 16f −1/2
g torb. (42)

In comparison, the characteristic evolution timescale for the disk
should be the viscous time defined by Equation (38), since this
is the time required to drain the material in the disk and replace
it with newly accreted material. For our fiducial η = 3/2 and a
flat rotation curve, this is

tvisc = 1.3f 2/3
g χ

−2/3
0.1 torb. (43)

Comparing the viscous time to the timescales relevant for
accretion and star formation, we have

tvisc

tacc
= fg, (44)

tvisc

tSF
=

(
162

π2

)1/4
f

7/6
g εff

η1/3χ2/3
= 0.08f 7/6

g χ
−2/3
0.1 (45)

for our fiducial values of η and εff . Our neglect of accretion-
induced changes in the disk mass and star formation-induced
changes in the gas fraction is reasonable when these two ratios
are �1. Clearly, the requirement that tvisc/tacc � 1 is always
satisfied, although perhaps only marginally if fg is large. The
requirement that tvisc/tSF � 1 is satisfied as long as χ � 10−3,
or longer if the disk is non-star-forming (εff = 0). Thus, we
expect that our steady-state model is reasonable under these
conditions.

4. TIME-DEPENDENT SOLUTIONS

We now consider a disk that is initially out of steady state, with
a specified initial value of χ and fg. For the reasons discussed in
the previous section, we take εff = 0 and χ and fg as constants.
We start each calculation from an initial velocity dispersion
specified on a grid of Nx cells, logarithmically spaced. The grid
runs from x = x0 to 1, where x0 is close to zero. For the boundary
conditions, we cannot simultaneously require that τ obey the
regularity condition derived in Appendix B at the inner boundary
and that τ ′ = −(β + 1)u at the outer boundary; this would
amount to applying three boundary conditions to a second-order
ordinary differential equation, and for general choices of s, no
solution for τ exists that satisfies all three conditions. Instead,
we continue to fix τ ′ (and thus the accretion rate) at the outer
boundary, and at the inner boundary we require that the torque
be τ = −x0. This choice amounts to requiring that the work
done by gas in the region x < x0 on the computational domain
at x � x0 approaches 0 as x0 → 0, while the mass flux through

the inner boundary at x = x0 is allowed to vary freely. This
is a good approximation to a disk being fed from the outside
at a fixed rate and that has an inner bulge region or an inner
boundary layer that is stress free, but which can accept mass at
varying rates. Note that we do not set τ = 0 at x = x0 exactly,
because this is inconsistent with the steady-state solution.

With this setup, we evolve the system according to Equation
(28) using the algorithm given in Appendix C.6 Note that we find
that the unmodified evolution Equation (28) for s is numerically
unstable to the growth of small oscillations on the grid scale.
We damp these by adding a small amount of viscosity to the
disk evolution, implemented in a manner that maintains exact
energy conservation.

In Figure 1, we show the evolution of disks with β = 0 (flat
rotation curve), fg = 0.5, η = 3/2, x0 = 0.1, and Nx = 500.
The left panels show runs with χ = 0.1, and the right panels
show runs with χ = 0.01. The top row shows disks with an
initial velocity dispersion s0 equal to either twice the equilibrium
value seq given by Equation (34), and the bottom row shows disks
with an initial velocity dispersion that is half this value. As the
figure shows, all disks evolve toward the equilibrium solution
found in Section 3 very rapidly, regardless of whether they start
with initial velocity dispersions smaller or larger than seq. The
runs with χ = 0.1 halve their distance from the equilibrium
solution in less than a quarter of an outer orbital period, and
converge to within 10% of the equilibrium solution within one
full outer orbit, after which point they are essentially static.7

In fact, the time required to reach equilibrium seems to be a
factor of ∼2–3 less than our naive estimate that it should be
the viscous time tvisc. This may be because tvisc is an estimate of
the time for the material to reach zero radius, while in our
case the material need not travel as far to set up an equilibrium
velocity dispersion and surface density profile.

Thus, the time required to reach equilibrium is well below
the accretion time tacc = 1.6torb (for fg = 1/2) we computed
in Equation (40), and is far less than the star formation time
tSF = 20torb given by Equation (42), in accord with our analytic
expectations. We therefore conclude that disks with χ = 0.1
converge to the equilibrium configuration on a timescale short
compared to both the accretion and star formation timescales.
For χ = 0.01, the convergence to equilibrium is slightly slower,
but the runs are within 10% of equilibrium by two outer orbits,
and are within ∼1% of equilibrium by four outer orbits. Since
the accretion timescale is 7.6 orbital times for χ = 0.01, and the
star formation time is 20torb, these runs too reach equilibrium
fast compared to tacc or tSF.

