This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Volume 718

Number 2, 2010 August 1

Previous issue Next issue

587

, , , , , and

The high-frequency radio sky, like the gamma-ray sky surveyed by the Fermi satellite, is dominated by flat spectrum radio quasars and BL Lac objects at bright flux levels. To investigate the relationship between radio and gamma-ray emission in extragalactic sources, we have cross-matched the Australia Telescope 20 GHz survey catalog (AT20G) with the Fermi-LAT 1 year Point Source Catalog (1FGL). The 6.0 sr of sky covered by both catalogs (δ < 0°, |b|>1fdg5) contains 5890 AT20G radio sources and 604 1FGL gamma-ray sources. The AT20G source positions are accurate to within ∼1 arcsec and, after excluding known Galactic sources, 43% of Fermi 1FGL sources have an AT20G source within the 95% Fermi confidence ellipse. Monte Carlo tests imply that at least 95% of these matches are genuine associations. Only five gamma-ray sources (1% of the Fermi catalog) have more than one AT20G counterpart in the Fermi error box. The AT20G matches also generally support the active galactic nucleus (AGN) associations in the First LAT AGN Catalog. We find a trend of increasing gamma-ray flux density with 20 GHz radio flux density. The Fermi detection rate of AT20G sources is close to 100% for the brightest 20 GHz sources, decreasing to 20% at 1 Jy, and to roughly 1% at 100 mJy. Eight of the matched AT20G sources have no association listed in 1FGL and are presented here as potential gamma-ray AGNs for the first time. We also identify an alternative AGN counterpart to one 1FGL source. The percentage of Fermi sources with AT20G detections decreases toward the Galactic plane, suggesting that the 1FGL catalog contains at least 50 Galactic gamma-ray sources in the southern hemisphere that are yet to be identified.

596

, , , and

To ascertain whether magnetic dynamos operate in rocky exoplanets more massive or hotter than the Earth, we developed a parametric model of a differentiated rocky planet and its thermal evolution. Our model reproduces the established properties of Earth's interior and magnetic field at the present time. When applied to Venus, assuming that planet lacks plate tectonics and has a dehydrated mantle with an elevated viscosity, the model shows that the dynamo shuts down or never operated. Our model predicts that at a fixed planet mass, dynamo history is sensitive to core size, but not to the initial inventory of long-lived, heat-producing radionuclides. It predicts that rocky planets larger than 2.5 Earth masses will not develop inner cores because the temperature–pressure slope of the iron solidus becomes flatter than that of the core adiabat. Instead, iron "snow" will condense near or at the top of these cores, and the net transfer of latent heat upward will suppress convection and a dynamo. More massive planets can have anemic dynamos due to core cooling, but only if they have mobile lids (plate tectonics). The lifetime of these dynamos is shorter with increasing planet mass but longer with higher surface temperature. Massive Venus-like planets with stagnant lids and more viscous mantles will lack dynamos altogether. We identify two alternative sources of magnetic fields on rocky planets: eddy currents induced in the hot or molten upper layers of planets on very short-period orbits, and dynamos in the ionic conducting layers of "ocean" planets with ∼10% mass in an upper mantle of water (ice).

610

, , , , , and

Using the Very Long Base Array, we observed the young stellar object EC 95 in the Serpens cloud core at eight epochs from 2007 December to 2009 December. Two sources are detected in our field and are shown to form a tight binary system. The primary (EC 95a) is a 4–5 M proto-Herbig AeBe object (arguably the youngest such object known), whereas the secondary (EC 95b) is most likely a low-mass T Tauri star. Interestingly, both sources are non-thermal emitters. While T Tauri stars are expected to power a corona because they are convective while they go down the Hayashi track, intermediate-mass stars approach the main sequence on radiative tracks. Thus, they are not expected to have strong superficial magnetic fields, and should not be magnetically active. We review several mechanisms that could produce the non-thermal emission of EC 95a and argue that the observed properties of EC 95a might be most readily interpreted if it possessed a corona powered by a rotation-driven convective layer. Using our observations, we show that the trigonometric parallax of EC 95 is π = 2.41 ± 0.02 mas, corresponding to a distance of 414.9+4.4−4.3 pc. We argue that this implies a distance to the Serpens core of 415 ± 5 pc and a mean distance to the Serpens cloud of 415 ± 25 pc. This value is significantly larger than previous estimates (d ∼ 260 pc) based on measurements of the extinction suffered by stars in the direction of Serpens. A possible explanation for this discrepancy is that these previous observations picked out foreground dust clouds associated with the Aquila Rift system rather than Serpens itself.

620

, , , , and

In this paper, we investigate the relationship between the maximal luminosity of X-ray outburst and the orbital period in transient low mass X-ray binaries (or soft X-ray transients) observed by the Rossi X-ray Timing Explorer (RXTE) in the past decade. We find that the maximal luminosity (3–200 keV) in Eddington units generally increases with increasing orbital period, which does not show a luminosity saturation but in general agrees with theoretical prediction. The peak luminosities in ultra-compact binaries might be higher than those with an orbital period of 2–4 hr, but more data are needed to make this claim. We also find that there is no significant difference in the 3–200 keV peak outburst luminosity between neutron star (NS) systems and black hole (BH) systems with orbital periods above 4 hr; however, there might be a significant difference at smaller orbital periods where only NS systems are observed and radiatively inefficient accretion flow is expected to work at low luminosities for BH accreters.

632

, , , , , , , , , et al

We use data from the first 100 deg2 field observed by the South Pole Telescope (SPT) in 2008 to measure the angular power spectrum of temperature anisotropies contributed by the background of dusty star-forming galaxies (DSFGs) at millimeter wavelengths. From the auto- and cross-correlation of 150 and 220 GHz SPT maps, we significantly detect both Poisson distributed and, for the first time at millimeter wavelengths, clustered components of power from a background of DSFGs. The spectral indices of the Poisson and clustered components are found to be $\bar{\alpha }_{150-220}^P=3.86\pm 0.23$ and αC150−220 = 3.8 ± 1.3, implying a steep scaling of the dust emissivity index β ∼ 2. The Poisson and clustered power detected in SPT, BLAST (at 600, 860, and 1200  GHz), and Spitzer (1900 GHz) data can be understood in the context of a simple model in which all galaxies have the same graybody spectrum with dust emissivity index of β = 2 and dust temperature Td = 34 K. In this model, half of the 150 GHz background light comes from redshifts greater than 3.2. We also use the SPT data to place an upper limit on the amplitude of the kinetic Sunyaev–Zel'dovich power spectrum at ℓ = 3000 of 13 μK2 at 95% confidence.

647

, , , , , , , , , et al

We present a comprehensive multiwavelength analysis of the hot DB white dwarf PG 0112+104. Our analysis relies on newly acquired FUSE observations, on medium-resolution FOS and GHRS data, on archival high-resolution GHRS observations, on optical spectrophotometry both in the blue and around Hα, as well as on time-resolved photometry. From the optical data, we derive a self-consistent effective temperature of 31,300 ± 500 K, a surface gravity of log g = 7.8 ± 0.1 (M = 0.52 M), and a hydrogen abundance of log N(H)/N(He)< −4.0. The FUSE spectra reveal the presence of C ii and C iii lines that complement the previous detection of C ii transitions with the GHRS. The improved carbon abundance in this hot object is log N(C)/N(He) = −6.15 ±  0.23. No photospheric features associated with other heavy elements are detected. We reconsider the role of PG 0112+104 in the definition of the blue edge of the V777 Her instability strip in light of our high-speed photometry and contrast our results with those of previous observations carried out at the McDonald Observatory.

657

, , , , , and

The Megamaser Cosmology Project (MCP) aims to determine H0 by measuring angular-diameter distances to galaxies in the Hubble flow using observations of water vapor megamasers in the circumnuclear accretion disks of active galaxies. The technique is based only on geometry and determines H0 in one step, independent of standard candles and the extragalactic distance ladder. In Paper I, we presented a very long baseline interferometry map of the maser emission from the Seyfert 2 galaxy UGC 3789. The map reveals an edge-on, sub-parsec disk in Keplerian rotation, analogous to the megamaser disk in NGC 4258. Here, we present 3.2 years of monthly Green Bank Telescope observations of the megamaser disk in UGC 3789. We use these observations to measure the centripetal accelerations of both the systemic and high-velocity maser components. The measured accelerations suggest that maser emission lines near the systemic velocity originate on the front side of the accretion disk, primarily from segments of two narrow rings. Adopting a two-ring model for the systemic features, we determine the angular-diameter distance to UGC 3789 to be 49.9 ± 7.0 Mpc. This is the most accurate geometric distance to a galaxy in the Hubble flow yet obtained. Based on this distance, we determine H0 = 69 ± 11 km s−1 Mpc−1. We also measure the mass of the central black hole to be 1.09 × 107 M ±14%. With additional observations, the uncertainty in the distance to this galaxy can be reduced to under 10%. Observations of megamaser disks in other galaxies will further reduce the uncertainty in H0 as measured by the MCP.

666

, , , , , , and

We present N2D+ 3–2 (IRAM), and H2D+ 111–110 and N2H+ 4–3 (JCMT) maps of the small cluster-forming Ophiuchus B2 core in the nearby Ophiuchus molecular cloud. In conjunction with previously published N2H+ 1–0 observations, the N2D+ data reveal the deuterium fractionation in the high-density gas across Oph B2. The average deuterium fractionation RD = N(N2D+)/N(N2H+) ∼ 0.03 over Oph B2, with several small scale RD peaks and a maximum RD = 0.1. The mean RD is consistent with previous results in isolated starless and protostellar cores. The column density distributions of both H2D+ and N2D+ show no correlation with total H2 column density. We find, however, an anticorrelation in deuterium fractionation with proximity to the embedded protostars in Oph B2 to distances ≳0.04 pc. Destruction mechanisms for deuterated molecules require gas temperatures greater than those previously determined through NH3 observations of Oph B2 to proceed. We present temperatures calculated for the dense core gas through the equating of non-thermal line widths for molecules (i.e., N2D+ and H2D+) expected to trace the same core regions, but the observed complex line structures in B2 preclude finding a reasonable result in many locations. This method may, however, work well in isolated cores with less complicated velocity structures. Finally, we use RD and the H2D+ column density across Oph B2 to set a lower limit on the ionization fraction across the core, finding a mean xe,lim ≳ few × 10−8. Our results show that care must be taken when using deuterated species as a probe of the physical conditions of dense gas in star-forming regions.

683

, , , , and

In this work, we report and discuss the detection of two distant diffuse stellar groups in the third Galactic quadrant. They are composed of young stars, with spectral types ranging from late O to late B, and lie at galactocentric distances between 15 and 20 kpc. These groups are located in the area of two cataloged open clusters (VdB–Hagen 04 and Ruprecht 30), projected toward the Vela-Puppis constellations, and within the core of the Canis Major overdensity. Their reddening and distances have been estimated by analyzing their color–color and color–magnitude diagrams, derived from deep UBV photometry. The existence of young star aggregates at such extreme distances from the Galactic center challenges the commonly accepted scenario in which the Galactic disk has a sharp cutoff at about 14 kpc from the Galactic center and indicates that it extends to much greater distances (as also supported by the recent detection of CO molecular complexes well beyond this distance). While the groups we find in the area of Ruprecht 30 are compatible with the Orion and Norma-Cygnus spiral arms, respectively, the distant group we identify in the region of VdB–Hagen 04 lies in the external regions of the Norma-Cygnus arm, at a galactocentric distance (∼20 kpc) where no young stars have been detected so far in the optical.

