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ABSTRACT

Motivated by recent observations that suggest a low density of old stars around the Milky Way supermassive black
hole (SMBH), models for the nuclear star cluster are considered that have not yet reached a steady state under
the influence of gravitational encounters. A core of initial radius 1–1.5 pc evolves to a size of approximately
0.5 pc after 10 Gyr, roughly the size of the observed core. The absence of a Bahcall–Wolf cusp is naturally
explained in these models, without the need for fine-tuning or implausible initial conditions. In the absence of a
cusp, the time for a 10 M� black hole (BH) to spiral in to the Galactic center from an initial distance of 5 pc
can be much greater than 10 Gyr. Assuming that the stellar BHs had the same phase-space distribution initially
as the stars, their density after 5–10 Gyr is predicted to rise very steeply going into the stellar core, but could
remain substantially below the densities inferred from steady-state models that include a steep density cusp in
the stars. Possible mechanisms for the creation of the parsec-scale initial core include destruction of stars on
centrophilic orbits in a pre-existing triaxial nucleus, inhibited star formation near the SMBH, or ejection of stars
by a massive binary. The implications of these models are discussed for the rates of gravitational-wave inspiral
events, as well as other physical processes that depend on a high density of stars or stellar-mass BHs near SgrA∗.
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1. INTRODUCTION

Near-infrared imaging reveals a cluster of stars around the
∼4 × 106 M� supermassive black hole (SMBH) at the center
of the Galaxy. Much recent work has focused on the young
stars that dominate the total light in the central parsec (Forrest
et al. 1987; Allen et al. 1990; Krabbe et al. 1991). These stars
have masses of 10–60 M� and appear to have formed in one
or more starbursts during the last few million years (Krabbe
et al. 1995; Paumard et al. 2006). While their total numbers
are small, the density of the young stars increases very steeply
toward the SMBH (Genzel et al. 2003; Paumard et al. 2006).
How such massive stars can form so deep in the SMBH potential
well remains an unsolved problem (Alexander 2005; Paumard
2008).

The dominant population at the Galactic center consists of old
stars: mostly metal-rich, M, K, and G type giants with masses
of one to a few solar masses (Blum et al. 2003; Davies et al.
2009). The late-type giants dominate the total flux outside the
central parsec, and seeing-limited observations as early as the
1960s showed that their surface density follows a power law,
Σ ∼ R−1 at R � 10 pc, implying a space density profile n ∼ r−2

(Becklin & Neugebauer 1968; McGinn et al. 1989; Haller et al.
1996). Inside ∼0.5 pc, a drop in the CO absorption strength
(Sellgren et al. 1990; Haller et al. 1996) signals a decrease in
the projected density of old stars (Genzel et al. 1996; Figer
et al. 2000; Scoville et al. 2003; Figer et al. 2003). However,
the possibility of contamination by light from early-type stars
at these radii made such inferences uncertain.

Three recent studies have clarified the situation. Buchholz
et al. (2009) took deep narrowband images of the inner parsec
and used a CO absorption feature to distinguish early- from late-
type stars. They classified roughly 3000 stars down to a K-band
magnitude of ∼15.5. Of these roughly 300 were early types,
distributed as a steep power law around the SMBH. The late-
type stars showed a very different distribution: a core of radius

∼0.5 pc, with a constant or even declining surface density inside.
Do et al. (2009) obtained higher dispersion spectra of a smaller
sample of stars in a set of fields within 0.16 pc from SgrA∗,
estimated to be 40% complete down to mK = 15.5. They also
found a flat or centrally declining projected density of old stars.
Bartko et al. (2009b) found a flat distribution of late-type stars
with mk � 15.5 based on spectroscopic identifications in a set
of fields in the central 25′′.

Inferring the space density profile of the old stars from the
number counts in the inner parsec is difficult, since the projected
density is apparently dominated by stars that are far from the
center. But the behavior of the number counts is difficult to
reconcile with models in which the space density increases
inward. Buchholz et al. (2009) found a best-fit power law of
Σ ∝ R0.17 (projected density) for late-type stars inside 6′′ and
Σ ∝ R−0.7 outside 6′′. This corresponds to a space density that
drops toward the center, although the counting statistics were
also consistent with a flatter profile. Do et al. (2009) inferred
a steeper rate of central decline, Σ ∝ R0.27, from their smaller
data set, though with larger uncertainties. Do et al. compared the
numbers counts with projections of power-law models in n(r)
and concluded that the density could not increase faster than
n ∼ r−1 toward the center, although the preferred dependence
was shallower.

As the authors of these three studies note, previous de-
scriptions of the stellar density as a broken power law, with
n ∼ r−1.2 − r−1.4 inside ∼0.4 pc and n ∼ r−2 outside (Genzel
et al. 2003; Schödel et al. 2007), were somewhat misleading,
since the counts at small radii were dominated by early-type
stars while the counts at large radii were dominated by late-type
stars. Presumably, the physical mechanisms responsible for cre-
ating these two populations, and placing them on their current
orbits, were different and occurred at different times.

Models with a central “hole” naturally resolve one long-
standing puzzle: why virial estimates of the SMBH mass based
on velocities of late-type stars (Ghez et al. 1998; Genzel et al.
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2000; Chakrabarty & Saha 2001; Eckart et al. 2002) gave
systematically lower values than the mass inferred from the
inner S-star orbits (Gillessen et al. 2009; Ghez et al. 2008). If
most of the old stars within the projected central parsec are
actually far from the SMBH, their motions will be relatively
unaffected by its gravitational force, yielding spuriously low
virial masses. Recent studies that explicitly incorporate a low
central density for the late-type stars (Zhu et al. 2008; Schödel
et al. 2009) yield virial masses for the SMBH that for the
first time are consistent with the mass obtained from the
orbital fits.

However the low density of old stars at the Galactic center cre-
ates new puzzles. A standard assumption has long been that stars
near the SMBH should exhibit a cusp in the density, n ∼ r−γ ,
γ ≈ 7/4. This is the Bahcall & Wolf (1976) solution, which
holds for a relaxed (in the sense of gravitational encounters)
population of stars moving in a point-mass potential. A num-
ber of theoretical studies have argued that the Bahcall–Wolf
solution is a robust outcome, depending only weakly on the
initial conditions and the range of mass groups present (Mur-
phy et al. 1991; Freitag et al. 2006a; Hopman & Alexander
2006a).

It is possible that a Bahcall–Wolf cusp is present but that the
stellar luminosity function changes inside ∼0.5 pc, such that
the brightest stars are missing (Buchholz et al. 2009; Do et al.
2009; Bartko et al. 2009b). This could be a result of (physical)
collisions before or during the red giant phase, which strip stellar
envelopes and keep stars from reaching their peak luminosities
(Genzel et al. 1996; Alexander 1999; Bailey & Davies 1999); or
tidal interactions between single stars and the SMBH (Davies
& King 2005); or it could result from an initial mass function
(IMF) that is truncated below ∼3 M�, since these are the stars
that would otherwise dominate the K-band number counts now
(e.g., Nayakshin & Sunyaev 2005).

While a “hidden” density cusp is possible, it seems reasonable
also to consider models in which the observed stars are represen-
tative of the unobserved stars. In these models, both populations
would have a relatively low density in the inner parsec. Aside
from Occam’s principle, a number of other motivations exist for
considering such models.

1. The relaxation time at the Galactic center is long.
The stellar mass density at a distance of 2–3 pc from
SgrA∗—roughly the SMBH influence radius rinfl—implies
a two-body relaxation time (for solar-mass stars) of
20–30 Gyr. This is the relevant timescale for refilling of
an evacuated core if its initial radius is ∼rinfl.