Thus, we have demonstrated that the time-independent solu-
tion we obtained in Section 3 is not only an exact equilibrium,
but also an attractor toward which initially out-of-equilibrium
disks will converge. As long as χ � 10−3 (or for arbitrarily
small χ in non-star-forming disks), this convergence occurs on
a timescale that is short compared to either the star formation
timescale or the accretion timescale over which the disk mass
changes appreciably. This means that our earlier decision to
neglect both star formation and changes in the rotation curve
due to accretion is reasonable, and that a disk that is out of
steady state will converge to its time-independent equilibrium

6 A Mathematica program to implement this algorithm is available at
http://www.ucolick.org/∼krumholz/downloads.html.
7 The χ = 0.1 cases miss the equilibrium value very slightly and converge to
a velocity dispersion that is a few percent above it. This is an artifact of the
small viscosity we require in order to maintain numerical stability in this run.
The χ = 0.01 cases are stable with a somewhat smaller viscosity, so the
deviation from the exact equilibrium is unnoticeable for them.

http://www.ucolick.org/~krumholz/downloads.html
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Figure 1. Time evolution of the velocity dispersion s as a function of radius x for runs with χ = 0.1 (left column) and χ = 0.01 (right column), and with the
initial velocity dispersions s0 = 2seq (top row) and s0 = seq/2 (bottom row) at all radii. Here seq = [χ/(ηfg)]1/3/

√
2 (Equation (34)) is the analytically computed

equilibrium velocity dispersion, and these runs use η = 3/2, fg = 1/2. In each plot, the black curve labeled τ = 0 is the initial velocity dispersion, the red curve is
the velocity dispersion at τ = 0.25 (i.e., after 0.25 outer orbits), and each subsequent curve after that represents a factor of 2 increase in time: τ = 0.5 (green), τ = 1
(blue), τ = 2 (purple), and, for the χ = 0.01 runs, τ = 4 (aqua). The thick dashed black line is s = seq.

state faster than either star formation or accretion can alter that
equilibrium. It also implies a vast simplification when compar-
ing to observations: since convergence to equilibrium is fast, we
can generally assume that the velocity dispersions and surface
densities of observed disks reflect the instantaneous equilibrium
state dictated by their current external accretion rates and gas
fractions. Of course, we still have not included star formation
feedback, a topic we approach in Section 5.3.

5. DISCUSSION

5.1. Cosmological Evolution of the Velocity Dispersion of
Galactic Disks

We have now shown that disks dominated by gravitationally
driven turbulence rapidly converge to an equilibrium state in
which their velocity dispersions are determined by their gas
fractions and accretion rates. Since this convergence happens
on an orbital timescale, most galactic disks should be found
near their equilibrium state. We can use this result, coupled to
a simple model for how galaxy halos accrete mass, to study
the evolution of disk velocity dispersions over cosmic time.
Using Press–Schechter fits to dark matter simulations, Neistein
& Dekel (2008) estimate the mean dark matter accretion rate
onto halos of a given mass at a given redshift. Bouche et al.
(2010) extend this to give an estimate of the gas accretion rate
onto the disk at the center of the halo, which we adopt

Ṁg = 7.0εinfb,0.18M
1.1
h,12(1 + z)2.2 M� yr−1, (46)

where z is the redshift, fb,0.18 is the gas mass fraction of the
infall divided by 0.18, the universal baryon fraction, Mh,12 is
the halo mass in units of 1012 M�, and εin is the fraction of gas
entering the halo that reaches the galactic disk rather than being

shock-heated and joining the halo. This is approximately given
by

εin =
{

0.7f (z), Mh,12 < 1.5
0, Mh,12 > 1.5,

(47)

where f (z) is a function that is linear in time and varies from
unity at z = 2.2 to 0.5 and at z = 1.8 Inserting Ṁg from
Equation (46) for Ṁext into Equation (34), we are able to evaluate
the expected velocity dispersion of gravitational instability-
dominated galactic disks as a function of halo mass and redshift.
We do so in Figure 2.

Examining the plot, we see that for a Milky Way-like halo
(Mh,12 = 1; Xue et al. 2008), where σ∗ � σ (so that the
fg = 1 case applies), we predict a typical velocity dispersion
of 10.7 km s−1. While this is very slightly higher than the
value of σ � 8 km s−1 observed in typical Milky Way-like
disks today (Blitz & Rosolowsky 2004, Dib et al. 2006, and
references therein), the agreement is quite good given our purely
analytic model. Our results are quite similar to the numerical
ones obtained by Kim & Ostriker (2007) and Agertz et al.
(2009). Moreover, as Agertz et al. point out, gravitationally
driven turbulence has the advantage that it can operate even
in the outer H i disk where there is very little star formation,
so mechanisms such as supernovae that are invoked to explain
turbulence in the inner disk (e.g., de Avillez & Breitschwerdt
2007; Joung et al. 2009) are unavailable. We also predict lower
velocity dispersion in smaller halos, and this appears to be
consistent with the somewhat lower H i velocity dispersions
seen in dwarf galaxies (Walter et al. 2008; Chung et al. 2009).
Finally, however, we do note that there are alternative models
to explain outer disk turbulence, including magnetorotational

8 We compute the time as a function of redshift, and all other
cosmology-dependent quantities, using Ωm = 0.28, ΩΛ = 0.72, and h = 0.70.
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Figure 2. Disk velocity dispersion σ vs. redshift z for halos of mass Mh,12 = 0.1,
0.3, and 1.0 (blue, red, and black lines) and gas fraction fg = 1/2 or 1 (dashed
and solid lines). The plot uses our fiducial η = 3/2 and assumes fb,0.18 = 1/2,
i.e., half the infalling baryons are gas and half are stars. The fg = 1 case is
appropriate for systems where there are no stars or where σ∗ � σ , such as
present-day galactic disks, while the case fg = 1/2 is appropriate for high-
redshift disks where σ∗ ≈ σ .

instability (Sellwood & Balbus 1999; Piontek & Ostriker 2007)
and accretion of clumpy gas (Santillán et al. 2007).