695

and

We present new models for illuminated accretion disks, their structure, and reprocessed emission. We consider the effects of incident X-rays on the surface of an accretion disk by simultaneously solving the equations of radiative transfer, energy balance, and ionization equilibrium over a large range of column densities. We assume plane-parallel geometry and azimuthal symmetry, such that each calculation corresponds to a ring at a given distance from the central object. Our models include recent and complete atomic data for K-shell processes of the iron and oxygen isonuclear sequences. We examine the effect on the spectrum of fluorescent Kα line emission and absorption in the emitted spectrum. We also explore the dependence of the spectrum on the strength of the incident X-rays and other input parameters, and discuss the importance of Comptonization on the emitted spectrum.

707

, , , , , , and

We report the detection and analysis of the red giant branch (RGB) luminosity function bump in a sample of isolated dwarf galaxies in the Local Group. We have designed a new analysis approach comparing the observed color–magnitude diagrams (CMDs) with theoretical best-fit CMDs derived from precise estimates of the star formation histories of each galaxy. This analysis is based on studying the difference between the V magnitude of the RGB bump and the horizontal branch at the level of the RR Lyrae instability strip (ΔVbumpHB ) and we discuss here a technique for reliably measuring this quantity in complex stellar systems. By using this approach, we find that the difference between the observed and predicted values of ΔVbumpHB is +0.13 ± 0.14 mag. This is smaller, by about a factor of 2, than the well-known discrepancy between theory and observation at low metallicity commonly derived for Galactic globular clusters (GCs). This result is confirmed by a comparison between the adopted theoretical framework and empirical estimates of the ΔVbumpHB parameter for both a large database of Galactic GCs and for four other dwarf spheroidal galaxies for which this estimate is available in the literature. We also investigate the strength of the RGB bump feature (Rbump), and find very good agreement between the observed and theoretically predicted Rbump values. This agreement supports the reliability of the evolutionary lifetimes predicted by theoretical models of the evolution of low-mass stars.

717

We demonstrate the Parker Magnetostatic Theorem in terms of a small neighborhood in solution space containing continuous force-free magnetic fields in small deviations from the uniform field. These fields are embedded in a perfectly conducting fluid bounded by a pair of rigid plates where each field is anchored, taking the plates perpendicular to the uniform field. Those force-free fields obtainable from the uniform field by continuous magnetic footpoint displacements at the plates have field topologies that are shown to be a restricted subset of the field topologies similarly created without imposing the force-free equilibrium condition. The theorem then follows from the deduction that a continuous nonequilibrium field with a topology not in that subset must find a force-free state containing tangential discontinuities.

724

and

Chandra X-ray Observatory imaging spectroscopy of the starburst galaxy Henize 2–10 (He 2–10) reveals a strong nuclear point source and at least two fainter compact sources embedded within a more luminous diffuse thermal component. Spectral fits to the nuclear X-ray source imply an unabsorbed X-ray luminosity Lx>1040 erg s−1 for reasonable power law or blackbody models, consistent with accretion onto a >50 M black hole behind a foreground absorbing column of NH>1023 cm−2. Two of these point sources have Lx = 2 − 5 × 1038 erg s−1, comparable to luminous X-ray binaries. These compact sources constitute a small fraction (⩽16%) of the total X-ray flux from He 2–10 in the 0.3–6.0 keV band and just 31% of the X-rays in the hard 1.1–6.0 keV band which is dominated by diffuse emission. Two-temperature solar-composition plasmas (kT ≃ 0.2 keV and kT ≃ 0.7 keV) fit the diffuse X-ray component as well as single-temperature plasmas with enhanced α/Fe ratios. Since the observed radial gradient of the X-ray surface brightness closely follows that of the Hα emission, the composition of the X-ray plasma likely reflects mixing of the ambient cool/warm interstellar medium (ISM) with an even hotter, low emission measure plasma, thereby explaining the ∼solar ISM composition. Aperture synthesis 21 cm maps show an extended neutral medium to radii of 60'' so that the warm and hot phases of the ISM, which extend to ∼30'', are enveloped within the 8 × 1020 cm−2 contour of the cool neutral medium. This extended neutral halo may serve to inhibit a starburst-driven outflow unless it is predominantly along the line of sight. The high areal density of star formation can also be reconciled with the lack of prominent outflow signatures if He 2–10 is in the very early stages of developing a galactic wind.

739

Motivated by recent observations that suggest a low density of old stars around the Milky Way supermassive black hole (SMBH), models for the nuclear star cluster are considered that have not yet reached a steady state under the influence of gravitational encounters. A core of initial radius 1–1.5 pc evolves to a size of approximately 0.5 pc after 10 Gyr, roughly the size of the observed core. The absence of a Bahcall–Wolf cusp is naturally explained in these models, without the need for fine-tuning or implausible initial conditions. In the absence of a cusp, the time for a 10 M black hole (BH) to spiral in to the Galactic center from an initial distance of 5 pc can be much greater than 10 Gyr. Assuming that the stellar BHs had the same phase-space distribution initially as the stars, their density after 5–10 Gyr is predicted to rise very steeply going into the stellar core, but could remain substantially below the densities inferred from steady-state models that include a steep density cusp in the stars. Possible mechanisms for the creation of the parsec-scale initial core include destruction of stars on centrophilic orbits in a pre-existing triaxial nucleus, inhibited star formation near the SMBH, or ejection of stars by a massive binary. The implications of these models are discussed for the rates of gravitational-wave inspiral events, as well as other physical processes that depend on a high density of stars or stellar-mass BHs near SgrA*.

762

, , , and

We use galaxy groups at redshifts between 0.4 and 1.0 selected from the Great Observatories Origins Deep Survey to study the color-morphological properties of satellite galaxies and investigate possible alignment between the distribution of the satellites and the orientation of their central galaxy. We confirm the bimodal color and morphological-type distribution for satellite galaxies at this redshift range: the red and blue classes correspond to the early and late morphological types, respectively, and the early-type satellites are on average brighter than the late-type ones. Furthermore, there is a morphological conformity between the central and satellite galaxies: the fraction of early-type satellites in groups with an early-type central is higher than those with a late-type central galaxy. This effect is stronger at smaller separations from the central galaxy. We find a marginally significant signal of alignment between the major axis of the early-type central galaxy and its satellite system, while for the late-type centrals no significant alignment signal is found. We discuss the alignment signal in the context of shape evolution of groups.

768

, , , and

We investigate the ability of spectroscopic techniques to yield realistic star formation histories (SFHs) for the bulges of spiral galaxies based on a comparison with their observed broadband colors. Full spectrum fitting to optical spectra indicates that recent (within ∼1 Gyr) star formation activity can contribute significantly to the V-band flux, whilst accounting for only a minor fraction of the stellar mass budget which is made up primarily of old stars. Furthermore, recent implementations of stellar population (SP) models reveal that the inclusion of a more complete treatment of the thermally pulsating asymptotic giant branch (TP-AGB) phase to SP models greatly increases the NIR flux for SPs of ages 0.2–2 Gyr. Comparing the optical–NIR colors predicted from population synthesis fitting, using models which do not include all stages of the TP-AGB phase, to the observed colors reveals that observed optical–NIR colors are too red compared to the model predictions. However, when a 1 Gyr SP from models including a full treatment of the TP-AGB phase is used, the observed and predicted colors are in good agreement. This has strong implications for the interpretation of stellar populations, dust content, and SFHs derived from colors alone.

774

, , , , , , , , , and

We present near-infrared observations of T Tauri and Herbig Ae/Be stars with a spatial resolution of a few milliarcseconds and a spectral resolution of ∼2000. Our observations spatially resolve gas and dust in the inner regions of protoplanetary disks, and spectrally resolve broad-linewidth emission from the Brγ transition of hydrogen gas. We use the technique of spectro-astrometry to determine centroids of different velocity components of this gaseous emission at a precision orders of magnitude better than the angular resolution. In all sources, we find the gaseous emission to be more compact than or distributed on similar spatial scales to the dust emission. We attempt to fit the data with models including both dust and Brγ-emitting gas, and we consider both disk and infall/outflow morphologies for the gaseous matter. In most cases where we can distinguish between these two models, the data show a preference for infall/outflow models. In all cases, our data appear consistent with the presence of some gas at stellocentric radii of ∼0.01 AU. Our findings support the hypothesis that Brγ emission generally traces magnetospherically driven accretion and/or outflows in young star/disk systems.

795

, , , , and

Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2–13 μm size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10–200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

810

, , , , , , , , and

Deep Keck/NIRC2 HK'L' observations of the Arches cluster near the Galactic center reveal a significant population of near-infrared excess sources. We combine the L'-band excess observations with K'-band proper motions, which allow us to confirm cluster membership of excess sources in a starburst cluster for the first time. The robust removal of field contamination provides a reliable disk fraction down to our completeness limit of H = 19 mag, or ∼5 M at the distance of the Arches. Of the 24 identified sources with K' − L'>2.0 mag, 21 have reliable proper motion measurements, all of which are proper motion members of the Arches cluster. VLT/SINFONI K'-band spectroscopy of 3 excess sources reveals strong CO bandhead emission, which we interpret as the signature of dense circumstellar disks. The detection of strong disk emission from the Arches stars is surprising in view of the high mass of the B-type main sequence host stars of the disks and the intense starburst environment. We find a disk fraction of 6% ± 2% among B-type stars in the Arches cluster. A radial increase in the disk fraction from 3% to 10% suggests rapid disk destruction in the immediate vicinity of numerous O-type stars in the cluster core. A comparison between the Arches and other high- and low-mass star-forming regions provides strong indication that disk depletion is significantly more rapid in compact starburst clusters than in moderate star-forming environments.

832

, , , and

UV irradiation of simple ices is proposed to efficiently produce complex organic species during star formation and planet formation. Through a series of laboratory experiments, we investigate the effects of the H2O concentration, the dominant ice constituent in space, on the photochemistry of more volatile species, especially CH4, in ice mixtures. In the experiments, thin (∼40 ML) ice mixtures, kept at 20–60 K, are irradiated under ultra-high vacuum conditions with a broadband UV hydrogen discharge lamp. Photodestruction cross sections of volatile species (CH4 and NH3) and production efficiencies of new species (C2H6, C2H4, CO, H2CO, CH3OH, CH3CHO, and CH3CH2OH) in water-containing ice mixtures are determined using reflection-absorption infrared spectroscopy during irradiation and during a subsequent slow warm-up. The four major effects of increasing the H2O concentration are: (1) an increase of the destruction efficiency of the volatile mixture constituent by up to an order of magnitude due to a reduction of back reactions following photodissociation, (2) a shift to products rich in oxygen, e.g., CH3OH and H2CO, (3) trapping of up to a factor of 5 more of the formed radicals in the ice, and (4) a disproportional increase in the diffusion barrier for the OH radical compared with the CH3 and HCO radicals. The radical diffusion temperature dependencies are consistent with calculated H2O-radical bond strengths. All the listed effects are potentially important for the production of complex organics in H2O-rich icy grain mantles around protostars and should thus be taken into account when modeling ice chemistry.