2. Stellar kinematics suggest a low mass density in the inner
parsec. Schödel et al. (2009) found that proper-motion data
were consistent with a range of models for the distribution
of mass in the inner parsec, but the best-fitting models had
a flat or declining mass density toward SgrA∗, similar to
what is seen in the number counts of the old giants.

3. Physical collisions fail, by a wide margin, to predict the
observed depletion of giant stars in the faintest magni-
tude bins. Dale et al. (2009) concluded that giants in the
15 mag > mK > 12 mag range would only be significantly
depleted within ∼0.01 pc, even assuming a density of un-
seen colliders (main-sequence stars, stellar-mass BHs) that
was four times larger than in the dynamically relaxed mod-
els with a Bahcall–Wolf cusp (e.g., Hopman & Alexander
2006a).

4. Whatever their origin,cores are ubiquitous components of
galaxies with SMBHs, at least in galaxies that are bright

enough or near enough for parsec-scale features to be
resolved (Ferrarese et al. 2006). Core radii are roughly
equal to SMBH influence radii (e.g., Graham 2004), which
in the case of the Milky Way would predict a core of radius
2–3 pc.

This paper examines the viability of models for the Galactic
center that include a low-density core. Core models are ex-
amined first from a structural point of view (Section 2), then
from the point of view of self-consistent equilibria (Section 3),
and finally from an evolutionary standpoint (Section 4). The
basic result is that core models “work”: they reproduce the
number counts and kinematics of late-type stars, without in-
voking physical collisions (collisions would be extremely rare
in these models) and without the necessity of fine-tuning. We
show that a core of the size currently observed is a natural con-
sequence of two-body relaxation acting over 10 Gyr, starting
from a core of radius ∼1–1.5 pc; the n ∼ r−2 density profile
outside the core gradually extends inward as the core shrinks and
as the stellar density evolves toward, but does not fully reach,
the Bahcall–Wolf form after 10 Gyr.

The relaxation time that sets the rate of evolution in these
models depends inversely on the mean stellar mass, roughly
1 M� under standard assumptions about the IMF (Alexander
2005). But an old population also contains stellar remnants,
including ∼10 M� black holes (BHs). In the absence of a core,
BHs initially at distances of 4–5 pc from SgrA∗ would spiral all
the way in to the center after 10 Gyr (Morris 1993), potentially
dominating the total mass density inside ∼10−2 parsec. In the
models considered here, the BH orbits tend to decay no farther
than the core radius as determined by the stars (Section 5). The
result, after several Gyr, is a rather different distribution of BHs
than in the collisionally relaxed models. This difference has
potentially important implications for the rates of gravitational-
wave-driven inspirals or for other dynamical processes that
postulate a dense cluster of BHs around SgrA∗, as discussed
in Section 6.

The observations motivating this paper are fairly new, and if
recent history is any guide, our observational understanding of
the Galactic center will continue to change. It is conceivable that
the low apparent density of late-type stars is an artifact due to
faulty stellar classifications, improper treatment of extinction,
confusion, or some other factor. Stars slightly fainter than the
current limit for robust detection (mK ≈ 15.5) may turn out,
once detected, to have a very different spatial distribution,
more similar to that predicted by Bahcall & Wolf (1976). Our
theoretical understanding of stellar collisions may also change;
for instance, new, more effective channels for removal of stellar
envelopes could be discovered. Any of these developments
would lessen the relevance of the models discussed here to
the center of the Milky Way. However, core models are also
applicable to other galaxies that contain SMBHs, many of which
have cores that cannot plausibly be explained except in terms
of a general depletion of stars. And a robust conclusion to be
drawn from this work is that the distribution of stars and stellar
remnants at the center of the Milky Way should still reflect to
some extent the details of the Galaxy’s formation—though the
imprint of the initial conditions may turn out to be less extreme
than in the models considered here.

We assume throughout a distance to SgrA∗ of 8.0 kpc
(Eisenhauer et al. 2005; Gillessen et al. 2009). At this distance,
1 arcsec corresponds to a linear distance of 0.0388 pc and
1 pc corresponds to 25.′′78. We also fix the SMBH mass to
4.0 × 106 M� (Ghez et al. 2008; Gillessen et al. 2009).
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2. PROPERTIES OF THE STELLAR DISTRIBUTION

2.1. Number Density

As summarized above, a relatively low density of late-type
stars near the center of the Milky Way was independently
inferred by Buchholz et al. (2009), Do et al. (2009), and Bartko
et al. (2009b). The first of these three studies was based on the
largest sample of stars, and we adopt the Buchholz et al. number
counts as basis for the discussion that follows.

Buchholz et al. (2009, hereafter BSE09) took deep, narrow-
band images (K < 15.5) in the near-IR K band and distinguished
late-type (old) from early-type (young) stars using CO equiv-
alent widths, calibrated from existing samples. Extinction was
estimated star by star by comparing observed spectral energy
distributions (SEDs) with a blackbody of variable extinction.
BSE09 identified a “quality 1” sample consisting of late-type
stars in which the CO band depth exceeded the cutoff value for
early-type stars by 1σ or more, and which did not fall into any
of the other classes defined by them (asymptotic giant branch
(AGB) stars, foreground sources, very red objects). The result-
ing data set contains 2955 stars down to a magnitude limit of
K = 15.5. Figure 1 shows the BSE09 number counts (their
Figure 11) plotted versus projected distance from SgrA∗.

The BSE09 data are believed complete to a limiting magni-
tude K = 15.5 within a projected distance of ∼20′′ from SgrA∗.
Beyond this radius, the early-type stars are insignificant in num-
bers compared with the late-type stars. Schödel et al. (2007)
present total number counts in a more extended region, de-
rived from the ISAAC NIR camera on the Very Large Telescope
(VLT). These counts extend to ∼60′′ and to a limiting magnitude
of mK ≈ 17. Down to the magnitude limit (K = 15.5) of the
BSE09 sample, the ISAAC counts are ∼80% complete beyond
∼15′′.

Figure 1 includes number counts from all the stars in the
ISAAC sample with K � 15.5, and within the region 20′′ �
R � 60′′. The observed positions were converted to projected
densities using the kernel routine described in Schödel et al.
(2007) including corrections for completeness and crowding, as
discussed in that paper. Confidence intervals were derived via
the bootstrap. The ISAAC counts are seen to match very well
onto the BSE09 counts, without the necessity for any ad hoc
adjustment of the normalizations.

At larger radii, out to R ≈ 10 pc ≈ 200′′, a number of studies
have found n ∼ r−1.8 for the distribution of stellar light (Becklin
& Neugebauer 1968; Haller et al. 1996; Genzel et al. 2000;
Schödel et al. 2007). In all of what follows, we assume an
asymptotic slope d log n/d log r = −1.8.

This leads us to parameterize the space density of the old
stellar population as a power law with an inner core:

n(r) = n0

(
r

r0

)−γi
[

1 +

(
r

r0

)α](γi−γ )/α

(1)

with γ = 1.8. The parameter α controls the sharpness of the
transition from outer to inner slopes. This model was fit to the
number counts after projecting it onto the plane of the sky; in
this way one avoids fitting a model to the surface density that
does not correspond to a physical space density.