Within the same framework we are able to explain the large
velocity dispersions of 20–80 km s−1 found in galactic disks
found at redshifts ∼1.5–3 (Cresci et al. 2009). The observed
galaxies likely correspond to ∼1012 M� halos. For redshifts in
this range and fg ∼ 1/2, typical of galaxies at that redshift
(Daddi et al. 2010; Tacconi et al. 2010), we predict typical
velocity dispersions of 30–50 km s−1, with fluctuations at the
factor of ∼1.5 level, corresponding to the expected factor of ∼3
level variations in the accretion rates of halos at the same mass
and redshift. This is in good agreement with the observations.

It is also instructive to compare the velocity dispersions we
predict to the expected rotation velocities of galactic disks.
We compute the approximate virial velocity of a halo as a
function of mass and redshift following the approximation given
in Appendix A2 of Dekel & Birnboim (2006), and we take
the maximum circular velocity to be 1.2 times this based on
fitting the zero point of the Tully–Fisher relation (Dutton et al.
2007). With this approximation, we plot Vmax/σ in Figure 3.
We see that accretion-driven turbulence naturally produces the
transition from disks with Vmax/σ ∼ 5 found at redshifts �2 to
disks with Vmax/σ ∼ 20–25 found today.

Interestingly, we find that there is little dependence of Vmax/σ
on halo mass. Instead, the primary dependence is on fg, the gas
mass fraction; analytically, Vmax/σ ∝ f

−1/3
g . Thus, the most

gas-dominated systems (or old galaxies that have σ∗ � σ )
have the largest Vmax/σ , while gas-poor systems have smaller
Vmax/σ . This suggests that the range of Vmax/σ seen for galaxies
at z ∼ 2 by the SINS survey (Cresci et al. 2009) represents a
sequence in gas fraction. The dispersion-dominated galaxies
should on average be comparatively gas-poor, while rotation-
dominated ones should be gas-rich. Of course, fluctuations in
the accretion rate can also cause changes in σ , so detecting this
effect will require samples large enough for this noise source to
be averaged out. Nonetheless, it seems likely that data to test
this prediction will become available in the next few years.

Figure 3. Ratio of disk maximum circular velocity Vmax to velocity dispersion σ

as a function of redshift z for halos of mass Mh,12 = 0.1, 0.3, and 1.0 (blue, red,
and black lines, top to bottom) and gas fraction fg = 0.1, 0.5, or 1 (dot-dashed,
dashed, and solid lines). All parameters are the same as for Figure 2.

5.2. High-redshift Galaxies

It is particularly interesting to apply our models to the z ∼ 2–3
galaxies observed by Elmegreen et al. (2004, 2005), Genzel et al.
(2008), Förster Schreiber et al. (2009), Cresci et al. (2009),
and others, since these are thought to be examples of strongly
gravitational instability-dominated disks. We first note that, in
the redshift range z = 2–3 for halos of mass Mh = 1012 M�,
thought to be typical of the observed systems, the models shown
in Figures 2 and 3 give χ = 8 × 10−3–1.1 × 10−2. For these
values of χ and gas fractions fg = 1/2, using Equations (40)
and (42), the ratio of star formation time to accretion time
tSF/tacc = 1.8–2.6, so the star formation rate is roughly 1/2–1/3
of the total accretion rate. Given the uncertainties in this model
and the dispersion in expected accretion rates, for simplicity we
can simply adopt Ṁ∗ ≈ Ṁext. Since the star formation rates are
observed (and have typical values ∼100 M� yr−1), we can plug
them into our model in place of Ṁext in order to predict disk
properties.

Doing so, we find that the redshift 2–3 disks should have
velocity dispersions (from Equation (34))

σ ≈ 47 km s−1 f −1/3
g Ṁ

1/3
∗,100, (48)

where Ṁ∗,100 = Ṁ∗/100 M� yr−1, independent of their maxi-
mum rotation velocities Vmax. Thus, galaxies of the similar star
formation rate and gas fraction should have the same σ inde-
pendent of Vmax. The viscous accretion timescale required for
the gas at the edge of one of these disks to reach the center is
(from Equation (38))

tvisc ≈ 600 Myr f 2/3
g R10V

−1
200Ṁ

−2/3
∗,100, (49)

where R10 = R/10 kpc and V200 = Vmax/200 km s−1, and the
gas mass is (from Equation (35))

Mg = Rvφ

(
f 2

g Ṁ∗
η

)1/3

= 3 × 1010 M� f 2/3
g R10V200Ṁ

1/3
∗,100. (50)
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The ratio of baryonic to dynamical mass within the disk region
R is

Mbar

Mdyn
= 0.3 f −1/3

g V −1
200Ṁ

1/2
∗,100. (51)

To the extent that these quantities have been observed, they
are in good agreement with the results of our model.