841

and

Hyperaccreting neutron stars or magnetar disks cooled via neutrino emission can be candidates of gamma-ray burst (GRB) central engines. The strong field ⩾1015–1016 G of a magnetar can play a significant role in affecting the disk properties and even lead to the funnel accretion process. In this paper, we investigate the effects of strong fields on the disks around magnetars, and discuss implications of such accreting magnetar systems for GRBs and GRB-like events. We discuss quantum effects of the strong fields on the disk thermodynamics and microphysics due to modifications of the electron distribution and energy in the strong field environment, and use the magnetohydrodynamical conservation equations to describe the behavior of the disk flow coupled with a large-scale field, which is generated by the star–disk interaction. If the disk field is open, the disk properties mainly depend on the ratio between |Bϕ/Bz| and Ω/ΩK with Bϕ and Bz being the azimuthal and vertical components of the disk field, and Ω and ΩK being the accretion flow angular velocity and Keplerian velocity, respectively. On the other hand, the disk properties also depend on the magnetar spin period if the disk field is closed. In general, stronger fields give higher disk densities, pressures, temperatures, and neutrino luminosity. Moreover, strong fields will change the electron fraction and degeneracy state significantly. A magnetized disk is always viscously stable outside the Alfvén radius, but will be thermally unstable near the Alfvén radius where the magnetic field plays a more important role in transferring the angular momentum and heating the disk than the viscous stress. The funnel accretion process will be important only for an extremely strong field, which creates a magnetosphere inside the Alfvén radius and truncates the plane disk. Because of higher temperature and more concentrated neutrino emission of a ring-like belt region on the magnetar surface covered by funnel accretion, the neutrino annihilation rate from the accreting magnetar can be much higher than that from an accreting neutron star without fields. Furthermore, the neutrino annihilation mechanism, which releases the gravitational energy of the surrounding disk, and the magnetically driven pulsar wind, which extracts the stellar rotational energy from the magnetar surface, can work together to generate and feed an ultrarelativistic jet along the stellar magnetic poles.

867

We present the results of experiments aimed at studying the interaction of hydrogen atoms at 80 K with carbon grains covered with a water ice layer at 12 K. The effects of H processing have been analyzed, using IR spectroscopy, as a function of the water ice layer. The results confirm that exposure of the samples to H atoms induces the activation of the band at 3.47 μm with no evidence for the formation of aromatic and aliphatic C–H bonds in the CH2 and CH3 functional groups. The formation cross section of the 3.47 μm band has been estimated from the increase of its integrated optical depth as a function of the H atom fluence. The cross section decreases with increasing thickness of the water ice layer, indicating an increase of adsorption of H atoms in the water ice layer. A penetration depth of 100 nm has been estimated for H atoms in the porous water ice covering carbon grains. Sample warm-up at room temperature causes the activation of the IR features due to the vibrations of the CH2 and CH3 aliphatic functional groups. The evolution of the 3.47 μm band carrier has been evaluated for dense and diffuse interstellar clouds, using the estimated formation cross section and assuming that the destruction cross section by energetic processing is the same as that derived for the 3.4 μm band. In both environments, the presence of the 3.47 μm band carrier is compatible with the evolutionary timescale limit imposed by fast cycling of materials between dense and diffuse regions of the interstellar medium. In diffuse regions the formation of the CH2 and CH3 aliphatic bands, inhibited in dense regions, takes place, masking the 3.47 μm band. The activation of the CH2 and CH3 aliphatic vibrational modes at the end of H processing after sample warm-up represents the first experimental evidence supporting an evolutionary connection between the interstellar carbon grain population, which is responsible for the 3.4 μm band (diffuse regions) and contributes to the absorption at 3.47 μm (dense regions), and the organics observed in interplanetary dust particles and cometary Stardust grains.

876

, , , , , , , , , et al

Supernova (SN) rates are potentially powerful diagnostics of metal enrichment and SN physics, particularly in galaxy clusters with their deep, metal-retaining potentials and relatively simple star formation histories. We have carried out a survey for SNe in galaxy clusters, at a redshift range of 0.5 < z < 0.9, using the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. We reimaged a sample of 15 clusters that were previously imaged by ACS, thus obtaining two to three epochs per cluster in which we discovered five likely cluster SNe, six possible cluster Type Ia supernovae, two hostless SN candidates, and several background and foreground events. Keck spectra of the host galaxies were obtained to establish cluster membership. We conducted detailed efficiency simulations, and measured the stellar luminosities of the clusters using Subaru images. We derive a cluster SN rate of 0.35SNuB+0.17−0.12(statistical) ±0.13(classification) ±0.01(systematic) (where SNuB = SNe (100 yr 1010LB,☉)−1) and 0.112SNuM+0.055−0.039(statistical) ±0.042(classification) ±0.005(systematic) (where SNuM = SNe (100 yr 1010M)−1). As in previous measurements of cluster SN rates, the uncertainties are dominated by small-number statistics. The SN rate in this redshift bin is consistent with the SN rate in clusters at lower redshifts (to within the uncertainties), and shows that there is, at most, only a slight increase of cluster SN rate with increasing redshift. The low and fairly constant SN Ia rate out to z ≈ 1 implies that the bulk of the iron mass in clusters was already in place by z ≈ 1. The recently observed doubling of iron abundances in the intracluster medium between z = 1 and 0, if real, is likely to be the result of redistribution of existing iron, rather than new production of iron.

894

, , , , , , and

In this paper, we have analyzed the temporal and spectral behavior of 52 fast rise and exponential decay (FRED) pulses in 48 long-duration gamma-ray bursts (GRBs) observed by the CGRO/BATSE, using a pulse model with two shape parameters and the Band model with three shape parameters, respectively. It is found that these FRED pulses are distinguished both temporally and spectrally from those in the long-lag pulses. In contrast to the long-lag pulses, only one parameter pair indicates an evident correlation among the five parameters, which suggests that at least four parameters are needed to model burst temporal and spectral behavior. In addition, our studies reveal that these FRED pulses have the following correlated properties: (1) long-duration pulses have harder spectra and are less luminous than short-duration pulses and (2) the more asymmetric the pulses are, the steeper are the evolutionary curves of the peak energy (Ep) in the νfν spectrum within the pulse decay phase. Our statistical results give some constraints on the current GRB models.

899

, , , , and

We present a study of the ability of the FermiGamma-ray Space Telescope to detect dark matter (DM) annihilation signals from the Galactic subhalos predicted by the Via Lactea II N-body simulation. We implement an improved formalism for estimating the boost factor needed to account for the effect of DM clumping on scales below the resolution of the simulation, and we incorporate a detailed Monte Carlo simulation of the response of the Fermi–LAT, including a simulation of its all-sky observing mode integrated over a 10 year mission. We find that for WIMP masses up to about 150 GeV c−2 in standard supersymmetric models with 〈σv〉 = 3 × 10−26 cm3 s−1, a few subhalos could be detectable with >5 standard deviation significance and would likely deviate significantly from the appearance of a point source.

905

, , , and

Though flux freezing is a good approximation frequently assumed for molecular clouds, ambipolar diffusion (AD) is inevitable at certain scales. The scale at which AD sets in can be a crucial parameter for turbulence and the star formation process. However, both observation and simulation of AD are very challenging and our knowledge of it is very limited. We recently proposed that the difference between ion and neutral velocity spectra is a signature of turbulent AD and can be used to estimate the AD scales and magnetic field strengths. Here, we present observational evidence showing that this difference between the velocity dispersions from coexistent ions and neutrals is indeed correlated with magnetic field strength.

913

, , and

We compute the deflection angle to order (m/r0)2 and m/r0 × Λr20 for a light ray traveling in a flat ΛCDM cosmology that encounters a completely condensed mass region. We use a Swiss cheese model for the inhomogeneities and find that the most significant correction to the Einstein angle occurs not because of the nonlinear terms but instead occurs because the condensed mass is embedded in a background cosmology. The Swiss cheese model predicts a decrease in the deflection angle of ∼2% for weakly lensed galaxies behind the rich cluster A1689 and that the reduction can be as large as ∼5% for similar rich clusters at z ≈ 1. Weak-lensing deflection angles caused by galaxies can likewise be reduced by as much as ∼4%. We show that the lowest order correction in which Λ appears is proportional to $m/r_0\times \sqrt{\vphantom{A^A}\smash{\hbox{${\Lambda r_0^2}$}}}$ and could cause as much as a ∼0.02% increase in the deflection angle for light that passes through a rich cluster. The lowest order nonlinear correction in the mass is proportional to $m/r_0\times \sqrt{m/r_0}$ and can increase the deflection angle by ∼0.005% for weak lensing by galaxies.

920

, , , , and

We present H- and Ks-band photometry bracketing the secondary eclipse of the hot Jupiter TrES-3b using the Wide-field Infrared Camera on the Canada–France–Hawaii Telescope. We detect the secondary eclipse of TrES-3b with a depth of 0.133+0.018−0.016% in the Ks band (8σ)—a result that is in sharp contrast to the eclipse depth reported by de Mooij & Snellen. We do not detect its thermal emission in the H band, but place a 3σ limit of 0.051% on the depth of the secondary eclipse in this band. A secondary eclipse of this depth in Ks requires very efficient day-to-nightside redistribution of heat and nearly isotropic reradiation, a conclusion that is in agreement with longer wavelength, mid-infrared Spitzer observations. Our 3σ upper limit on the depth of our H-band secondary eclipse also argues for very efficient redistribution of heat and suggests that the atmospheric layer probed by these observations may be well homogenized. However, our H-band upper limit is so constraining that it suggests the possibility of a temperature inversion at depth, or an absorbing molecule, such as methane, that further depresses the emitted flux at this wavelength. The combination of our near-infrared measurements and those obtained with Spitzer suggests that TrES-3b displays a near-isothermal dayside atmospheric temperature structure, whose spectrum is well approximated by a blackbody. We emphasize that our strict H-band limit is in stark disagreement with the best-fit atmospheric model that results from longer wavelength observations only, thus highlighting the importance of near-infrared observations at multiple wavelengths, in addition to those returned by Spitzer in the mid-infrared, to facilitate a comprehensive understanding of the energy budgets of transiting exoplanets.

928

, , , , and

We present a stellar population synthesis study of a type I luminous infrared galaxy: IRAS F13308+5946. It is a quasar with absolute magnitude Mi = −22.56 and has the spectral feature of a Seyfert 1.5 galaxy. Optical images show characteristics of later stages of a merger. With the help of the stellar synthesis code starlight and both Calzetti et al.'s and Leitherer et al.'s extinction curves, we estimate the past infrared (IR) luminosities of the host galaxy and find that it may have experienced an ultraluminous infrared galaxy (ULIRG) phase for nearly 300 Myr, so this galaxy has probably experienced a type I ULIRG phase. Both nuclear starburst (SB) and active galactic nuclei contribute to the present IR luminosity budget, with the SB contributing ∼70%. The mass of the supermassive black hole is MBH = 1.8 × 108M and the Eddington ratio Lbol/LEdd is 0.12, both of which are approximate typical values of Palomar–Green QSOs. These results indicate that IRAS F13308+5946 is probably at the transitional phase from a type I ULIRG to a classical QSO.

939

and

We present a multi-wavelength analysis of the merging rich cluster of galaxies, Abell 2256 (A2256). We have observed A2256 at 150 MHz using the Giant Metrewave Radio Telescope and successfully detected the diffuse radio halo and the relic emission over a ∼1.2 Mpc2 extent. Using this 150 MHz image and the images made using archival observations from the Very Large Array (VLA; 1369 MHz) and the Westerbrok Synthesis Radio Telescope (WSRT; 330 MHz), we have produced spectral index images of the diffuse radio emission in A2256. These spectral index images show a distribution of flat spectral index (S ∝ να, α in the range −0.7 to −0.9) plasma in the region NW of the cluster center. Regions showing steep spectral indices (α in the range −1.0 to −2.3) are toward the SE of the cluster center. These spectral indices indicate synchrotron lifetimes for the relativistic plasmas in the range 0.08–0.4 Gyr. We interpret this spectral behavior as resulting from a merger event along the direction SE to NW within the last 0.5 Gyr or so. A shock may be responsible for the NW relic in A2256 and the megaparsec scale radio halo toward the SE is likely to be generated by the turbulence injected by mergers. Furthermore, the diffuse radio emission shows spectral steepening toward lower frequencies. This low-frequency spectral steepening is consistent with a combination of spectra from two populations of relativistic electrons created at two epochs (two mergers) within the last ∼0.5 Gyr. Earlier interpretations of the X-ray and the optical data also suggested that there were two mergers in Abell 2256 in the last 0.5 Gyr, consistent with the current findings. Also highlighted in this study is the futility of correlating the average temperatures of thermal gas and the average spectral indices of diffuse radio emission in the respective clusters.