As is often found when modeling the luminosity profiles of
cored elliptical galaxies (e.g., Terzić & Graham 2005), large
values of α gave the best fits. The thick curve in Figure 1 shows
the best-fit model when α = 4; it has

n0 = 0.21pc−3, r0 = 5.′′5 = 0.21 pc, γi = −1.0. (2)

Figure 1. Upper panel: azimuthally averaged surface density of late-type stars
at the Galactic center. Open circles are number counts of the “quality 1” late-
type stars brighter than K = 15.5 in the sample of Buchholz et al. (2009; their
Figure 11). Filled circles are derived from a kernel estimate of the projected
density of all stars with K � 15.5 and R � 20′′ in the sample of Schödel et al.
(2007), after corrections for crowding and completeness. Curves show fits of
the projected, parametric model, Equation (1), to the number-count data. Heavy
curve is the best fit when the inner power-law slope is unconstrained; dashed
curve shows the best fit when the inner slope is set at −0.5, the shallowest profile
consistent with an isotropic velocity distribution. Both fits assume α = 4 and
γ = 1.8. Lower panel: space density profiles corresponding to the projected
profiles in the upper panel.

The negative value of γi implies a space density that decreases
toward the center (lower panel of Figure 1)—a central “hole.”

Fits of this model to the data were found never to be terribly
good (χ̃2 � 17). There is a broad local maximum in the number
counts at R ≈ 15′′ which would require additional parameters
to fit. (In the two-dimensional counts, Figure 13 of BSE09, this
overdensity is seen to be roughly symmetric about the origin.)
The central minimum in the projected density is also difficult to
reproduce.

Figure 2 shows the distribution of inner slopes γi obtained
from the fits to 104 Monte Carlo samples bootstrapped from the
number-count data in Figure 1. Ninety percent of the values fall
in the range

− 3.5 � γi � 0.82. (3)

Negative values of γi (corresponding to centrally decreasing
densities) are clearly preferred, though positive values are also
acceptable.
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Figure 2. Distribution of inner slopes from fits to 104 Monte Carlo samples
bootstrapped from the number-count data in Figure 1. Dashed lines delineate a
90% confidence interval.

If the stellar velocity distribution is isotropic, the space
density must increase at least as fast as r−0.5 near the SMBH
(Section 3). The dotted curve in Figure 1 shows the best fit when
γi is fixed at 1/2. The other parameters are

n0 = 0.12 pc−3, r0 = 7.′′7 = 0.30 pc. (4)

This model can be (crudely) thought of having the minimum
central density consistent with an isotropic velocity distribution.
This fit is only slightly worse in a χ2 sense (19.0 versus 17.5)
than the fit with unconstrained inner slope, although it implies
a very different space density profile inside ∼0.5 pc (Figure 1,
lower panel).

A standard definition of the core radius is the projected radius
where the surface density falls to 1/2 of its central value (e.g.,
King 1962). As a practical definition of the “central density,” we
take the value at 1′′ ≈ 0.04 pc projected radius. Based on this
definition, the core radius of the unconstrained fit in Figure 1 is

rcore ≈ 15.′′2 ≈ 0.59 pc (5)

and the core radius of the constrained fit (γi = −1/2) is

rcore ≈ 10.′′8 ≈ 0.42 pc. (6)

Thus, the core radius of the Milky Way nuclear star cluster
(NSC) is ∼0.5 pc.

2.2. Relaxation Time

The relatively low central density of stars implied by Figure 1
and the apparently non-relaxed form of n(r) are suggestive of a
long two-body relaxation time. Spitzer (1987) defines the local
relaxation time as

tr = 0.33σ 3

G2nm2 ln Λ
(7)

= 1.2 × 109 yr
[σ (km s−1)]3

ρ( M� pc−3)[m/M�][ln Λ/15]
, (8)

where σ is the rms velocity in any direction, ρ is the stellar
mass density, m is the mass of one star, and ln Λ is the
Coulomb logarithm. This expression assumes that all stars have
the same mass and that their velocity distribution is isotropic
(Maxwellian).

To apply Equation (8), we need an estimate of ρ(r). Dynami-
cal estimates of ρ are to be preferred, given the large systematic
uncertainties associated with converting a luminosity density
into a mass density near the Galactic center (Schödel et al.
2007; Buchholz et al. 2009).

Inside ∼1 pc, the best dynamical constraints on ρ come from
the recent proper-motion study of Schödel et al. (2009). These
authors detected, for the first time, an unambiguous signature of
the gravitational force from the distributed mass on the stellar
motions, in the region 0.25 pc � r � 1 pc; inside this region
the gravitational force from the SMBH cannot be disentangled
from that of the stars. Schödel et al. inferred a distributed mass
of ∼(1±0.5)×106 M� in a sphere of radius 1 pc around SgrA∗.
The functional form of ρ(r) was not well constrained, although
the formal best fits were obtained with models in which the mass
density decreased toward the center.

We use the Schödel et al. results to normalize the density of
our “isotropic” n(r), Equations (1) and (4). Defining

M̃� ≡ M�(r � 1 pc)

106 M�
≈ 1, (9)

the mass density becomes

ρ(r) = 9.9 × 105 M� pc−3M̃�ξ
−0.5(1 + ξ 4)−0.325 (10)

with ξ = r/0.30 pc. We then calculate the (isotropic) velocity
dispersion from the Jeans equation,

ρ(r)σ (r)2 = G

∫ ∞

r

dr ′r ′−2[M• + M�(< r ′)]ρ(r ′). (11)

Figure 3 shows the resulting tr (r) assuming ln Λ = 15, m =
M�, and three values of M̃�.

The Schödel et al. (2009) proper-motion data do not constrain
the density beyond ∼1 pc. In this region, we assume

ρ(r) = 105ρ̃(
r

1 pc
)−1.8 M� pc−3, (12)

a simple continuation of the model fit at smaller radii. Below
we argue for a “preferred” density model with ρ̃ = 1.5, but in
Figure 3 we allow the normalization:

ρ̃ ≡ ρ(1 pc)

105 M�
(13)

to have the values ρ̃ = (0.75, 1.5, 3). The Jeans equation was
again used to compute σ (r). The resulting tr (r) curves match
well onto the curves at smaller radii and there is little dependence
of tr on ρ̃ within this radial range.

Also shown in Figure 3 is the influence radius rinfl of the
SMBH, defined as the root of the equation

σ 2(x) = GM•
x

. (14)

Using the preferred density model with ρ̃ = 1.5, one finds
rinfl ≈ 2.5 pc. The relaxation time at r ≈ rinfl is a reasonable
estimate of the timescale over which gravitational encounters
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Figure 3. Relaxation time vs. radius at the Galactic center. Curves on the
left (green filled region) assume the mass density of Equation (10) with
three normalizations, such that the total (distributed) mass within 1 pc is
M̃� ≡ M�(< 1pc)/M� = (0.5, 1.0, 1.5) × 106; the M̃� = 1.0 × 106 model
is shown as the heavy line. Curves on the right (blue filled region) assume
ρ ∝ r−1.8 at all radii with various values for the normalizing density at 1 pc,
ρ0 = (0.75, 1.5, 3) × 105 M� pc−3; the ρ0 = 1.5 × 105 M� pc−3 (preferred)
model is shown with the heavy line. Vertical tick mark is the SMBH influence
radius computed using σ (r) from the preferred model.

(A color version of this figure is available in the online journal.)

can change the gross properties of the core. Figure 3 shows that
the relaxation time at rinfl is �(2–3) × 1010 yr.