It is also useful to verify that our approximation that σ∗ ≈ σ
is valid for these galaxies. Once stars form, transient spiral
structures will dynamically heat them until the stellar disk
becomes stable against further spiral patterns (Sellwood &
Carlberg 1984; Carlberg & Sellwood 1985). The characteristic
timescale for this heating is [(Qlim−Q∗)/τ ]torb, where Qlim ≈ 2
is the limiting value at which the disk becomes stable against
spiral perturbations, Q∗ is the current Toomre Q parameter for
the stars, and numerical experiments show that τ ∼ 4–5 for torb
evaluated at one disk scale length. If we assume that the stars
are born at Q∗ = 1, then the characteristic timescale for heating
is

theat ≈ 750 Myr R10V
−1

200, (52)

where we have taken the radial scale length to be half of R. In
contrast, the time required to double the stellar mass is

t∗ = 1 − fg

fg

(
Mg

Ṁ∗

)
= 300 Myr

1 − fg

f
1/3
g

R10V200Ṁ
−2/3
∗ . (53)

Thus, we see that the time required for stars to increase their
velocity dispersion via spiral structure is generally comparable
to or longer than the time required for a new generation of
stars to form with the same velocity dispersion as the gas. Our
approximation that the stellar population has the same velocity
dispersion as the gas in these galaxies is therefore reasonable.

5.3. Effects of Stellar Feedback

In our idealized models, we have neglected the influence of
stellar feedback by setting G = 0. This is obviously reasonable
if we are concerned with the outer parts of a galactic disk where
there is no star formation, or a protostellar disk where at most a
few stars will form. It is not reasonable for the centers of present-
day galactic disks, where supernovae are clearly important. It
is questionable whether stellar feedback is important in ultra-
luminous infrared galaxies (ULIRGs) or the high surface density
galaxies found in the early universe. Supernovae are not effective
in such environments (Thompson et al. 2005; Joung et al. 2009),
but stellar radiation pressure may be. Whether it can actually
drive the observed velocity dispersions in high-redshift galaxies
is a matter of debate (Murray et al. 2010; Krumholz & Matzner
2009).

In those situations where feedback is significant, we can
qualitatively see how it would change our results by noting
that adding a non-zero G to our equations would have roughly
the same effect as lowering η. Physically, if star formation
injects turbulence into the ISM at an appreciable rate, this is
equivalent to reducing the rate at which turbulence decays—we
effectively increase the “cooling time” of the disk. Consulting
Equations (34)–(37), we see that the effect of this is to increase
the velocity dispersion and surface density in the equilibrium
state, while reducing the radial velocity and the rate of angular
momentum transport.

We caution that this analysis is only valid as long as the
feedback is not too strong. In particular, we require that L
remains larger than G for a Q = 1 disk, and that the turbulent
stresses created by the feedback mechanism are significantly

weaker than the stresses induced by gravitational instability-
driven turbulence. If the first requirement is not met, then
feedback will drive the velocity dispersion up to the point where
Q > 1, and the gravitational instability will shut off. If the latter
condition fails, then gravitational instability will continue, but
our calculation of the transport rate will not be correct because
we have not included stresses induced by feedback. Even if both
requirements are met, our analysis of feedback effects should be
regarded as qualitative rather than quantitative. Energy injection
G appears on the right-hand side of the torque equation with the
opposite sign asL, but their functional dependence on other disk
parameters (surface density, velocity dispersion, etc.) is almost
certainly different. The exact effects of feedback will depend on
how energy injection varies with these quantities, which will in
turn depend on the type of feedback and the physics of the ISM.

5.4. Protostellar Disks

Although we have focused our discussion thus far on galactic
disks, our model applies for arbitrary rotation curves, gas
fractions, and infall rates, so we can apply it equally well
to protostellar disks. To understand the expected levels of
turbulence in protostellar disks, we use the parameterization
of infall due to Kratter et al. (2008, 2010), who introduce the
dimensionless numbers

ξ = GṀext

c3
s,d

Γ = Ṁext

M∗dΩk,in
, (54)

where cs,d is the sound speed in the disk, M∗d is the total mass
of the disk and star, and Ωk,in is the Keplerian orbital period
of the infalling material. Physically, ξ represents the ratio of
the external accretion rate to the maximum rate (∼c3

s,d/G) at
which a stable disk can process material, while Γ represents
(up to a factor of 2π ) the fraction by which the disk plus
star mass changes per the outer disk orbit. Indeed, since
vφ(R) = RΩk,in = √

GM∗d/R, with a little algebra it is easy to
show that, in the case of a Keplerian disk consisting entirely of
gas, our χ simply reduces to Kratter et al.’s Γ parameter.