947

, , and

We analyzed thermonuclear (type I) X-ray bursts observed from the low-mass X-ray binary 4U 1728−34 by RXTE, Chandra, and INTEGRAL. We compared the variation in burst energy and recurrence times as a function of accretion rate with the predictions of a numerical ignition model including a treatment of the heating and cooling in the crust. We found that the measured burst ignition column depths are significantly below the theoretically predicted values, regardless of the assumed thermal structure of the neutron star (NS) interior. While it is possible that the accretion rate measured by Chandra is underestimated, due to additional persistent spectral components outside the sensitivity band, the required correction factor is typically 3.6 and as high as 6, which is implausible. Furthermore, such underestimation is even more unlikely for RXTE and INTEGRAL, which have much broader bandpasses. Possible explanations for the observed discrepancy include shear-triggered mixing of the accreted helium to larger column depths, resulting in earlier ignition, or the fractional covering of the accreted fuel on the NS surface.

957

and

We present synthetic spectral fits of the typical Type Ib SN 1999dn and the hydrogen-rich Ib SN 2000H using the generalized non-local thermodynamic equilibrium stellar atmospheres code PHOENIX. We fit model spectra to five epochs of SN 1999dn ranging from 10 days pre-maximum light to 17 days post-maximum light and to the two earliest epochs of SN 2000H available, maximum light and six days post-maximum. Our goal is to investigate the possibility of hydrogen in Type Ib supernovae (SNe Ib), specifically a feature around 6200 Å which has previously been attributed to high-velocity Hα. In earlier work on SN 1999dn we found the most plausible alternative to Hα to be a blend of Si ii and Fe ii lines which can be adjusted to fit by increasing the metallicity. Our models are simple; they assume a power-law density profile with radius, homologous expansion, and solar compositions. The helium core is produced by "burning" 4H→He in order to conserve the nucleon number. For models with hydrogen the outer skin of the model consists of a shell of solar composition. The hydrogen mass of the standard solar composition shell is MH ≲ 10−3M in SN 1999dn and MH≲ 0.2 M for SN 2000H. Our models fit the observed spectra reasonably well, successfully reproducing most features including the characteristic He i absorptions. The hydrogen feature in SN 1999dn is clear, but much more pronounced in SN 2000H. We discuss a possible evolutionary scenario that accounts for the dichotomy in the hydrogen shell mass between these two SNe.

963

A tomographic method is described to quantify the three-dimensional power spectrum of the ionospheric electron-density fluctuations based on radio-interferometric observations by a two-dimensional planar array. The method is valid for the first-order Born approximation and might be applicable in correcting observed visibilities for phase variations due to the imprint of the full three-dimensional ionosphere. It is shown that the ionospheric electron-density distribution is not the primary structure to model in interferometry, but rather its autocorrelation function or equivalently its power spectrum. An exact mathematical expression is derived that provides the three-dimensional power spectrum of the ionospheric electron-density fluctuations directly from a rescaled scattered intensity field and an incident intensity field convolved with a complex unit phasor that depends on the w-term and is defined on the full sky pupil plane. In the limit of a small field of view, the method reduces to the single phase-screen approximation. Tomographic self-calibration can become important in high-dynamic range observations at low radio frequencies with wide-field antenna interferometers because a three-dimensional ionosphere causes a spatially varying convolution of the sky, whereas a single phase screen results in a spatially invariant convolution. A thick ionosphere can therefore not be approximated by a single phase screen without introducing errors in the calibration process. By applying a Radon projection and the Fourier projection-slice theorem, it is shown that the phase-screen approach in three dimensions is identical to the tomographic method. Finally, we suggest that residual speckle can cause a diffuse intensity halo around sources due to uncorrectable ionospheric phase fluctuations in the short integrations, which could pose a fundamental limit on the dynamic range in long-integration images.

972

, , , and

We present new analytical estimates of the large-scale bias of neutral hydrogen (H i). We use a simple, non-parametric model which monotonically relates the total mass of a halo Mtot with its H i mass MH i at zero redshift; for earlier times we assume limiting models for the ΩH i evolution consistent with the data presently available, as well as two main scenarios for the evolution of our MH iMtot relation. We find that both the linear and the first nonlinear bias terms exhibit a strong evolution with redshift, regardless of the specific limiting model assumed for the H i density over time. These analytical predictions are then shown to be consistent with measurements performed on the Millennium Simulation. Additionally, we show that this strong bias evolution does not sensibly affect the measurement of the H i power spectrum.

981

, , , and

Observations from the X-ray telescope (XRT) on Hinode are used to study the nature of X-ray-bright points, sources of coronal jets. Several jet events in the coronal holes are found to erupt from small-scale, S-shaped bright regions. This finding suggests that coronal micro-sigmoids may well be progenitors of coronal jets. Moreover, the presence of these structures may explain numerous observed characteristics of jets such as helical structures, apparent transverse motions, and shapes. Analogous to large-scale sigmoids giving rise to coronal mass ejections (CMEs), a promising future task would perhaps be to investigate whether solar eruptive activity, from coronal jets to CMEs, is self-similar in terms of properties and instability mechanisms.

988

, , , , , , , and

To model the second solar spectrum (the linearly polarized spectrum of the Sun that is due to coherent scattering processes), one needs to solve the polarized radiative transfer (RT) equation. For strong resonance lines, partial frequency redistribution (PRD) effects must be accounted for, which make the problem computationally demanding. The "last scattering approximation" (LSA) is a concept that has been introduced to make this highly complex problem more tractable. An earlier application of a simple LSA version could successfully model the wings of the strong Ca i 4227 Å resonance line in Stokes Q/I (fractional linear polarization), but completely failed to reproduce the observed Q/I peak in the line core. Since the magnetic field signatures from the Hanle effect only occur in the line core, we need to generalize the existing LSA approach if it is to be useful for the diagnostics of chromospheric and turbulent magnetic fields. In this paper, we explore three different approximation levels for LSA and compare each of them with the benchmark represented by the solution of the full polarized RT, including PRD effects. The simplest approximation level is LSA-1, which uses the observed center-to-limb variation of the intensity profile to obtain the anisotropy of the radiation field at the surface, without solving any transfer equation. In contrast, the next two approximation levels use the solution of the unpolarized transfer equation to derive the anisotropy of the incident radiation field and use it as an input. In the case of LSA-2, the anisotropy at level τλ = μ, the atmospheric level from which an observed photon is most likely to originate, is used. LSA-3, on the other hand, makes use of the full depth dependence of the radiation anisotropy. The Q/I formula for LSA-3 is obtained by keeping the first term in a series expansion of the Q-source function in powers of the mean number of scattering events. Computationally, LSA-1 is 21 times faster than LSA-2, which is 5 times faster than the more general LSA-3, which itself is 8 times faster than the polarized RT approach. A comparison of the calculated Q/I spectra with the RT benchmark shows excellent agreement for LSA-3, including good modeling of the Q/I core region with its PRD effects. In contrast, both LSA-1 and LSA-2 fail to model the core region. The RT and LSA-3 approaches are then applied to model the recently observed Q/I profile of the Ca i 4227 Å line in quiet regions of the Sun. Apart from a global scale factor both give a very good fit to the Q/I spectra for all the wavelengths, including the core peak and blend line depolarizations. We conclude that LSA-3 is an excellent substitute for the full polarized RT and can be used to interpret the second solar spectrum, including the Hanle effect with PRD. It also allows the techniques developed for unpolarized three-dimensional RT to be applied to the modeling of the second solar spectrum.

1001

, , , , , , , , and

Using the cosmological baryonic accretion rate and normal star formation (SF) efficiencies, we present a very simple model for star-forming galaxies that accounts for the mass and redshift dependences of the star formation rate (SFR)–mass and Tully–Fisher (TF) relations from z ∼ 2 to the present. The time evolution follows from the fact that each modeled galaxy approaches a steady state where the SFR follows the (net) cold gas accretion rate. The key feature of the model is a halo mass floor Mmin ≃ 1011M below which accretion is quenched in order to simultaneously account for the observed slopes of the SFR–mass and TF relations. The same successes cannot be achieved via an SF threshold (or delay) nor by varying the SF efficiency or the feedback efficiency. Combined with the mass ceiling for cold accretion due to virial shock heating, the mass floor Mmin explains galaxy "downsizing," where more massive galaxies formed earlier and over a shorter period of time. It turns out that the model also accounts for the observed galactic baryon and gas fractions as a function of mass and time, and the cosmic SFR density, which are all resulting from the mass floor Mmin. The model helps us to understand that it is the cosmological decline of accretion rate that drives the decrease of cosmic SFR density between z ∼ 2 and z = 0 and the rise of the cosmic SFR density from z ∼ 6 to z ∼ 2 that allows us to put a constraint on our main parameter Mmin ≃ 1011M. Among the physical mechanisms that could be responsible for the mass floor, our view is that photoionization feedback (from first in situ hot stars) lowering the cooling efficiency is likely to play a large role.

1019

, , , and

We have carried out mapping observations of the entire L1551 molecular cloud with about 2 pc × 2 pc size in the 12CO(1–0) line with the Nobeyama 45 m radio telescope at the high effective resolution of 22'' (corresponding to 0.017 pc at the distance of 160 pc), and analyzed the 12CO data together with the 13CO(1–0) and C18O(1–0) data from the Nobeyama Radio Observatory database. We derived the new non-thermal line width–size relations, σNTLγ, for the three molecular lines, corrected for the effect of optical depth and the line-of-sight integration. To investigate the characteristic of the intrinsic turbulence, the effects of the outflows were removed. The derived relations are (σNT/km s−1) = (0.18 ± 0.010)(L/pc)0.45 ± 0.095, (0.20 ± 0.020)(L/pc)0.48 ± 0.091, and (0.22 ± 0.050) (L/pc)0.54 ± 0.21 for the 12CO, 13CO, and C18O lines, respectively, suggesting that the line width–size relation of the turbulence very weakly depends on our observed molecular lines, i.e., the relation does not change between the density ranges of 102–103 and 103–104 cm−3. In addition, the relations indicate that incompressible turbulence is dominant at the scales smaller than 0.6 pc in L1551. The power spectrum indices converted from the relations, however, seem to be larger than that of the Kolmogorov spectrum for incompressible flow. The disagreement could be explained by the anisotropy in the turbulent velocity field in L1551, as expected in MHD turbulence. Actually, the autocorrelation functions of the centroid velocity fluctuations show larger correlation along the direction of the magnetic field measured for the whole Taurus cloud, which is consistent with the results of numerical simulations for incompressible MHD flow.