The estimates of tr in Figure 3 assume a single population
of 1 M� stars. In reality, the Galactic center contains a range
of mass groups, each of which might have a different velocity
distribution. Given the relatively long relaxation time, a natural
case to consider is a distribution of stellar masses, all of which
have the same velocity dispersion at every radius. Equation (8)
becomes in this case

tr = 0.33σ 3

ρm̃G ln Λ
, (15a)

m̃ =
∫

N (m)m2dm∫
N (m)mdm

, (15b)

and N (m)dm is the number of stars with masses in the range m
to m+dm (e.g., Merritt 2004). Since Equation (8) was derived
from the diffusion coefficient 〈(Δv‖)2〉 describing gravitational
scattering, Equation (15a) is properly interpreted as the time for
a test star’s velocity to be randomized by encounters with more
massive objects. Making standard assumptions about the IMF
gives m̃ ≈ 1 M� (Merritt 2004); if the density is dominated
locally by stellar BHs then m̃ ≈ mBH ≈ 10 M�. It has been
argued that m̃ may be even larger outside the central few parsecs
due to giant molecular clouds (Perets et al. 2007).

3. MAKING A CORE

The classical model for a core (e.g., Tremaine 1997) is a
region of constant gravitational potential φ and constant phase-

space density f near the center of a galaxy. If the central potential
is dominated by an SMBH, φ(r) ≈ −GM•/r and a constant f
translates into a steeply rising ρ:

ρ =
∫

f d3v ∝ f

∫ √−2φ(r)

0
v2dv ∝ f (−2φ)3/2 ∝ r−3/2 (16)

inside ∼rinfl (Peebles 1972), inconsistent with the observed
distribution.

The Galactic center has a core of size ∼0.5 pc, smaller than
rinfl ≈ 2.5 pc (Figures 1 and 3) so Equation (16) would apply in
this region. Making a core similar to the observed core therefore
requires a reduction in the value of f on orbits that pass inside
∼0.5 pc.

There are of course many ways to do this. Given that the
number counts do not strongly constrain the form of n(r) within
the core (Figure 2), we choose not to solve the inverse problem
n → f . Instead, we focus on two simple core models, both
motivated by physical arguments, that are consistent with the
number-count data.

The starting point is a power-law density of stars at all radii
around the SMBH, ρi ∝ r−γ , 0 � r � ∞. For definiteness, we
normalize the density of this initial (i.e., coreless) model to be

ρi(r) = 1.5 × 105

(
r

1 pc

)−1.8

M� pc−3 (17)

and we assume ni(r) ∝ ρi(r). (The latter assumption will be
relaxed in Section 5.) Equation (17) is just Equation (12) with
ρ̃ = 1.5. The normalizing constant is similar to what various
authors have derived in the past for the mass density at 1 pc; e.g.,
ρ̃ ≈ 1.8 (Genzel et al. 2003), ρ̃ ≈ 2.0 (Schödel et al. 2007),
etc. The exact normalization is not critical in what follows: it
serves mostly to fix the relaxation time, and as Figure 3 shows,
tr in the region of interest is weakly dependent on the density
normalization. We show below that our “preferred” value of ρ̃
gives a good fit to the observed stellar velocities at r ≈ rinfl.

The stellar mass implied by this model inside 1 pc is
∼1.6×106 M�. This is the mass before the core has been carved
out; for consistency, this mass should exceed the dynamically
inferred (distributed) mass inside 1 pc, ∼(1 ± 0.5) × 106 M�
(Schödel et al. 2009), and it does. At the same time, the
proper-motion data are consistent with the mass implied by
the unmodified power-law model, so we cannot robustly infer
the presence of a core in the Galactic center mass distribution
from the proper-motion data alone.

The gravitational potential generated by ρi(r), including the
contribution from the SMBH, can be written as

φ(r) − φ(r0) = GM•
r0

(
1 − ro

r

)
(18)

− 1

2 − γ

GM0

r0

[
1 −

(
r

r0

)2−γ
]

, (19)

where r0 is a fiducial radius, taken in what follows to be 1 pc,
M0 = 106M̃� M� is the distributed mass inside r0, and γ = 1.8.
The isotropic distribution function fi(E) corresponding to the
pair of functions (ρi, φ) can be derived numerically from the
Eddington (1916) formula:

fi(E) = 1

m

1√
8π2

d

dE

∫ E

φ(r)

dρi

dφ

dφ√
E − φ

, (20)
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where E = v2/2 + φ(r) is the energy per unit mass of a star.
(Note that the subscript i refers here to “initial,” not “isotropic.”)
Isotropy is a reasonable assumption, although as we will show,
some reasonable models for a core imply substantial anisotropy.

3.1. Core Origins

Before proceeding, we consider possible mechanisms for the
formation of a parsec-scale core at the center of a galaxy like
the Milky Way.

1. A binary SMBH. In giant elliptical galaxies, cores are
often attributed to ejection of stars by a pre-existing
binary SMBH (Faber et al. 1997; Milosavljević & Merritt
2001), and possibly to gravitational-wave recoil after binary
coalescence (Boylan-Kolchin et al. 2004; Gualandris &
Merritt 2008). This model naturally explains the sizes of
many observed cores—comparable to the influence radius
of the (single) observed SMBH—if it is assumed that the
galaxy grew through at least one “major merger,” with
comparably massive SMBHs (Merritt 2006a). However,
the binary SMBH model seems less relevant to a disk-
dominated system like the Milky Way, which may never
have experienced a major merger. Based on a standard
ΛCDM cosmological model, the probability that the Milky
Way has avoided accreting a galaxy with halo mass 1/4 that
of the Milky Way or greater, since a redshift of z = 2, is
∼30% (Merritt et al. 2002). The most recent major merger
is likely to have occurred 10–12 Gyr ago, around the time
of formation of the thick disk (Wyse 2001).

2. Inspiral of multiple, smaller BHs. A single intermediate-
mass black hole (IMBH) of mass ∼104 M�, spiralling in
against a pre-existing stellar density cusp, creates a core of
radius ∼0.05–0.1 pc (Baumgardt et al. 2006). Repeated
inspiral events could create a larger core, although the
displaced mass would increase at a less than linear rate
with the number of inspirals. Nevertheless, some models
postulate one such event every ∼107 yr (Portegies Zwart
et al. 2006); if so, more than one IMBH would probably be
present at any given time in the inner parsec.

3. An enlarged loss cone. Gravitational encounters drive a
mass flux of ∼M•/tr (rinfl) into Sgr A∗. The core that results
from this diffusive loss process is very small: its size is
comparable to the radius of the capture sphere—either the
tidal disruption radius, rt ≈ 10−5 pc, or the Schwarzschild
radius, rSch ≈ 10−6 pc. The core is small because the
depleted orbits are continuously resupplied by diffusion
from orbits of larger angular momentum and energy. If
there were some way to transfer the mass in stars of ∼M•
into the SMBH on a timescale � tr—say, a crossing
time—the resulting core would be much larger. This could
happen if the NSC were appreciably triaxial, even if only
transiently, since many orbits near an SMBH in a triaxial
cluster are “centrophilic,” passing arbitrarily close to the
SMBH after a finite time (some multiple of the crossing
time; Poon & Merritt 2001). The size of the resultant core
is determined by a number of factors, including the degree
of non-axisymmetry and the population of the various orbit
families, but it could be of order ∼rinfl (Merritt & Poon
2004).

4. Localized star formation. Stars might form only, or prefer-
entially, beyond a certain radius from SgrA∗, resulting in a
low density inside this radius. This possibility is discussed
in more detail in Section 6.1.