With this understanding, we can explain the observation by
Kratter et al. (2010) that, in their simulations, the typical velocity
dispersion of disks that do not fragment is comparable to the
disk thermal sound speed (see their Figure 8). For a purely
gaseous Keplerian disk, our model gives s = [3χ/(4η)]1/3, and
Kratter et al. show that the disk sound speed is related to the
Keplerian velocity at the disk edge by cs,d/vφ(R) = (Γ/ξ )1/3

(their Equation (18)). Combining these two results, the expected
Mach number of the accretion-driven turbulence is

M = σ

cs,d

= s
cs,d

vφ(R)
=

(
3ξ

4η

)1/3

. (55)

Since fragmentation is avoided only for disks with ξ of no more
than a few, we can take ξ ∼ 1, and it immediately follows that
the expected Mach number M ∼ 1.

We can apply a similar analysis to real protostellar disks: the
Mach number of the turbulence in these disks should follow
Equation (55). This means that disks accreting with ξ ∼ 1,
corresponding to Ṁext ∼ 10−5 M� yr−1 for typical outer disk
temperatures T ∼ 50 K, should have disks whose turbulent
velocity dispersions are roughly transonic. This state should
prevail during the majority of the main accretion phase. Once
the main accretion phase ends and the accretion rate drops, the
turbulent velocity dispersion should drop to subsonic values.
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This represents another prediction from our analysis: class 0
and class I protostars should have disks with transonic turbulent
velocity dispersions, while class II and class III sources should
have subsonic turbulent velocity dispersions. As ALMA comes
online in the next few years and provides resolved molecular
line maps of protostellar disks at a variety of stages in their
evolution (e.g., Krumholz et al. 2007a), we will be able to test
this prediction.

5.5. On the Validity of a Local Viscous Approximation for
Gravitational Instability-induced Transport

The central approximation we make in our model is that
transport of mass, angular momentum, and energy produced
by gravitationally driven turbulence can be represented by a
local viscous stress tensor. The validity of this approximation
has been the subject of great debate in the past decade. Balbus
& Papaloizou (1999) show that self-gravitating disks cannot in
general be modeled with a viscous formalism, but that such an
approximation may be reasonable for disks near Q = 1, the
condition that we adopt throughout this work and that appears
to apply to the galactic and protostellar disks we are interested
in studying. Based on a combination of analytic arguments
and local simulations, Gammie (2001) argues that a local
prescription is applicable to Q = 1 disks that are sufficiently
thin, s � 0.12, and more recent global simulations (Lodato
& Rice 2004, 2005; Boley et al. 2006; Cossins et al. 2009)
generally support this result. Gammie’s condition for a local
transport approximation to apply is well satisfied for galactic
disks at redshifts z � 2 (Section 5.1) and for non-fragmenting
protostellar disks (Section 5.4). It is marginally violated for
the observed disks at z ∼ 2 (Section 5.2), suggesting that our
model should be considered with some caution for them. At a
minimum the thickness of these disks likely produces different
fragmentation behavior than a standard thin disk analysis would
suggest (Begelman & Shlosman 2009).

6. SUMMARY

In this paper, we derive the basic evolution equations for a
disk of gas and stars kept in a state of marginal gravitational
instability by a combination of external accretion, inward
migration of gas, and decay of turbulent motions due to
radiative shocks. In such a disk, we use the equations of
conservation of mass, angular momentum, and energy to derive
Equation (22) which characterizes the instantaneous rates of
mass and angular momentum transport required to maintain
the state of marginal stability and show that this equation has
an analytic steady-state solution in which the disk velocity
dispersion (Equation (34)), surface density (Equation (35)), and
rates of transport (Equations (36) and (37)) through the disk are
determined by the rate of external infall onto the disk and the
gas mass fraction within it. We show that disks converge to this
steady state on timescales of order the orbital time, much less
than the time over which either the rotation curve or the gas
mass fraction changes significantly.

Based on our analytic solution for the properties of a gravi-
tational instability-dominated disk and their dependence on the
gas mass fraction and the infall rate, we are able to gain new
insight into several processes. We show that the velocity disper-
sions of both the outer H i disks of present day galaxies and the
main disks of redshift ∼2 galaxies can be understood naturally
if they are in a state of gravitational instability-regulated equi-
librium. Moreover, we can understand the general progression

of galactic disks from low values of rotation speed to velocity
dispersion ratio, Vmax/σ , at high redshift to much higher val-
ues today. This progression is driven primarily by a falloff in
galaxy accretion rates and secondarily by the development of
disks with stellar velocity dispersion much lager than the gas
velocity dispersion, reducing the importance of stars in setting
the gravitational instability condition. We also predict that the
observed range of Vmax/σ values seen at z ∼ 2 is primarily a
sequence in gas mass fraction. Finally, we use the same model to
study the velocity dispersions of protostellar disks. We show that
our results are in good agreement with numerical simulations
of gravitational instability in disks, and we predict that velocity
dispersions should be transonic in class 0 and class I protostars,
dropping to subsonic for class II and class III sources.