1036

, , , , and

We present mid-IR and radio observations of the Galactic luminous blue variables (LBVs) candidate HD 168625 and its associated nebula. We obtained mid-IR spectroscopic observations using the Infrared Spectrograph on board the Spitzer Space Telescope, and performed mid-IR and radio imaging observations using VISIR on the Very Large Telescope and the Very Large Array with comparable angular resolution. Our spectroscopic observations detected spectral features attributable to polycyclic aromatic hydrocarbons (PAHs) and therefore indicate the presence of a photodissociation region (PDR) around the ionized nebula. This result increases the number of LBVs and LBV candidates where a PDR has been found, confirming the importance of such a component in the total mass-loss budget of the central object during this elusive phase of massive star evolution. We have analyzed and compared the mid-IR and radio maps, and derive several results concerning the associated nebula. There is evidence for grain distribution variations across the nebula, with a predominant contribution from bigger grains in the northern part of the nebula while PAH and smaller grains are more concentrated in the southern part. A compact radio component located where there is a lack of thermal dust grains corroborates the presence of a shock in the southern nebula, which could arise as a consequence of the interaction of a fast outflow with the slower, expanding dusty nebula. Such a shock would be a viable means for PAH production as well as for changes in the grain size distribution. Finally, from the detection of a central radio component probably associated with the wind from the central massive supergiant, we derive a current mass-loss rate of $\dot{M}=(1.46 \pm 0.15) \times 10^{-6}\, M_{\odot }\,{\rm yr}^{-1}$.

1046

, , , , , and

We present an analysis of ionization and metal enrichment in the Magellanic Stream (MS), the nearest gaseous tidal stream, using Hubble Space Telescope/STIS and FUSE ultraviolet spectroscopy of two background active galactic nuclei. The targets are NGC 7469, lying directly behind the MS with log N(H i)MS = 18.63 ± 0.03(stat) ± 0.08(syst), and Mrk 335, lying 24fdg7 away with log N(H i)MS = 16.67 ± 0.05. For NGC 7469, we include optical spectroscopy from VLT/UVES. In both sight lines, the MS is detected in low-ion (O i, C ii, C iii, Si ii, Si iii, Al ii, Ca ii) and high-ion (O vi, C iv, Si iv) absorption. Toward NGC 7469, we measure an MS oxygen abundance [O/H]MS = [O i/H i] = −1.00 ± 0.05(stat) ± 0.08(syst), supporting the view that the Stream originates in the Small Magellanic Cloud rather than the Large Magellanic Cloud. We use CLOUDY to model the low-ion phase of the Stream as a photoionized plasma using the observed Si iii/Si ii and C iii/C ii ratios. Toward Mrk 335, this yields an ionization parameter between log U = −3.45 and −3.15, a gas density log (nH/cm−3) between −2.51 and −2.21, and a hydrogen ionization fraction of 98.9%–99.5%. Toward NGC 7469, we derive sub-solar abundance ratios for [Si/O], [Fe/O], and [Al/O], indicating the presence of dust in the MS. The high-ion column densities are too large to be explained by photoionization, but also cannot be explained by a single-temperature collisional ionization model (equilibrium or non-equilibrium). This suggests that the high-ion plasma is multi-phase, with an Si iv region, a hotter O vi region, and C iv potentially contributing to each. Summing over the low-ion and high-ion phases, we derive conservative lower limits on the ratio N(total H ii)/N(H i) of ≳19 toward NGC 7469 and ≳330 toward Mrk 335, showing that along these two directions the vast majority of the Stream has been ionized. The presence of warm-hot plasma together with the small-scale structure observed at 21 cm provides evidence for an evaporative interaction with the hot Galactic corona. This scenario, predicted by hydrodynamical simulations, suggests that the fate of the MS will be to replenish the Galactic corona with new plasma, rather than to bring neutral fuel to the disk.

1062

, , , and

Rate coefficients for state-to-state rotational transitions in CO induced by both para- and ortho-H2 collisions are presented. The results were obtained using the close-coupling method and the coupled-states approximation, with the CO–H2 interaction potential of Jankowski & Szalewicz. Rate coefficients are presented for temperatures between 1 and 3000 K, and for CO(v = 0, j) quenching from j = 1–40 to all lower j' levels. Comparisons with previous calculations using an earlier potential show some discrepancies, especially at low temperatures and for rotational transitions involving large |Δj|. The differences in the well depths of the van der Waals interactions and the anisotropy of the two potential surfaces lead to different resonance structures in the energy dependence of the cross sections which influence the low temperature rate coefficients. Applications to far infrared observations of astrophysical environments are briefly discussed.

1070

, , , and

Emission lines formed in the transition region (TR) of the Sun have long been known to show pervasive redshifts. Despite a variety of proposed explanations, these TR downflows (and the slight upflows in the low corona) remain poorly understood. We present results from comprehensive three-dimensional MHD models that span the upper convection zone up to the corona, 15 Mm above the photosphere. The TR and coronal heating in these models is caused by the stressing of the magnetic field by photospheric and convection "zone dynamics," but also in some models by the injection of emerging magnetic flux. We show that rapid, episodic heating, at low heights of the upper chromospheric plasma to coronal temperatures naturally produces downflows in TR lines, and slight upflows in low coronal lines, with similar amplitudes to those observed with EUV/UV spectrographs. We find that TR redshifts naturally arise in episodically heated models where the average volumetric heating scale height lies between that of the chromospheric pressure scale height of 200 km and the coronal scale height of 50 Mm.

1079

and

Microlensing perturbations to the magnification of gravitationally lensed quasar images are dependent on the angular size of the quasar. If quasar variability at visible wavelengths is caused by a change in the area of the accretion disk, it will affect the microlensing magnification. We derive the expected signal, assuming that the luminosity scales with some power of the disk area, and estimate its amplitude using simulations. We discuss the prospects for detecting the effect in real-world data and for using it to estimate the logarithmic slope of the luminosity's dependence on disk area. Such an estimate would provide a direct test of the standard thin accretion disk model. We tried fitting six seasons of the light curves of the lensed quasar HE 0435−1223 including this effect as a modification to the Kochanek et al. approach to estimating time delays. We find a dramatic improvement in the goodness of fit and relatively plausible parameters, but a robust estimate will require a full numerical calculation in order to correctly model the strong correlations between the structure of the microlensing magnification patterns and the magnitude of the effect. We also comment briefly on the effect of this phenomenon for the stability of time-delay estimates.

1085

and

Faraday rotation measurements have provided an invaluable technique for probing the properties of astrophysical magnetized plasmas. Unfortunately, typical observations provide information only about the density-weighted average of the magnetic field component parallel to the line of sight. As a result, the magnetic field geometry along the line of sight, and in many cases even the location of the rotating material, is poorly constrained. Frequently, interpretations of Faraday rotation observations are dependent upon underlying models of the magnetic field being probed (e.g., uniform, turbulent, equipartition). However, we show that at sufficiently low frequencies, specifically below roughly 13(RM/1 rad m−2)1/4(B/1 G)1/2 MHz, the character of Faraday rotation changes, entering what we term the "super-adiabatic regime" in which the rotation measure (RM) is proportional to the integrated absolute value of the line-of-sight component of the field. As a consequence, comparing RMs at high frequencies with those in this new regime provides direct information about the geometry of the magnetic field along the line of sight. Furthermore, the frequency defining the transition to this new regime, νSA, depends directly upon the local electron density and magnetic field strength where the magnetic field is perpendicular to the line of sight, allowing the unambiguous distinction between Faraday rotation within and in front of the emission region. Typical values of νSA range from 10 kHz (below the ionospheric cutoff, but above the heliospheric cutoff) to 10 GHz, depending upon the details of the Faraday rotating environment. In particular, for resolved active galactic nuclei, including the black holes at the center of the Milky Way (Sgr A*) and M81, νSA ranges from roughly 10 MHz to 10 GHz, and thus can be probed via existing and up-coming ground-based radio observatories.

1100

, , , , , , , , , et al

NH3 and CH3OH are key molecules in astrochemical networks leading to the formation of more complex N- and O-bearing molecules, such as CH3CN and CH3OCH3. Despite a number of recent studies, little is known about their abundances in the solid state. This is particularly the case for low-mass protostars, for which only the launch of the SpitzerSpace Telescope has permitted high-sensitivity observations of the ices around these objects. In this work, we investigate the ∼8–10 μm region in the Spitzer IRS (InfraRed Spectrograph) spectra of 41 low-mass young stellar objects (YSOs). These data are part of a survey of interstellar ices in a sample of low-mass YSOs studied in earlier papers in this series. We used both an empirical and a local continuum method to correct for the contribution from the 10 μm silicate absorption in the recorded spectra. In addition, we conducted a systematic laboratory study of NH3- and CH3OH-containing ices to help interpret the astronomical spectra. We clearly detect a feature at ∼9 μm in 24 low-mass YSOs. Within the uncertainty in continuum determination, we identify this feature with the NH3 ν2 umbrella mode and derive abundances with respect to water between ∼2% and 15%. Simultaneously, we also revisited the case of CH3OH ice by studying the ν4 C–O stretch mode of this molecule at ∼9.7 μm in 16 objects, yielding abundances consistent with those derived by Boogert et al. based on a simultaneous 9.75 and 3.53 μm data analysis. Our study indicates that NH3 is present primarily in H2O-rich ices, but that in some cases, such ices are insufficient to explain the observed narrow FWHM. The laboratory data point to CH3OH being in an almost pure methanol ice, or mixed mainly with CO or CO2, consistent with its formation through hydrogenation on grains. Finally, we use our derived NH3 abundances in combination with previously published abundances of other solid N-bearing species to find that up to 10%–20% of nitrogen is locked up in known ices.

1118

, , and

We present a deep color–magnitude diagram (CMD) for individual stars in the halo of the nearby spiral galaxy M81, at a projected distance of 19 kpc, based on data taken with the Advanced Camera for Surveys on the Hubble Space Telescope (HST). The CMD reveals a red giant branch (RGB) that is narrow and fairly blue, and a horizontal branch that has stars that lie mostly redward of the RR Lyrae instability strip. We derive a mean metallicity of [M/H] = −1.15 ± 0.11 and age of 9 ± 2 Gyr for the dominant population in our field, from the shape of the RGB, the magnitude of the red clump, and the location of the RGB bump. We compare our metallicity and age results with those found previously for stars in different locations within M81 and in the spheroids of other nearby galaxies.

1128

and

Numerical models of the tidal disruption of the Sagittarius (Sgr) dwarf galaxy have recently been developed that for the first time simultaneously satisfy most observational constraints on the angular position, distance, and radial velocity trends of both leading and trailing tidal streams emanating from the dwarf. We use these dynamical models in combination with extant three-dimensional position and velocity data for Galactic globular clusters and dSph galaxies to identify those Milky Way satellites that are likely to have originally formed in the gravitational potential well of the Sgr dwarf, and have been stripped from Sgr during its extended interaction with the Milky Way. We conclude that the globular clusters Arp 2, M 54, NGC 5634, Terzan 8, and Whiting 1 are almost certainly associated with the Sgr dwarf, and that Berkeley 29, NGC 5053, Pal 12, and Terzan 7 are likely to be as well (albeit at lower confidence). The initial Sgr system therefore may have contained five to nine globular clusters, corresponding to a specific frequency SN = 5–9 for an initial Sgr luminosity MV = −15.0. Our result is consistent with the 8 ± 2 genuine Sgr globular clusters expected on the basis of statistical modeling of the Galactic globular cluster distribution and the corresponding false-association rate due to chance alignments with the Sgr streams. The globular clusters identified as most likely to be associated with Sgr are consistent with previous reconstructions of the Sgr age–metallicity relation, and show no evidence for a second-parameter effect shaping their horizontal branch morphologies. We find no statistically significant evidence to suggest that any of the recently discovered population of ultrafaint dwarf galaxies are associated with the Sgr tidal streams, but are unable to rule out this possibility conclusively for all systems.