5. Feedback in active nuclei has also been proposed as a rapid
core-formation mechanism (Peirani et al. 2008).

3.2. Isotropic Core

A simple way to lower the density of stars near the SMBH is
to set

f (E) = 0, E � Eb. (21)

Such a truncation leaves the velocity distribution isotropic. The
cutoff energy can be expressed in terms of a cutoff radius rb
where

Eb ≈ φ(rb). (22)

The configuration-space density after removal of the most-
bound stars is
ρ(r) ≈ ρi(r), r � rb (23a)

≈ 4
√

2π

∫ ∞

φ(rb)
dEfi(E)

√
φ(r) − E, r < rb. (23b)

The “approximately equal” sign in these expressions is due to
the fact that removal of the most-bound stars causes a change in
the gravitational potential. We ignore that complication in what
follows, i.e., we replace “≈” by “=” in Equations (22) and (23)
and similar expressions below. The resultant error in ρ is at most
a few percent, since φ is dominated by the SMBH at r � rinfl,
and by the stellar potential due for r � rinfl.

At small radii, r � rb � rinfl, the density is

ρ ≈ 4
√

2π
√

−φ(r)
∫ ∞

φ(rb)
dEfi(E) ∝ r−1/2. (24)

In spite of the zero-density hole in phase space, the
configuration-space density diverges, mildly, toward the SMBH.
This demonstrates that an isotropic f is not consistent with a
strictly flat core, much less with a central dip in ρ.

Figure 4 shows space and projected density profiles for
various values of rb. The observed number counts are reasonably
well fit by a model with

rb ≈ 0.5 pc. (25)

This value of rb is close to the core radius derived above from
the number counts. In other words, in these simple core models,
rb ≈ rcore.

The strange character of these (idealized) models—a zero
phase-space density and a nonzero configuration-space densi-
ty—implies some other strange properties. In the Appendix, the
distribution of orbital elements for stars passing near the SMBH
is derived. In spite of the isotropic f, the orbits near the center
are very eccentric, with an expected size a ≈ 0.2rb ≈ 0.1 pc.

3.3. Anisotropic Core

Figure 1 suggests that n(r) may be decreasing toward SgrA∗.
As our second model, we create a core by removing all stars on
orbits that pass within the sphere r = rb around the SMBH. Such
a model is a crude description of what happens when a binary
SMBH ejects stars: in this case, rb would be approximately the
binary semimajor axis. Collisional destruction of (all) stars that
pass within a distance rb of the SMBH would also result in such
a truncation of f.

Since we are preferentially removing stars on low-angular-
momentum orbits, the velocity distribution in the core will be
anisotropic, biased toward circular motions.
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Figure 4. “Isotropic” core models, created by setting f = 0 at low (bound) energies, E � Eb ≡ φ(rb), starting from a power-law model in the density, ρ ∝ r−1.8

(shown as the dashed line in both panels). Left panel shows space densities for rb = (0.1, 0.2, 0.5, 1, 2) pc. Right panel shows surface densities of the same models,
compared to the number-count data from Figure 1. The vertical normalization of the models in this panel was chosen arbitrarily.

We define Eb = φ(rb) as before, and Ec is the energy (kinetic
plus potential) of a test particle on a circular orbit of radius
rb. If the core is small, rb � rinfl, then Ec ≈ Eb/2. Starting
again from a power-law density profile, Equation (17), and an
isotropic distribution function, Equation (20), we now set f = 0
when either

E � Ec (26a)

or
J 2 � J 2

b = 2r2
b (E − Eb); (26b)

Jb(E) is the specific angular momentum of an orbit with
energy E and periapse rb. The configuration-space density is
now zero inside rb:

ρ(r) = 0, r � rb. (27)

Outside rb, the density is lowered at all radii due to the absence
of low-J stars:

ρ(r) = 2π

r2

∫
E0(r)

dEfi(E)
∫ 2r2(E−φ(r))

J 2
b

dJ 2√
2 [E − φ(r)] − J 2/r2

= 4
√

2π

(
1 − r2

b

r2

)1/2 ∫ ∞

E0(r)
dEfi(E)

√
E − E0. (28)

Here,

E0 = r2φ(r) − r2
bEb

r2 − r2
b

(29)

is the minimum energy of orbits that pass through r without also
passing below rb.

Figure 5 shows density profiles for anisotropic-core models
with various rb. The observed number counts are reasonably
well fit by a model with

rb ≈ 0.1pc. (30)

Note that a given value of rb produces a larger core than in the
isotropic-core models, since a larger region of phase space is
affected.

Defining σr and σt as the one-dimensional velocity disper-
sions in the radial and tangential directions, one finds

ρσ 2
r = 8

√
2π

3

(
1 − r2

b

r2

)3/2 ∫ ∞

E0

dEfi(E) (E − E0)3/2 ,

(31a)

ρσ 2
t = ρσ 2

r

+ 4
√

2π
r2
b

r2

√
1 − r2

b

r2

∫ ∞

E0

dEfi(E)
√

E − E0(E − Eb)

(31b)

for r > rb; at smaller radii ρ = 0. The anisotropy, defined in
the usual way as β = 1 − σ 2

t /σ 2
r , is then

β(r) = −3

2

r2
b

r2 − r2
b

∫ ∞
E0

dEfi(E)(E − Eb)
√

E − E0∫ ∞
E0

dEfi(E)(E − E0)3/2
(32)

and is manifestly negative, i.e., σt > σr .
Figure 6 plots anisotropy profiles for the models in Figure 5 as

well as projected velocity dispersion profiles in the plane of the
sky, compared with the observed, proper-motion-based velocity
dispersions from Schödel et al. (2009). The same values of rb
that give a good fit to the number-count data, also appear to fit the
proper-motion data reasonably well. The tangential anisotropies
predicted by these value of rb—which peak between ∼2 and
∼5 arcsec—are consistent with what is observed, although the
statistical error bars are so large that no clear discrimination
between theoretical models can be made.

This figure also shows that the adopted density normalization,
Equation (17), yields velocities that are consistent with the
proper-motion data.

4. EVOLUTIONARY MODELS

The distributions of stars illustrated in Figure 1, and in the
simple phase-space models of Figures 4 and 5, are different
from the collisionally relaxed distributions normally associated
with stars around an SMBH (Bahcall & Wolf 1976; Bahcall &
Wolf 1977). This may be a consequence of the relatively long
relaxation time at the Galactic center (Figure 3). A key question
is whether models with a core can survive on Gyr timescales.
In order to investigate this question, in this section we consider
time-dependent models for the phase-space distribution, starting
from initial conditions like those discussed in Section 3.

Models that are initially isotropic will remain close to isotropy
as they evolve. Given such initial conditions, the isotropic,
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Figure 5. “Anisotropic” core models, created by setting f = 0 on orbits that pass below rb. Left panel shows space densities for rb = (0.02, 0.05, 0.1, 0.2, 0.5) pc.
Right panel shows surface densities of the same models, compared to the number-count data from Figure 1. Blue (thick) curve is marked for comparison with the same
model in Figure 6. The vertical normalization of the models in the right panel was chosen arbitrarily.

(A color version of this figure is available in the online journal.)

Figure 6. Kinematics of the models of Figure 5. Left panel: anisotropy profiles. Right panel: projected, radial (thick lines) and tangential (thin lines) velocity dispersions
in the plane of the sky, compared with the observed σR (filled circles) and σT (open circles) from Schödel et al. (2009).

(A color version of this figure is available in the online journal.)

orbit-averaged Fokker–Planck equation (Hénon 1961) should
provide a good description of the evolution.