Although our attention in this paper is focused on cases that
can be solved analytically or nearly so, we close by pointing out
that our model, as a result of its grounding in the basic equations
of fluid dynamics, is also amenable to a more general numerical
treatment. One can easily relax our assumptions of constant
gas fraction, negligible influence from stellar feedback, and a
fixed relationship between gas and star velocity dispersion. The
resulting equations are identical to the ones we have already
solved, except that they would need to be solved numerically.
There is no fundamental barrier to doing so, however, and the
result would be a new method for simulating the evolution
of marginally unstable star-forming disks that is intermediate
between purely analytic models such as those we have pursued
here and full numerical simulations that can be extremely costly.
We plan to pursue this avenue in future work.
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APPENDIX A

DERIVATION OF THE TRANSPORT EQUATIONS

Here we derive the evolution equations for a thin, axisymmet-
ric disk evolving following the general fluid Equations (1)–(3)
including star formation. The derivation follows the same gen-
eral outline as the standard treatment of disks (e.g., Shu 1992;
Balbus & Hawley 1998), with additional terms added to de-
scribe star formation and some subtleties that arise in how to
treat the energy content of supersonic turbulence. We treat these
following the method of Krumholz et al. (2006).

Writing out Equation (1) in cylindrical coordinates chosen so
that the disk lies in the z = 0 plane, dropping terms that are
zero in axisymmetry, and integrating over z gives Equation (5),
which we repeat here for convenience:

∂

∂t
Σ = −1

r

∂

∂r
(rΣvr ) − Σ̇∗ = 1

2πr

∂

∂r
Ṁ − Σ̇∗, (A1)
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where Σ = ∫
ρ dz is the gas surface density, Σ̇∗ = ∫

ρ̇∗ dz is
the star formation rate per unit area, vr is the radial component
of the velocity, and we have defined

Ṁ ≡ −2πrΣvr (A2)

as the inward radial mass flux.
Writing out the φ component of the Navier–Stokes

(Equation (2)) and performing a similar integration over z yields

Σ
[

∂

∂t
vφ +

vr

r

∂

∂r
(rvφ)

]
=

∫
1

r2

∂

∂r
(r2Trφ) dz, (A3)

where vφ is the φ component of the velocity and Trφ is the rφ
component of the pressure tensor. Multiplying this equation by
2πr2 gives the evolution equation for the angular momentum
(5):

2πrΣ
(

∂

∂t
j + vr

∂

∂r
j

)
= ∂

∂r

∫
2πr2Trφ dz = ∂

∂r
T , (A4)

where j = rvφ is the specific angular momentum of the gas and
T = ∫

2πr2Trφ dz is the viscous torque on the gas.
The gas velocity dispersion is determined by energy con-

servation. Taking the dot product of v with the Navier–Stokes
equation (Equation (2)) and using the continuity Equation (1) to
re-arrange yields

∂

∂t

(
1

2
ρv2

)
+ ∇ ·

(
1

2
ρvv2

)
= − v · ∇p − ρv · ∇ψ

+ v · ∇ · T − 1

2
ρ̇∗v2. (A5)

Using the continuity Equation (1), we can rewrite the gravi-
tational work term as

− ρv · ∇ψ = − ∇ · (ρvψ) + ψ∇ · (ρv) (A6)

= −∇ · (ρvψ) − ∂

∂t
(ρψ) + ρ

∂ψ

∂t
− ρ̇∗ψ. (A7)

Substituting this into Equation (A5) gives the evolution equation
for the non-thermal energy:

∂

∂t
ρ

(
v2

2
+ ψ

)
+ ∇ · ρv

(
v2

2
+ ψ

)

= −v · ∇p + ρ
∂ψ

∂t
+ v · ∇ · T − ρ̇∗

(
v2

2
+ ψ

)
. (A8)

To include the internal energy, we make use of the first law
of thermodynamics, Equation (3). Combining this with the
continuity equation yields

∂

∂t
(ρe) + ∇ · ρv

(
e +

p

ρ

)
= v · ∇p − ρ̇∗e + Φ + Γ − Λ. (A9)

Adding Equations (A8) and (A9) yields the total energy equa-
tion:

∂

∂t
ρ

(
v2

2
+ e + ψ

)
+ ∇ · ρv

(
v2

2
+ e + ψ +

p

ρ

)

= ρ
∂ψ

∂t
+ v · ∇ · T + Φ − ρ̇∗

(
v2

2
+ e + ψ

)
+ Γ − Λ.

(A10)

We now integrate over z and use our axisymmetric thin disk
assumption to drop all terms involving either z velocities or φ
derivatives. This gives

∂

∂t
Σ

(
v2

2
+ e + ψ

)
+

1

r

∂

∂r

[
rΣvr

(
v2

2
+ e + ψ +

p

ρ

)]

= Σ
∂ψ

∂t
+

1

2πr

∂

∂r
(ΩT ) − Σ̇∗

(
v2

2
+ e + ψ

)
+ G − L,

(A11)

where Ω = vφ/r , G = ∫
Γ dz, and L = ∫

Λ dz. In deriving
this equation, we have assumed ρ = Σδ(z) and ρ̇∗ = Σ̇∗δ(z), so
in this and all subsequent equations we understand that all the
terms in parentheses are to be evaluated in the plane z = 0.