1151

and

A phenomenological anisotropic theory of MHD turbulence with nonvanishing cross-helicity is constructed based on Boldyrev's phenomenology and probabilities p and q for fluctuations $\delta \bm v_\perp$ and $\delta \bm b_\perp$ to be positively or negatively aligned. The positively aligned fluctuations occupy a fractional volume p and the negatively aligned fluctuations occupy a fractional volume q. Guided by observations suggesting that the normalized cross-helicity σc and the probabilities p and q are approximately scale invariant in the inertial range, a generalization of Boldyrev's theory is derived that depends on the three ratios w+/w, epsilon+/epsilon, and p/q. It is assumed that the cascade processes for positively and negatively aligned fluctuations are both in a state of critical balance and that the eddy geometries are scale invariant. The theory reduces to Boldyrev's original theory when σc = 0, epsilon+ = epsilon, and p = q and extends the theory of Perez and Boldyrev when σc ≠ 0. The theory is also an anisotropic generalization of the theory of Dobrowolny, Mangeney, and Veltri.

1158

, , , , , , , , , et al

We study the environments of wet, dry, and mixed galaxy mergers at 0.75 < z < 1.2 using close pairs in the DEEP2 Galaxy Redshift Survey. We find that the typical environment of dry and mixed merger candidates is denser than that of wet mergers, mostly due to the color–density relation. While the galaxy companion rate (Nc) is observed to increase with overdensity, using N-body simulations, we find that the fraction of pairs that will eventually merge decreases with the local density, predominantly because interlopers are more common in dense environments. After taking into account the merger probability of pairs as a function of local density, we find only marginal environment dependence of the galaxy merger rate for wet mergers. On the other hand, the dry and mixed merger rates increase rapidly with local density due to the increased population of red galaxies in dense environments, implying that the dry and mixed mergers are most effective in overdense regions. We also find that the environment distribution of K+A galaxies is similar to that of wet mergers alone and of wet+mixed mergers, suggesting a possible connection between K+A galaxies and wet and/or wet+mixed mergers. Based on our results, we therefore expect that the properties, including structures and masses, of red-sequence galaxies should be different between those in underdense regions and those in overdense regions since the dry mergers are significantly more important in dense environments. We conclude that, as early as z ∼ 1, high-density regions are the preferred environment in which dry mergers occur, and that present-day red-sequence galaxies in overdense environments have, on average, undergone 1.2 ± 0.3 dry mergers since this time, accounting for (38 ± 10)% of their mass accretion in the last 8 billion years. The main uncertainty in this finding is the conversion from the pair fraction to the galaxy merger rate, which is possibly as large as a factor of 2. Our findings suggest that dry mergers are crucial in the mass assembly of massive red galaxies in dense environments, such as brightest cluster galaxies in galaxy groups and clusters.

1171

, , , , , , , , , et al

We present the 24 μm rest-frame luminosity function (LF) of star-forming galaxies in the redshift range 0.0 ⩽ z ⩽ 0.6 constructed from 4047 spectroscopic redshifts from the AGN and Galaxy Evolution Survey of 24 μm selected sources in the Boötes field of the NOAO Deep Wide-Field Survey. This sample provides the best available combination of large area (9 deg2), depth, and statistically complete spectroscopic observations, allowing us to probe the evolution of the 24 μm LF of galaxies at low and intermediate redshifts while minimizing the effects of cosmic variance. In order to use the observed 24 μm luminosity as a tracer for star formation, active galactic nuclei (AGNs) that could contribute significantly at 24 μm are identified and excluded from our star-forming galaxy sample based on their mid-IR spectral energy distributions or the detection of X-ray emission. Optical emission line diagnostics are considered for AGN identification, but we find that 24 μm emission from optically selected AGNs is usually from star-forming activity and therefore should not be excluded. The evolution of the 24 μm LF of star-forming galaxies for redshifts of z ⩽ 0.65 is consistent with a pure luminosity evolution where the characteristic 24 μm luminosity evolves as (1 + z)3.8±0.3. We extend our evolutionary study to encompass 0.0 ⩽ z ⩽ 1.2 by combining our data with that of the Far-Infrared Deep Extragalactic Legacy Survey. Over this entire redshift range, the evolution of the characteristic 24 μm luminosity is described by a slightly shallower power law of (1 + z)3.4±0.2. We find a local star formation rate density of (1.09 ±  0.21) × 10−2M yr−1 Mpc−3, and that it evolves as (1 + z)3.5±0.2 over 0.0 ⩽ z ⩽ 1.2. These estimates are in good agreement with the rates using optical and UV fluxes corrected for the effects of intrinsic extinction in the observed sources. This agreement confirms that star formation at z ≲ 1.2 is robustly traced by 24 μm observations and that it largely occurs in obscured regions of galaxies.

1186

, , , , , , , , , et al

We report the discovery of a low-mass companion orbiting the metal-rich, main sequence F star TYC 2949-00557-1 during the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) pilot project. The host star has an effective temperature Teff = 6135 ± 40 K, logg = 4.4 ± 0.1, and [Fe/H] = 0.32 ± 0.01, indicating a mass of M = 1.25 ± 0.09 M and R = 1.15 ± 0.15 R. The companion has an orbital period of 5.69449 ± 0.00023 days and straddles the hydrogen burning limit with a minimum mass of 64 MJ, and thus may be an example of the rare class of brown dwarfs orbiting at distances comparable to those of "Hot Jupiters." We present relative photometry that demonstrates that the host star is photometrically stable at the few millimagnitude level on time scales of hours to years, and rules out transits for a companion of radius ≳0.8 RJ at the 95% confidence level. Tidal analysis of the system suggests that the star and companion are likely in a double synchronous state where both rotational and orbital synchronization have been achieved. This is the first low-mass companion detected with a multi-object, dispersed, fixed-delay interferometer.

1200

, , , , , , , , , et al

Understanding how disks dissipate is essential to studies of planet formation. However, identifying exactly how dust and gas dissipate is complicated due to the difficulty of finding objects that are clearly in the transition phase of losing their surrounding material. We use Spitzer Infrared Spectrograph (IRS) spectra to examine 35 photometrically selected candidate cold disks (disks with large inner dust holes). The infrared spectra are supplemented with optical spectra to determine stellar and accretion properties and 1.3 mm photometry to measure disk masses. Based on detailed spectral energy distribution modeling, we identify 15 new cold disks. The remaining 20 objects have IRS spectra that are consistent with disks without holes, disks that are observed close to edge-on, or stars with background emission. Based on these results, we determine reliable criteria to identify disks with inner holes from Spitzer photometry, and examine criteria already in the literature. Applying these criteria to the c2d surveyed star-forming regions gives a frequency of such objects of at least 4% and most likely of order 12% of the young stellar object population identified by Spitzer. We also examine the properties of these new cold disks in combination with cold disks from the literature. Hole sizes in this sample are generally smaller than in previously discovered disks and reflect a distribution in better agreement with exoplanet orbit radii. We find correlations between hole size and both disk and stellar masses. Silicate features, including crystalline features, are present in the overwhelming majority of the sample, although the 10 μm feature strength above the continuum declines for holes with radii larger than ∼7 AU. In contrast, polycyclic aromatic hydrocarbons are only detected in 2 out of 15 sources. Only a quarter of the cold disk sample shows no signs of accretion, making it unlikely that photoevaporation is the dominant hole-forming process in most cases.

1224

, , , , , , , , and

We introduce a new statistic ω(rs) for measuring and analyzing large-scale structure and particularly the baryon acoustic oscillations. ω(rs) is a band-filtered, configuration space statistic that is easily implemented and has advantages over the traditional power spectrum and correlation function estimators. Unlike these estimators, ω(rs) can localize most of the acoustic information into a single dip at the acoustic scale while avoiding sensitivity to the poorly constrained large-scale power (i.e., the integral constraint) through the use of a localized and compensated filter. It is also sensitive to anisotropic clustering through pair counting and does not require any binning of data. We measure the shift in the acoustic peak due to nonlinear effects using the monopole ω0(rs) derived from subsampled dark matter (DM) catalogs as well as from mock galaxy catalogs created via halo occupation distribution modeling. All of these are drawn from 44 realizations of 10243 particle DM simulations in a 1 h−1 Gpc box at z = 1. We compare these shifts with those obtained from the power spectrum and conclude that the results agree. We therefore expect that distance measurements obtained from ω0(rs) and P(k) will be consistent with each other. We also show that it is possible to extract the same amount of acoustic information by fitting over a finite range using either ω0(rs) or P(k) derived from equal volume surveys.

1235

and

We use a complete sample of Lyα-emission-line-selected active galactic nuclei (AGNs) obtained from nine deep blank fields observed with the grism spectrographs on the Galaxy Evolution Explorer (GALEX) satellite to measure the normalization and the spectral shape of the AGN contribution to the ionizing background (rest-frame wavelengths 700–900 Å) at z ∼ 1. Our sample consists of 139 sources selected in the redshift range z = 0.65–1.25 in the near-ultraviolet (NUV; 2371 Å central wavelength) channel. The area covered is 8.2 deg2 to a NUV magnitude of 20.5 (AB) and 0.92 deg2 at the faintest magnitude limit of 21.8. The GALEX AGN luminosity function agrees well with those obtained using optical and X-ray AGN samples, and the measured redshift evolution of the ionizing volume emissivity is similar to that previously obtained by measuring the GALEX far-ultraviolet (FUV; 1528 Å central wavelength) magnitudes of an X-ray-selected sample. For the first time, we are able to construct the shape of the ionizing background at z ∼ 1 in a fully self-consistent way.

1243

, , , , , , and

The aromatic benzene molecule (C6H6)—a central building block of polycyclic aromatic hydrocarbon molecules—is of crucial importance for the understanding of the organic chemistry of Saturn's largest moon, Titan. Here, we show via laboratory experiments and electronic structure calculations that the benzene molecule can be formed on Titan's surface in situ via non-equilibrium chemistry by cosmic-ray processing of low-temperature acetylene (C2H2) ices. The actual yield of benzene depends strongly on the surface coverage. We suggest that the cosmic-ray-mediated chemistry on Titan's surface could be the dominant source of benzene, i.e., a factor of at least two orders of magnitude higher compared to previously modeled precipitation rates, in those regions of the surface which have a high surface coverage of acetylene.

1252

, , , and

We use a mock catalog of galaxies based on the COSMOS galaxy catalog, including information on photometric redshift (photo-z) and spectral energy distribution types of galaxies, in order to study how to define a galaxy subsample suitable for weak lensing tomography feasible with optical (and near-IR) multi-band data. Since most useful cosmological information arises from the sample variance limited regime for upcoming lensing surveys, a suitable subsample can be obtained by discarding a large fraction of galaxies that have less reliable photo-z estimations. We develop a method to efficiently identify photo-z outliers by monitoring the width of the posterior likelihood function of redshift estimation for each galaxy. This clipping method may allow us to obtain clean tomographic redshift bins (here three bins are considered) that have almost no overlap, by discarding more than ∼70% of galaxies with ill-defined photo-zs corresponding to the number densities of remaining galaxies less than ∼20 arcmin−2 for a Subaru-type deep survey. Restricting the ranges of magnitudes and redshifts and/or adding near-IR data help us obtain a cleaner redshift binning. Using the Fisher information matrix formalism, we propagate photo-z errors into biases in the dark energy equation of state parameter w. We find that, by discarding most of the ill-defined photo-z galaxies, the bias in w can be reduced to a level comparable to the marginalized statistical error; however, the residual small systematic bias remains due to asymmetric scatters around the relation between photometric and true redshifts. We also use the mock catalog to estimate the cumulative signal-to-noise ratios (S/Ns) for measuring the angular cross-correlations of galaxies between finer photo-z bins, finding higher S/N values for the bins that include photo-z outliers.