Initially anisotropic models will evolve both in J- and
E-space. Here, we make the approximation that the evolution
can be divided into two sequential phases: “fast” evolution in
J, on a timescale �tr , followed by “slow” evolution in E, on a
timescale ∼tr . The justification follows from an argument made
originally by Frank & Rees (1976): diffusion of stars into a
point-mass “sink” is dominated by scattering of low-J orbits, on
a timescale

tθ ≈ θ (r)2tr (r), (33)

where θ ≈ (rb/r)1/2 is the angle within which a star’s velocity
vector must lie in order for its orbit to intersect the central
sink—in our case, the edge of the low-density core at r ≈ rb.
The square-root dependence of θ on tθ reflects the fact that
evolution in J is a diffusive process. Thus,

tθ ≈ rb

r
tr (34)

implying the separation of timescales for stars at r � rb.

In addition to being physically motivated, this approximation
allows us to treat the evolution in J and E via differential
equations with just one space dimension, and to formally
separate the “isotropization time” from the timescale for changes
in the radial (i.e., energy) distribution.

The separation of timescales breaks down for certain orbits,
e.g., the lowest-energy orbits with E � Eb, and a full, f (E, J, t)
treatment could certainly be justified. Here, we note only that
our initial conditions are somewhat arbitrary, and that changes
in the E-dependence of f that would otherwise occur during the
“fast” evolutionary phase could be seen as establishing a slightly
different f (E) at the start of the “slow” evolutionary phase.

As the phase-space density evolves, the configuration-space
density ρ(r) also changes, as well as the velocity dispersions
σr (r), σt (r). Our main constraint on these models is that the
distribution of stars, after ∼10 Gyr, be consistent with the
observed distribution of late-type stars at the Galactic center.
It is also reasonable to require that a model which matches
the data now, not be in such a rapid state of evolution that it
would quickly (in a time �10 Gyr) evolve to a very different
form.



No. 2, 2010 STARS AND REMNANTS AT THE GALACTIC CENTER 747

4.1. Evolution in J

4.1.1. Equations

The orbit-averaged Fokker–Planck equation describing
changes in f due to diffusion in J-space is (e.g., Cohn 1979)

∂N

∂t
= ∂

∂R

(
DRf + DRR

∂f

∂R

)
. (35)

Here, R = J 2/J 2
c is a scaled angular momentum variable,

Jc(E) is the angular momentum of a circular orbit of energy E,
N (E,R) = 4π2P (E,R)J 2

c (E)f (E,R) is the number density
of stars in (E,R) space, P (E,R) is the radial period of an
orbit, and {DR,DRR} are the angular momentum diffusion
coefficients:

DR(E,R) = −16π2Rr2
c (E)

∫
dr

vr

(
1 − v2

c

v2

)
F1(E, r),

(36a)

DRR(E,R) = 16π2

3
R

∫
dr

vr

{
2
r2

v2

[
v2

t

(
v2

v2
c

− 1

)2

+ v2
r

]
F0(E)

+ 3
r2v2

r

v2
F1(E, r) +

r2

v2

[
2v2

t

(
v2

v2
c

− 1

)2

− v2
r

]
F2(E, r)

}
,

(36b)

with

F0(E) = 4πΓ
∫ ∞

E

dE′f (E′), (37a)

F1(E, r) = 4πΓ
∫ E

φ(r)
dE′f (E′)

(
E′ − φ

E − φ

)1/2

, (37b)

F2(E, r) = 4πΓ
∫ E

φ(r)
dE′f (E′)

(
E′ − φ

E − φ

)3/2

(37c)

and Γ ≡ 4πG2m2 ln Λ. In the expressions (36), the integration
interval is the radial range from periapsis to apoapsis. Definitions
for subsidiary variables can be found in Cohn (1979) whose
notation is adopted here. Following Shapiro & Marchant (1978)
and Cohn & Kulsrud (1978), the angular-momentum-averaged
phase-space density f that appears in Equations (37) is defined
as

f (E) =
∫ 1

0
dRf (E,R). (38)

Because we are ignoring changes in E, the function f (E)
does not change with time, nor do the diffusion coefficients
{DR,DRR}.

The practice of some authors (e.g., Milosavljević & Merritt
2003) of approximating the R-diffusion coefficients by their
limiting values as R → 0 is not followed here.

Equation (35) was advanced in time numerically using the
NAG routine d03pcf. Initial conditions were f(E,J) correspond-
ing to the anisotropic-core models described in the previous
section, with various values of rb (e.g., Figures 5 and 6).

Scaling of the Fokker–Planck models to physical units of
length and mass is fixed by the power-law density model,
Equation (17), used to generate the initial conditions. Since
the Fokker–Planck equations are orbit averaged, the relevant

time unit is the relaxation time. In what follows, times will be
expressed in years, based on a scaling that assumes a relaxation
time given by Equation (15a) with m̃ = 1 M� and ln Λ = 15.
If m̃ and ln Λ have different values than these. The times given
below should be multiplied by(

m̃

1 M�

)−1 (
ln Λ
15

)−1

. (39)

4.1.2. Results

Figure 7 shows the evolution of the space and projected
densities for the anisotropic-core model with rb = 0.1 pc (blue
curves in Figures 5 and 6). The central configuration-space
“hole” is rapidly filled as the low-angular-momentum orbits
are repopulated; by a time of ∼109 yr, the central density is
essentially unchanging inside ∼rb. Because (by assumption)
there is no diffusion in E, the central hole in phase space
remains, and so ρ(r) evolves asymptotically to the ∼r−1/2 form
demanded by an isotropic f (E) with a low-energy truncation
(Figure 4). The surface density evolves much less, since even at
the (projected) center, the surface density is dominated by stars
in the power-law envelope. Thus, this model is a reasonable fit to
the observed number counts either at t = 0 or at later times: the
refilling of the low-J orbits does not greatly affect the observed
densities.

Figure 8 illustrates the evolution toward isotropy in the same
time integration. Initially, there is a strong velocity anisotropy
near the center due to the lack of eccentric orbits (Figure 6).
However, the refilling of the low-J orbits increases σr at r � rb

on a timescale of ∼1 Gyr and the core is essentially isotropic
thereafter.

Proper-motion data from the (projected) inner parsec of the
Milky Way indicate a slight degree of anisotropy (Schödel et al.
2009). We define an averaged anisotropy parameter 〈B〉 as

〈B〉 ≡ 1 −
〈
σ 2

T

〉
〈
σ 2

R

〉 , (40)

where σR and σT are the radial and tangential velocity disper-
sions in the plane of the sky and the 〈〉 denote number-weighted
averages over some radial range. Adopting 1′′ � R � 10′′ for
this range, the late-type stars near the Galactic center have

〈B〉 = −0.1240.098
−1.05, (41)

where the (90%) confidence intervals were derived via the boot-
strap. Figure 9 compares the observed value of 〈B〉 with the
values predicted by the evolving models. The 90% observed
upper bound, 〈B〉 ≈ −0.026, is almost consistent with isotropy,
which is the asymptotic state of the time-dependent models;
while the observed lower bound, 〈B〉 ≈ −0.23, is almost as
low as the initial anisotropy of the most extreme core model
considered here. Thus, the Fokker–Planck models remain con-
sistent with the observed degree of anisotropy over essentially
the entire time interval and for a wide range of initial conditions.

Figure 9 also gives an indication of how the time to establish
isotropy in an initially anisotropic core varies with the size of the
core. Larger values of rb imply both a higher initial anisotropy,
and a longer timescale for the establishment of isotropy.