It is convenient to rewrite the kinetic energy plus thermal
energy term v2/2+e as a sum of terms representing bulk motions
on length scales comparable to the radial extent of the galactic
disk, small-scale turbulent motions on scales comparable to the
disk scale height, and true thermal energy:

1

2
v2 + e = 1

2

(
v2

r + v2
φ

)
+

3

2

(
σ 2

nt + σ 2
t

) = 1

2

(
v2

r + v2
φ

)
+

3

2
σ 2.

(A12)
Here σnt is the one-dimensional non-thermal velocity dispersion
of the turbulent motions on the size scale of the disk scale
height, σ 2

t = (2/3)e is the thermal velocity dispersion, and
σ 2 = σ 2

t + σ 2
nt.

9 It is somewhat less clear how to evaluate the
pressure p in terms of σt and σnt. The microphysical pressure is
p = ρσ 2

t , but if we are averaging over scales much larger than
the characteristic size of the turbulent eddies (which is of order
the disk scale height), then the eddies provide an additional
effective pressure, and we will instead have p = ρσ 2. Since we
are interested in the large-scale behavior of disks, we make this
microturbulent approximation and adopt p = ρσ 2.

Given this decomposition of the energy, we can simplify
Equation (A11) by dropping small terms. For a rotation-
dominated disk, vr � vφ . For a disk with dimensionless
viscosity α and scale height H, the radial velocity vr ∼
α(H/r)σ . Thus, vr � σ unless the disk is thick (H/r ∼ 1)
and accretion happens on a dynamical timescale (α ∼ 1). For
this reason, we drop the v2

r term. We retain terms of order σ
compared to those of order vφ , since we are interested in the
change in a term of order σ . Doing so reduces Equation (A11)
to

∂

∂t
Σ

(
v2

φ

2
+

3

2
σ 2 + ψ

)
+

1

r

∂

∂r

[
rΣvr

(
v2

φ

2
+

5

2
σ 2 + ψ

)]

= Σ
∂ψ

∂t
+

1

2πr

∂

∂r
(ΩT ) − Σ̇∗

(
v2

φ

2
+

3

2
σ 2 + ψ

)
+ G − L,

(A13)

where we have rewritten the pressure as p = ρσ 2. We can
simplify this greatly by using the continuity Equation (A1) to

9 Note that the coefficient 2/3 in the relation between σt and e is appropriate
for a monatomic ideal gas, i.e., γ = 5/3; for molecular gas γ can have a
different value if the temperature is high enough to excite rotational levels of
H2 or to induce changes in the ortho- to para-H2 ratio. However, for galaxies
with a molecule-dominated ISM, σnt is always small compared to σt, so we
need not worry about a small variations in the coefficient of σt.
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evaluate the terms on the left-hand side. Doing so, we obtain

1

2
Σ

[
∂

∂t

(
v2

φ + 3σ 2
)

+ vr

∂

∂r

(
v2

φ + 3σ 2 + 2ψ
)]

+
1

r

∂

∂r
(rΣvrσ

2)

= 1

2πr

∂

∂r
(ΩT ) + G − L, (A14)

which is Equation (6).

APPENDIX B

SOLUTION OF THE TORQUE EQUATION NEAR THE
SINGULARITY AT THE ORIGIN

Here we obtain the solution to the torque Equation (22) near
x = 0 for constant β by means of series expansion. Since
the nature of the singularity depends on β, we must handle
individual values of β separately.

B.1. Flat Rotation Curve (β = 0)

For β = 0, the torque Equation (22) reduces to

τ ′′ −
(

5

3fg − 1

)
s ′

s
τ ′ − 1

(3fg − 1)s2x2
τ =

(
23/2fg

3fg − 1

)(
η

χ

)
1

x
.

(B1)
We expand τ in a power series about x = 0, τ = ∑∞

n=0 anx
n, to

obtain

− a0

(3fg − 1)s2
x−2 −

[
2
√

2s3fgη + a1χ

(3fg − 1)s2χ

]
x−1

−
{

a2[1 − 2(3fg − 1)s2] + 5a1fgss
′

(3fg − 1)s2

}
+ O(x) = 0. (B2)

Thus, the leading coefficients near x = 0 are

a0 = 0 (B3)

a1 = − 2
√

2s3fg

η

χ
(B4)

a2 =
[

10
√

2fgs
4s ′

1 − 2(3fg − 1)s2

]
η

χ
. (B5)

B.2. Keplerian Rotation Curve (β = −1/2)

For β = −1/2, the torque Equation (22) reduces to

τ ′′ +
(3fg − 1)s − 10xs ′

(3fg − 1)sx
τ ′ − 3

4(3fg − 1)s2x3
τ

=
(

23/2fgs

3fg − 1

) (
η

χ

)
1

x5/2
. (B6)

We expand τ in a power series about x = 0, τ =
x1/2 ∑∞

n=0 anx
n, to obtain

− 4s3ηfg + 3a0χ

4(3fg − 1)s2χ
x−5/2 − 3a1

4(3fg − 1)s2
x−3/2

− 3a2 + 2s[5a0s
′ + 3(3fg − 1)a1]

4(3fg − 1)s2
x−1/2 + O(x1/2) = 0.