1266

and

Observed metallicities of globular clusters reflect physical conditions in the interstellar medium of their high-redshift host galaxies. Globular cluster systems in most large galaxies display bimodal color and metallicity distributions, which are often interpreted as indicating two distinct modes of cluster formation. The metal-rich and metal-poor clusters have systematically different locations and kinematics in their host galaxies. However, the red and blue clusters have similar internal properties, such as their masses, sizes, and ages. It is therefore interesting to explore whether both metal-rich and metal-poor clusters could form by a common mechanism and still be consistent with the bimodal distribution. We present such a model, which prescribes the formation of globular clusters semi-analytically using galaxy assembly history from cosmological simulations coupled with observed scaling relations for the amount and metallicity of cold gas available for star formation. We assume that massive star clusters form only during mergers of massive gas-rich galaxies and tune the model parameters to reproduce the observed distribution in the Galaxy. A wide, but not the entire, range of model realizations produces metallicity distributions consistent with the data. We find that early mergers of smaller hosts create exclusively blue clusters, whereas subsequent mergers of more massive galaxies create both red and blue clusters. Thus, bimodality arises naturally as the result of a small number of late massive merger events. This conclusion is not significantly affected by the large uncertainties in our knowledge of the stellar mass and cold gas mass in high-redshift galaxies. The fraction of galactic stellar mass locked in globular clusters declines from over 10% at z > 3 to 0.1% at present.

1289

, , and

By constructing a global model based on three-dimensional local magnetohydrodynamical simulations, we show that the disk wind driven by magnetorotational instability (MRI) plays a significant role in the dispersal of the gas component of protoplanetary disks. Because the mass loss timescale of the MRI-driven disk winds is proportional to the local Keplerian rotation period, a gas disk dynamically evaporates from the inner region, possibly creating a gradually expanding inner hole, while a sizable amount of the gas remains in the outer region. The disk wind is highly time dependent with a quasi-periodicity of several times the Keplerian rotation period at each radius, which will be observed as the time variability of protostar–protoplanetary disk systems. These features persistently hold even if a dead zone exists because the disk winds are driven from the surface regions where ionizing cosmic rays and high energy photons can penetrate. Moreover, the predicted inside–out clearing significantly suppresses the infall of boulders to a central star and the type I migration of proto-planets, which are favorable for the formation and survival of planets.

1305

, , , and

We performed a magnetohydrodynamic simulation of a formation process of coronal mass ejections (CMEs), focusing on the interaction (reconnection) between an ejecting flux rope and its ambient field. We examined three cases with different ambient fields: one had no ambient field, while the other two had dipole fields with opposite directions, parallel and anti-parallel to that of the flux rope surface. We found that while the flux rope disappears in the anti-parallel case, in the other cases the flux ropes can evolve to CMEs and show different amounts of flux rope rotation. The results imply that the interaction between an ejecting flux rope and its ambient field is an important process for determining CME formation and CME orientation, and also show that the amount and direction of the magnetic flux within the flux rope and the ambient field are key parameters for CME formation. The interaction (reconnection) plays a significant role in the rotation of the flux rope especially with a process similar to "tilting instability" in a spheromak-type experiment of laboratory plasma.

1315

, , and

We present computations of the ionization structure and metal-absorption properties of thermally conductive interface layers that surround evaporating warm spherical clouds embedded in a hot medium. We rely on the analytical steady-state formalism of Dalton and Balbus to calculate the temperature profile in the evaporating gas, and we explicitly solve the time-dependent ionization equations for H, He, C, N, O, Si, and S in the conductive interface. We include photoionization by an external field. We estimate how departures from equilibrium ionization affect the resonance-line cooling efficiencies in the evaporating gas, and determine the conditions for which radiative losses may be neglected in the solution for the evaporation dynamics and temperature profile. Our results indicate that nonequilibrium cooling significantly increases the value of the saturation parameter σ0 at which radiative losses begin to affect the flow dynamics. As applications, we calculate the ion fractions and projected column densities arising in the evaporating layers surrounding dwarf-galaxy-scale objects that are also photoionized by metagalactic radiation. We compare our results to the UV metal-absorption column densities observed in local highly ionized metal absorbers, located in the Galactic corona or intergalactic medium. Conductive interfaces significantly enhance the formation of high ions such as C3+, N4+, and O5+ relative to purely photoionized clouds, especially for clouds embedded in a high-pressure corona. However, the enhanced columns are still too low to account for the O vi columns (∼1014 cm−2) observed in the local high-velocity metal-ion absorbers. We find that column densities larger than ∼1013 cm−2 cannot be produced in evaporating clouds. Our results do support the conclusion of Savage and Lehner that absorption due to evaporating O vi likely occurs in the local interstellar medium, with characteristic columns of ∼1013 cm−2.

1332

, , , , , and

We present new Hubble Space Telescope ultraviolet color–magnitude diagrams of five massive Galactic globular clusters: NGC 2419, NGC 6273, NGC 6715, NGC 6388, and NGC 6441. These observations were obtained to investigate the "blue hook" (BH) phenomenon previously observed in UV images of the globular clusters ω Cen and NGC 2808. Blue hook stars are a class of hot (approximately 35,000 K) subluminous horizontal branch stars that occupy a region of the HR diagram that is unexplained by canonical stellar evolution theory. By coupling new stellar evolution models to appropriate non-LTE synthetic spectra, we investigate various theoretical explanations for these stars. Specifically, we compare our photometry to canonical models at standard cluster abundances, canonical models with enhanced helium (consistent with cluster self-enrichment at early times), and flash-mixed models formed via a late helium-core flash on the white dwarf cooling curve. We find that flash-mixed models are required to explain the faint luminosity of the BH stars, although neither the canonical models nor the flash-mixed models can explain the range of color observed in such stars, especially those in the most metal-rich clusters. Aside from the variation in the color range, no clear trends emerge in the morphology of the BH population with respect to metallicity.

1345

, , , and

We present new, more sensitive, high-resolution radio observations of a compact broad absorption line (BAL) quasar, 1045+352, made with the EVN+MERLIN at 5 GHz. These observations allowed us to trace the connection between the arcsecond structure and the radio core of the quasar. The radio morphology of 1045+352 is dominated by a knotty jet showing several bends. We discuss possible scenarios that could explain such a complex morphology: galaxy merger, accretion disk instability, precession of the jet, and jet–cloud interactions. It is possible that we are witnessing an ongoing jet precession in this source due to internal instabilities within the jet flow; however, a dense environment detected in the submillimeter band and an outflowing material suggested by the X-ray absorption could strongly interact with the jet. It is difficult to establish the orientation between the jet axis and the observer in 1045+352 because of the complex structure. Nevertheless, taking into account the most recent inner radio structure, we conclude that the radio jet is oriented close to the line of sight, which can mean that the opening angle of the accretion disk wind can be large in this source. We also suggest that there is no direct correlation between the jet–observer orientation and the possibility of observing BALs.

1353

, , , , , , , , , et al

We report the discovery of an eclipsing companion to NLTT 41135, a nearby M5 dwarf that was already known to have a wider, slightly more massive common proper motion companion, NLTT 41136, at 2farcs4 separation. Analysis of combined-light and RV curves of the system indicates that NLTT 41135B is a (31–34) ± 3MJup brown dwarf (where the range depends on the unknown metallicity of the host star) on a circular orbit. The visual M dwarf pair appears to be physically bound, so the system forms a hierarchical triple, with masses approximately in the ratio 8:6:1. The eclipses are grazing, preventing an unambiguous measurement of the secondary radius, but follow-up observations of the secondary eclipse (e.g., with the James Webb Space Telescope) could permit measurements of the surface brightness ratio between the two objects, and thus place constraints on models of brown dwarfs.

1367

, , , and

Gravitational instability (GI) of a dust-rich layer at the midplane of a gaseous circumstellar disk is one proposed mechanism to form planetesimals, the building blocks of rocky planets and gas giant cores. Self-gravity competes against the Kelvin–Helmholtz instability (KHI): gradients in dust content drive a vertical shear which risks overturning the dusty subdisk and forestalling GI. To understand the conditions under which the disk can resist the KHI, we perform three-dimensional simulations of stratified subdisks in the limit that dust particles are small and aerodynamically well coupled to gas, thereby screening out the streaming instability and isolating the KHI. Each subdisk is assumed to have a vertical density profile given by a spatially constant Richardson number Ri. We vary Ri and the midplane dust-to-gas ratio μ0 and find that the critical Richardson number dividing KH-unstable from KH-stable flows is not unique; rather, Ricrit grows nearly linearly with μ0 for μ0 = 0.3–10. Plausibly, a linear dependence arises for μ0 ≪ 1 because in this regime the radial Kepler shear replaces vertical buoyancy as the dominant stabilizing influence. Why this dependence should persist at μ0 > 1 is a new puzzle. The bulk (height-integrated) metallicity is uniquely determined by Ri and μ0. Only for disks of bulk solar metallicity is Ricrit ≈ 0.2, which is close to the classical value. Our empirical stability boundary is such that a dusty sublayer can gravitationally fragment and presumably spawn planetesimals if embedded within a solar metallicity gas disk ∼4× more massive than the minimum-mass solar nebula; or a minimum-mass disk having ∼3× solar metallicity; or some intermediate combination of these two possibilities. Gravitational instability seems possible without resorting to the streaming instability or to turbulent concentration of particles.

1378

, , , and

The open cluster M67 has solar metallicity and an age of about 4 Gyr. The turnoff (TO) mass is close to the minimum mass for which solar metallicity stars develop a convective core during main sequence evolution as a result of the development of hydrogen burning through the CNO cycle. The morphology of the color–magnitude diagram (CMD) of M67 around the TO shows a clear hook-like feature, a direct sign that stars close to the TO have convective cores. VandenBerg et al. investigated the possibility of using the morphology of the M67 TO to put constraints on the solar metallicity, particularly CNO elements, for which solar abundances have been revised downward by more than 30% over the last few years. Here, we extend their work, filling the gaps in their analysis. To this aim, we compute isochrones appropriate for M67 using new (low metallicity) and old (high metallicity) solar abundances and study whether the characteristic TO in the CMD of M67 can be reproduced or not. We also study the importance of other constitutive physics on determining the presence of such a hook, particularly element diffusion, overshooting and nuclear reaction rates. We find that using the new solar abundance determinations, with low CNO abundances, makes it more difficult to reproduce the characteristic CMD of M67. This result is in agreement with results by VandenBerg et al. However, changes in the constitutive physics of the models, particularly overshooting, can influence and alter this result to the extent that isochrones constructed with models using low CNO solar abundances can also reproduce the TO morphology in M67. We conclude that only if all factors affecting the TO morphology are completely under control (and this is not the case), M67 could be used to put constraints on solar abundances.

1388

and

The coronal magnetic configuration of an active region typically evolves quietly for a few days before becoming suddenly eruptive and launching a coronal mass ejection (CME). The precise origin of the eruption is still under debate. The loss of equilibrium, or an ideal magnetohydrodynamic (MHD) instability such as torus instability are among the several mechanisms that have proposed to be responsible for the sudden eruptions. Distinct approaches have also been formulated for limited cases having circular or translation symmetry. We revisit the previous theoretical approaches setting them in the same analytical framework. The coronal field results from the contribution of a non-neutralized current channel added to a background magnetic field, which in our model is the potential field generated by two photospheric flux concentrations. The evolution on short Alfvénic timescale is governed by ideal MHD. We first show analytically that the loss of equilibrium and the stability analysis are two different views of the same physical mechanism. Second, we identify that the same physics is involved in the instabilities of circular and straight current channels. Indeed, they are just two particular limiting cases of more general current paths. A global instability of the magnetic configuration is present when the current channel is located at a coronal height, h, large enough so that the decay index of the potential field, ∂ln |Bp|/∂ln h, is larger than a critical value. At the limit of very thin current channels, previous analysis has found critical decay indices of 1.5 and 1 for circular and straight current channels, respectively. However, with current channels being deformable and as thick as that expected in the corona, we show that this critical index has similar values for circular and straight current channels, and is typically in the range [1.1,1.3].