4.1.3. Summary

Cores formed by the exclusion of small-periapse orbits evolve
toward isotropy on a ∼Gyr timescale. This evolution does not
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Figure 7. Evolution of the density of the “anisotropic-core” model with rb = 0.1 pc due to diffusion in J. Curves show space (left) and projected (right) densities at
times (0, 0.1, 0.2, 0.5, 1, 2, 5) × 109 yr. Line thickness increases with time. Other symbols are as in Figure 5.

Figure 8. Evolution of the space (left) and projected (right) velocity dispersions for the same “anisotropic-core” model illustrated in Figure 7. Solid (dashed) curves
are radial (tangential) velocity dispersions. Line thickness increases with time; t = (0, 0.1, 0.5, 5) × 109 yr. Symbols have same meaning as in Figure 6.

produce great changes in the observable properties of the core,
either in the density or the velocity dispersions. The anisotropy
observed at the Galactic center is consistent with the evolving
models at both early and late times.

4.2. Evolution in E

Evolution in E-space drives f toward the quasi-steady-state
form

f ∼ |E|1/4, ρ ∼ r−7/4 (42)

at E � −GM•/rinfl and r � rinfl, on a timescale that is roughly
the relaxation time at rinfl (Bahcall & Wolf 1976; Lightman &
Shapiro 1977). Equation (42) corresponds to a zero net flux in
E-space near the hole. In reality, loss of stars into the SMBH
implies a nonzero flux, causing a gradual evolution (expansion)
of the cluster, although without much change in the form of ρ(r)
(e.g., Shapiro & Marchant 1978; Murphy et al. 1991). We ignore
that complication here since the density in our models near the
SMBH remains far below that of the quasi-steady-state models
at most times, implying a very small flux into the SMBH.

Many authors have explored quasi-steady-state solutions to
this equation and to the more general equations that allow for a
dependence of f on orbital angular momentum and stellar mass
(as reviewed by Merritt 2006b). After a finite time �tr , the form

of f (E) will still reflect the initial conditions. Quinlan (1996)
emphasized this in the case of stellar systems without central
SMBHs. Freitag et al. (2006a) explored in a limited way how
the structure of Galactic center models depends on the assumed
initial density profile. They considered initial profiles ρ ∼ r−γ

with γ as small as 0.75 (steeper, i.e., closer to the asymptotic
Bahcall–Wolf form, than the steepest initial profiles considered
here). Freitag et al. found that a time of order tr (rinfl) is required
to erase details of the initial conditions. Based on Figure 3 that
time is ∼20 Gyr.

4.2.1. Equations

The orbit-averaged, isotropic Fokker–Planck equation is

∂N

∂t
= ∂

∂E

(
DEE

∂f

∂E
+ DEf

)
, (43a)

DEE(E) = 16π3Γ ×
[
q(E)

∫ E

−∞
dE′f (E′)

+
∫ ∞

E

dE′q(E′)f (E′)
]

, (43b)

DE(E) = 16π3Γ
∫ ∞

E

dE′p(E′)f (E′) (43c)
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Figure 9. Evolution of the projected anisotropy parameter 〈B〉 defined in the
text, computed over the projected annulus 1′′ � R � 10′′. Curves are from
integrations starting from the five initial models illustrated in Figures 5 and 6;
increasing line thickness denotes increasing values of rb, the initial truncation
radius, from 0.02 pc to 0.5 pc. Dashed line is the anisotropy at the Galactic
center as computed from the proper-motion data of Schödel et al. (2009), with
the 90% confidence interval shown as the hatched (blue) region.

(A color version of this figure is available in the online journal.)

(e.g., Cohn 1980; Spitzer 1987). Here, N (E) = 4π2p(E) is
the number density of stars in energy space and p(E) =
4
√

2
∫

r2√E − φ(r)dr = ∂q/∂E is a phase-space volume
element. The functions f, DE, and DEE are understood to depend
on time; as above, the gravitational potential is assumed to
remain fixed, as do the functions p and q.

Equations (43) were solved using the NAG routine d03pcf.
The E-space flux was set to zero at the inner boundary of the
energy grid, as justified above. Two sorts of initial conditions
were considered: (1) f (E) corresponding to an “isotropic-
core” model and (2) R-averaged f’s from the final time steps
of the J-integrations described in the previous section, which
started from “anisotropic-core” models. (The final f’s from these
integrations were almost precisely isotropic; cf. Figure 9.) In
both cases, the initial conditions will be labeled in terms of rb.

4.2.2. Results

Figure 10 shows the evolution of the “isotropic-core” model
with rb = 1 pc. Diffusion in E-space causes stars to gradually
occupy orbits of lower (more bound) energies. However, even
after 10 Gyr—roughly the relaxation time at rb (Figure 3)—f
and ρ are still far from their steady-state forms at low energies/
small radii. The Bahcall–Wolf solution is only reached after a
time that is roughly twice as long.

The lower panel of Figure 10 highlights an interesting
coincidence. All of the models considered here have (by
assumption) a density that obeys

ρ ∼ r−1.8 (44)

at large radii—the observed dependence of the density of old
stars on radius beyond ∼1 pc. But this is essentially the same
slope as in the steady-state Bahcall–Wolf profile, ρ ∼ r−1.75

which is the asymptotic form of ρ(r) at small radii. As long
as the initial core radius is smaller than ∼rinfl, it follows that

Figure 10. Evolution of the phase-space density (top), configuration-space
density (middle), and surface density (bottom) of the “isotropic-core” model
with rb = 1 pc (Figure 4). Increasing line thickness denotes increasing time,
t = (0, 0.2, 0.5, 1, 2) × 1010 yr. Dashed lines are the asymptotic forms for f and
ρ, i.e., f ∼ |E|1/4, ρ ∼ r−7/4. E, f, and Σ are in arbitrary units.

ρ(r) will evolve in an approximately self-similar way: the core
will shrink, while outside the core, ρ(r) will continue to obey
ρ ∼ r−1.8. Reproducing the observed density profile is therefore
simply a matter of choosing the appropriate, initial value of rb.

Which values of rb give cores of the right size now? Two
estimates were derived in Section 2 for the core radius of the old
stellar population, 0.59 and 0.42 pc. These values are plotted in
Figure 11, which also shows core radii as a function of time in
the evolving models (computed in the same way, i.e., by finding
the projected radius at which the surface density falls to 1/2
of its value at 0.04 pc). The figure suggests that the currently
observed core is consistent with initial cores having sizes in the
range

1 pc � rcore � 1.5 pc, (45)
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Figure 11. Evolution of the core radius in various models. Thick curves:
“isotropic-core” models. Thin curves: “anisotropic-core” models. The hatched
(blue) region encloses the two estimates of the Milky Way core radius, as
discussed in the text.

(A color version of this figure is available in the online journal.)

or 2–3 times the current value. These values are comparable
with the SMBH influence radius (Figure 3).

5. SEGREGATION OF THE MASSIVE REMNANTS

Old stellar populations contain remnants: white dwarves
(WDs), neutron stars (NSs), and stellar-mass BHs, the end
products of stars with initial masses 1–8 M� (WDs), 8–30 M�
(NSs), and ∼30–100 M� (BHs). Standard assumptions about
the IMF imply that ∼1% of the total mass of an old population
should be in the form of stellar BHs (Alexander 2005), although
observational constraints on the BH number density near the
Galactic center are weak (e.g., Muno et al. 2005).