(B7)

Thus, the leading coefficients near x = 0 are

a0 = − 4

3
s3 ηfg

χ
(B8)

a1 = 0 (B9)

a2 =
(

40fgs
4s ′

9

)
η

χ
. (B10)

APPENDIX C

NUMERICAL ALGORITHM FOR TIME-DEPENDENT
DISKS

Here we describe our algorithm for numerical solution of the
evolution Equations (22) and (28) for time-dependent disks. Let
s

(n)
i be the velocity dispersion at time n at the center of cell i,

where i runs from 1 to Nx. Cell centers are located at positions
xi = x

1−(i−1)/(Nx−1)
0 , so that the cell spacing in ln x has a uniform

value d ln x = −(ln x0)/(Nx − 1). At each time step, we obtain
the new velocity dispersions s

(n+1)
i using an operator-splitting

method in which we treat the updates due to the torque explicitly
and then perform an implicit diffusion step to suppress spurious
numerical oscillations. The explicit part of the algorithm, which
occurs first in every time step, is as follows.

1. We compute the spatial derivatives (∂s/∂x)(n)
i at the center

of every grid cell using a minmod slope limiter.
2. Using s

(n)
i and (∂s/∂x)(n)

i , we solve the torque equation (22)
for β = 0 and the specified values of χ and fg, using the
boundary conditions τ ′ = −x0 at x = x0 and τ ′ = −1 at
x = 1. We solve the equation using the method of shooting
to a fitting point, with the fitting point chosen in the middle
of the computational grid. We use an adaptive error control
method to maintain accuracy, which is necessary because
the torque equation can be extremely stiff when χ is small
or s is far from the equilibrium solution. This stiffness also
limits the smallest value of x0 we can use and maintain
numerical stability at reasonable computational cost.

3. We compute the time derivatives (∂s/∂t)(n)
i in each cell

using Equation (28). As with s, we evaluate the derivatives
of τ using a minmod slope limiter.

4. We set the time step dt = t (n+1) − t (n) to dt =
0.02 mini[|s(n)

i /(∂s/∂x)(n)
i |].

5. We set s(n∗)
i = s

(n)
i +dt(∂s/∂t)(n)

i , thereby updating s to time
n∗ for the non-diffusive part of the evolution.

For the next step, we wish to diffuse the velocity dispersion
to prevent the development of grid-scale numerical oscillations.
In order to guarantee energy conservation, we diffuse the
kinetic energy rather than diffusing s directly. We define the
dimensionless kinetic energy per unit area in a computational
cell by

k = 3

2
Ss2 =

(
3fg√
2πχ

)
s3

x
, (C1)

and we evolve this following

∂k

∂t
= κdiff∇2k = κdiff

x2

∂2k

∂ ln x2
, (C2)

where κdiff is the diffusion coefficient, and in the second step we
have evaluated the ∇2 operator on our cylindrical logarithmic
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grid. Provided that we set ∂k/∂ ln x = 0 at our inner and
outer boundaries, evolution under this equation does not change
the total amount of kinetic energy on the grid. We discretize
Equation (C2) using centered spatial differences and fully
implicit temporal differences:

k
(n+1)
i − k

(n∗)
i

dt
= κdiff

x2
i

[
k

(n+1)
i+1 + k

(n+1)
i−1 − 2k

(n+1)
i

(d ln x)2

]
, (C3)

with the boundary conditions that k
(n+1)
0 = k

(n+1)
1 and k

(n+1)
Nx+1 =

k
(n+1)
Nx

. Rewriting this in the matrix form, we have

M · k(n+1) = k(n∗), (C4)

where k(n+1) and k(n∗) are the vectors of ki values at times n + 1
and n∗, respectively, and the matrix M has elements

Mij = δij +
κdiffdt

(d ln x)2

(
2
δij

x2
i

− δi,j−1

x2
i

− δi,j+1

x2
j

−δi,1δj,1

x2
1

− δi,Nx
δj,Nx

x2
Nx

)
. (C5)

Since M is a tridiagonal matrix, it is easy to solve Equation (C4)
exactly. Thus, to take our diffusion step we simply compute
k(n∗) from s(n∗) (Equation (C1)), solve Equation (C4) for k(n+1),
and use this to compute s(n+1), thus completing the time step.
We find that κdiff = 0.005 (for χ = 0.01) or κdiff = 0.01 (for
χ = 0.1) is sufficient to suppress numerical oscillations without
significantly changing the solution.
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