1400

and

Efforts to detect gravitational waves by timing an array of pulsars have traditionally focused on stationary gravitational waves, e.g., stochastic or periodic signals. Gravitational wave bursts—signals whose duration is much shorter than the observation period—will also arise in the pulsar timing array waveband. Sources that give rise to detectable bursts include the formation or coalescence of supermassive black holes (SMBHs), the periapsis passage of compact objects in highly elliptic or unbound orbits about an SMBH, or cusps on cosmic strings. Here, we describe how pulsar timing array data may be analyzed to detect and characterize these bursts. Our analysis addresses, in a mutually consistent manner, a hierarchy of three questions. (1) What are the odds that a data set includes the signal from a gravitational wave burst? (2) Assuming the presence of a burst, what is the direction to its source? (3) Assuming the burst propagation direction, what is the burst waveform's time dependence in each of its polarization states? Applying our analysis to synthetic data sets, we find that we can detect gravitational waves even when the radiation is too weak to either localize the source or infer the waveform, and detect and localize sources even when the radiation amplitude is too weak to permit the waveform to be determined. While the context of our discussion is gravitational wave detection via pulsar timing arrays, the analysis itself is directly applicable to gravitational wave detection using either ground- or space-based detector data.

1416

and

We present a grid of LTE atmospheric models and synthetic spectra that covers the spectral class range from mid-G to mid-K, and luminosity classes from V to III, that is dense in Teff sampling (ΔTeff = 62.5 K), for stars of solar metallicity and moderately metal-poor scaled solar abundance ($[{{A}\over {H}}]=0.0$ and −0.5). All models have been computed with two choices of atomic line list: (1) the "big" line lists of Kurucz that best reproduce the broadband solar blue and near-UV fλ level, and (2) the "small" lists of Kurucz & Peytremann that provide the best fit to the high-resolution solar blue and near-UV spectrum. We compare our model spectral energy distributions to a sample of stars carefully selected from the large catalog of uniformly re-calibrated spectrophotometry of Burnashev with the goal of determining how the quality of fit varies with stellar parameters, especially in the historically troublesome blue and near-UV bands. We confirm that our models computed with the "big" line list recover the derived Teff values of the PHOENIX NextGen grid, but find that the models computed with the "small" line list provide greater internal self-consistency among different spectral bands, and closer agreement with the empirical Teff scale of Ramirez & Melendez, but not to the interferometrically derived Teff values of Baines et al. We find no evidence that the near-UV band discrepancy between models and observations for Arcturus (α Boo) reported in two works by Short & Hauschildt is pervasive, and that Arcturus may be peculiar in this regard.

1428

Deep near-infrared images recorded with NICI on Gemini South are used to investigate the evolved stellar content in the outer southeast quadrant of the spiral galaxy M83. A diffuse population of asymptotic giant branch (AGB) stars is detected, indicating that there are stars outside of the previously identified young and intermediate age star clusters in the outer disk. The brightest AGB stars have MK ⩾ −8, and the AGB luminosity function (LF) is well matched by model LFs that assume ages ⩽1 Gyr. The specific star formation rate (SFR) during the past few Gyr estimated from AGB star counts is consistent with that computed from mid-infrared observations of star clusters at similar radii, and it is concluded that the disruption timescale for star clusters in the outer disk is ≪1 Gyr. The LF and specific frequency of AGB stars vary with galactocentric radius, in a manner that is indicative of lower luminosity-weighted ages at larger radii. Modest numbers of red supergiants are also found, indicating that there has been star formation during the past 100 Myr, while the ratio of C stars to M giants is consistent with that expected for a solar metallicity system that has experienced a constant SFR for the past few Gyr. The results drawn from the properties of resolved AGB stars are broadly consistent with those deduced from integrated light observations in the UV.

1445

, , and

Even in a universe that is homogeneous on large scales, local density fluctuations can imprint a systematic signature on the cosmological inferences we make from distant sources. One example is the effect of a local underdensity on supernova cosmology. Also known as a Hubble–bubble, it has been suggested that a large enough underdensity could account for the supernova magnitude–redshift relation without the need for dark energy or acceleration. Although the size and depth of the underdensity required for such an extreme result is extremely unlikely to be a random fluctuation in an on-average homogeneous universe, even a small underdensity can leave residual effects on our cosmological inferences. It is these small underdensities that we consider here. In this paper, we show that there remain systematic shifts in our cosmological parameter measurements, even after excluding local supernovae that are likely to be within any small Hubble–bubble. We study theoretically the low-redshift cutoff typically imposed by supernova cosmology analyses and show that a low-redshift cut of z0 ∼ 0.02 may be too low based on the observed inhomogeneity in our local universe. Neglecting to impose any low-redshift cutoff can have a significant effect on the cosmological parameters derived from supernova data. A slight local underdensity, just 30% underdense with scale 70 h−1 Mpc, causes an error in the inferred cosmological constant density ΩΛ of ∼4%. Imposing a low-redshift cutoff reduces this systematic error but does not remove it entirely. A residual systematic shift of 0.99% remains in the inferred value ΩΛ even when neglecting all data within the currently preferred low-redshift cutoff of 0.02. Given current measurement uncertainties, this shift is not negligible and will need to be accounted for when future measurements yield higher precision.

1456

, , , , , , , , , et al

We present the results of near-infrared (NIR) multi-epoch observations of the optical transient in the nearby galaxy NGC 300 (NGC 300-OT) at 398 and 582 days after the discovery with the Infrared Camera (IRC) on board AKARI. NIR spectra (2–5 μm) of NGC 300-OT were obtained for the first time. They show no prominent emission nor absorption features, but are dominated by continuum thermal emission from the dust around NGC 300-OT. NIR images were taken in the 2.4, 3.2, and 4.1 μm bands. The spectral energy distributions (SEDs) of NGC 300-OT indicate the dust temperature of 810 ± 14 K at 398 days and 670 ± 12 K at 582 days. We attribute the observed NIR emission to the thermal emission from dust grains formed in the ejecta of NGC 300-OT. The multi-epoch observations enable us to estimate the dust optical depth as ≳12 at 398 days and ≳6 at 582 days at 2.4 μm by assuming an isothermal dust cloud. The observed NIR emission must be optically thick, unless the amount of dust grains increases with time. Little extinction at visible wavelengths reported in earlier observations suggests that the dust cloud around NGC 300-OT should be distributed inhomogeneously so as to not screen the radiation from the ejecta gas and the central star. The present results suggest the dust grains are not formed in a spherically symmetric geometry, but rather in a torus, a bipolar outflow, or clumpy cloudlets.

1460

, , , , , and

Massive (stellar mass M ≳ 3 × 1010M), passively evolving galaxies at redshifts z ≳ 1 exhibit on average physical sizes smaller, by factors ≈3, than local early-type galaxies (ETGs) endowed with the same stellar mass. Small sizes are in fact expected on theoretical grounds, if dissipative collapse occurs. Recent results show that the size evolution at z ≲ 1 is limited to less than 40%, while most of the evolution occurs at z ≳ 1, where both compact and already extended galaxies are observed and the scatter in size is remarkably larger than it is locally. The presence at high redshift of a significant number of ETGs with the same size as their local counterparts, as well as ETGs with quite small size (≲1/10 of the local one), points to a timescale for reaching the new, expanded equilibrium configuration of less than the Hubble time tH(z). We demonstrate that the projected mass of compact, high-redshift galaxies and that of local ETGs within the same physical radius, the nominal half-luminosity radius of high-redshift ETGs, differ substantially in that the high-redshift ETGs are on average significantly denser. This result suggests that the physical mechanism responsible for the size increase should also remove mass from central galaxy regions (r ≲ 1 kpc). We propose that quasar activity, which peaks at redshift z ∼ 2, can remove large amounts of gas from central galaxy regions on a timescale shorter than the triggering a puffing up of the stellar component at constant stellar mass (or a timescale on the order of the dynamical one); in this case, the size increase goes together with a decrease in the central mass. The size evolution is expected to parallel that of the quasars and the inverse hierarchy, or downsizing, seen in the quasar evolution is mirrored in the size evolution. Exploiting the virial theorem, we derive the relation between the stellar velocity dispersion of ETGs and the characteristic velocity of their hosting halos at the time of formation and collapse. By combining this relation with the halo formation rate at z ≳ 1, we predict the local velocity dispersion distribution function. On comparing it to the observed one, we show that velocity dispersion evolution of massive ETGs is fully compatible with the observed average evolution in size at constant stellar mass. Less massive ETGs (with stellar masses M ≲ 3 × 1010M) are expected to evolve less both in size and in velocity dispersion, because their evolution is essentially determined by supernova feedback, which cannot yield winds as powerful as those triggered by quasars. The differential evolution is expected to leave imprints in the size versus luminosity/mass, velocity dispersion versus luminosity/mass, and central black hole mass versus velocity dispersion relationships, as observed in local ETGs.

1476

and

We present a model for plasma heating produced by time-dependent, spatially localized reconnection within a flare current sheet separating skewed magnetic fields. The reconnection creates flux tubes of new connectivity which subsequently retract at Alfvénic speeds from the reconnection site. Heating occurs in gas-dynamic shocks (GDSs) which develop inside these tubes. Here we present generalized thin flux tube equations for the dynamics of reconnected flux tubes, including pressure-driven parallel dynamics as well as temperature-dependent, anisotropic viscosity and thermal conductivity. The evolution of tubes embedded in a uniform, skewed magnetic field, following reconnection in a patch, is studied through numerical solutions of these equations, for solar coronal conditions. Even though viscosity and thermal conductivity are negligible in the quiet solar corona, the strong GDSs generated by compressing plasma inside reconnected flux tubes generate large velocity and temperature gradients along the tube, rendering the diffusive processes dominant. They determine the thickness of the shock that evolves up to a steady state value, although this condition may not be reached in the short times involved in a flare. For realistic solar coronal parameters, this steady state shock thickness might be as long as the entire flux tube. For strong shocks at low Prandtl numbers, typical of the solar corona, the GDS consists of an isothermal sub-shock where all the compression and cooling occur, preceded by a thermal front where the temperature increases and most of the heating occurs. We estimate the length of each of these sub-regions and the speed of their propagation.

1491

and

In models of fast magnetic reconnection, flux transfer occurs within a small portion of a current sheet triggering stored magnetic energy to be thermalized by shocks. When the initial current sheet separates magnetic fields which are not perfectly anti-parallel, i.e., they are skewed, magnetic energy is first converted to bulk kinetic energy and then thermalized in slow magnetosonic shocks. We show that the latter resemble parallel shocks or hydrodynamic shocks for all skew angles except those very near the anti-parallel limit. As for parallel shocks, the structures of reconnection-driven slow shocks are best studied using two-fluid equations in which ions and electrons have independent temperature. Time-dependent solutions of these equations can be used to predict and understand the shocks from reconnection of skewed magnetic fields. The results differ from those found using a single-fluid model such as magnetohydrodynamics. In the two-fluid model, electrons are heated indirectly and thus carry a heat flux always well below the free-streaming limit. The viscous stress of the ions is, however, typically near the fluid-treatable limit. We find that for a wide range of skew angles and small plasma β an electron conduction front extends ahead of the slow shock but remains within the outflow jet. In such cases, conduction will play a more limited role in driving chromospheric evaporation than has been predicted based on single-fluid, anti-parallel models.