The stellar BHs have significantly higher masses (∼×10) than
either the main-sequence stars or the other types of remnant that
collectively dominate the total mass density. The BHs should
therefore lose orbital energy due to dynamical friction and
congregate around the SMBH. Assuming that the total density
obeys an expression similar to Equation (17), i.e., ρ ∼ r−2, the
time for a 10 M� BH on a circular orbit to spiral all the way in to
the center is less than 10 Gyr for a starting radius inside 4–5 pc
(Morris 1993; Miralda-Escudé & Gould 2000). Depending on
the assumed mass fraction in BHs, and on their initial density
profile, the mass density of BHs after 5–10 Gyr is predicted
to match or exceed that of the other populations inside ∼10−2

pc. If this occurs, the BHs will undergo gravitational scattering
from themselves and from the other populations, leading to
a quasi-steady-state n ∼ r−2 density profile in the innermost
regions, and to a slightly shallower profile in the lighter mass
components (Freitag et al. 2006a; Hopman & Alexander 2006a;
Alexander & Hopman 2009).

All of the studies cited above assumed or derived a total
mass density that increases as ρ ∼ r−γ , 1.3 � γ � 2.3
down to ∼10−5 pc from the SMBH. If instead the dominant

population has a core, the dynamical friction force will increase
more slowly toward the center inside ∼rcore, implying somewhat
longer inspiral times.

But there is potentially an even more dramatic way in which
a core can affect the rate of orbital decay, as we now show. The
instantaneous frictional force felt by a (massive) test body of
mass mBH and velocity v is

a = −4πG2mBHρ(r)F (v) ln Λ
v3

v, (46)

where F (v) is the fraction of stars locally that are moving more
slowly than v. If the latter are described by an isotropic f, then

ρ(r)F (v) = 4
√

2π

∫ v2/2+φ(r)

φ(r)
dEf (E)

√
E − φ(r). (47)

If in addition f is truncated at energies below Eb—an “isotropic
core”—then F falls to zero for orbits with energies

v2

2
+ φ(r) � Eb (48)

since there are no stars locally that move slower than v for these
energies—even if the configuration-space density is nonzero.
Assuming a circular orbit for the test body, and that the orbit
lies inside the influence radius of the SMBH, this condition
becomes

r � rb

2
(49)

with Eb = φ(rb). Thus, inside ∼1/2 the core radius, the
frictional force drops precisely to zero.

This result is not simply an artifact of the brute-force
truncation of f. Consider a core in which ρ ∝ r−γ . In a point-
mass potential, this density is reproduced by

f (E) = f0|E|γ−3/2 (50)

and F for a circular orbit is easily shown to be

F (γ ) = 2√
π

Γ(γ + 1)

Γ(γ − 1/2)

∫ 1

1/2
dzzγ−3/2

√
1 − z. (51)

This function varies smoothly from F = 0.5 at γ = 2, the
singular isothermal sphere, to F = 0 at γ = 0.5.

As an even more general illustration of this effect, we com-
puted the evolution of a circular orbit in a background density
described by the broken power-law model of Equation (1) with
α = 2. The outer slope was fixed at γ = 1.8 and the normal-
ization was chosen to reproduce the density of the “fiducial”
model, Equation (17), outside the core. Setting the inner slope
γi to 1.8 gives a model similar to those assumed in the studies
cited above; while small values of γi correspond to a core. The
radius r of a test body’s orbit decays as

1

r

dr

dt
= −|a|

(
dJ

dr

)−1

. (52)

The function F (v) was computed using the expression (Szell
et al. 2005)

F (v) = 1 − 1

ρ

∫ 0

E

dφ′ dρ

dφ′

×
{

1 +
2

π

[
v/

√
2√

φ′ − E
− tan−1

(
v/

√
2√

φ′ − E

)]}
. (53)
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Figure 12. Trajectories of 10 M� BHs as they spiral in to the Galactic center on
circular orbits, starting from a radius of 4 pc. The assumed background density
is a power law, ρ ∝ r−1.8 at large radii, with an inner core of radius r0, as
described by Equation (1) with α = 2; r0 was set to 0.5 pc (dashed/blue line)
and the inner power-law slope of the density was varied, as indicated.

(A color version of this figure is available in the online journal.)

Figure 12 shows the trajectories of 10 M� BHs starting from a
distance of 4 pc, assuming various values for the inner density
slope; in each case we set the core radius parameter r0 to 0.5 pc.
As predicted, the rate of orbital decay begins to slow when
r � r0 for small values of γi , and the decay essentially stalls, at
r � r0/2 pc, when γi = 0.5. We stress that the configuration-
space density is nonzero at all radii in these models, and in fact
increases monotonically toward the center; the precipitous drop
in the frictional force is due to the lack of low-velocity stars in
the core when γi is small.

Another consequence of a core is that the dynamical friction
force along an orbit is not so strongly peaked near periapse,
which is a necessary condition for an orbit to circularize.
In the presence of a core, the distribution of BH orbits will
therefore remain more nearly isotropic (assuming that it starts
out isotropic). This, combined with the cutoff in the dynamical
friction force at r ≈ r0, suggests that the evolved BH density
would rise rapidly toward r ≈ r0, then follow ∼r−0.5 toward
smaller radii, the density law of an isotropic population with
an inner hole in phase space. If the background density is itself
evolving, as in the models of the previous section, the core radius
of the population that produces the dynamical friction force will
decrease with time, causing the radius of peak BH density to
also migrate inward on the same timescale.

5.1. Equations

As in previous sections, the evolution of the distribu-
tion of stellar BHs was followed using the orbit-averaged
Fokker–Planck equation. Define fBH(E,R) to be the num-
ber density in phase space of a population of massive objects
(BHs), of individual mass mBH. We assume that the associated
mass density ρBH is small compared with the total mass den-
sity ρ due to stars and (less massive) remnants. Alexander &

Hopman (2009) show that the limiting density ratio for ignoring
the self-interaction of the BHs is ρBH/ρ� < m�/mBH ≈ 0.1.
This condition is violated at late times in some of the inte-
grations described below; this effectively defines the maximum
time at which the solutions are valid.

The orbit-averaged equation describing the evolution of fBH
as the massive objects experience dynamical friction against the
background of less massive objects is

∂NM

∂t
= ∂

∂E
(DEfBH) +

∂

∂R
(DRfBH) , (54)

where NM (E,R) = 4π2P (E,R)J 2
c (E)fBH(E,R) is the num-

ber density in (E,R) space as before. The diffusion coefficients
depend on the (possibly time-dependent) distribution of low-
mass objects. Let fi(E,R, t) be the phase-space number density
of stars with mass mi, mi � mBH. Then (e.g., Takahashi 1997)

DE(E,R) = −8π2mBHJ 2
c (E)

∑
i

mi

∫
dr

vr

F1i(E, r), (55a)

DR(E,R) = −16π2mBHRr2
c (E)

×
∑

i

mi

∫
dr

vr

(
1 − v2

c

v2

)
F1i(E, r), (55b)

with

F1i(E, r) = 4πγ

∫ E

φ(r)
dE′f i(E

′, t)
(

E′ − φ

E − φ

)1/2

(56)

and γ ≡ 4πG2 ln Λ; f i is the angular-momentum-averaged f as
defined above.

Defining the phase-space mass densities of BHs and the other
populations (collectively referred to, henceforth, as “the stars”),
respectively, as

gBH = mBHfBH, g =
∑

i

mifi, (57)

the evolution equation for the BHs can be written as

PJ 2
c

8πγmBH

∂gBH

∂t

= − ∂

∂E

[
gBHJ 2

c

∫
dr

vr

∫ E

φ(r)
dE′g(E′, t)

(
E′ − φ

E − φ

)1/2
]

− 2
∂

∂R

[
gBHRr2

c

∫
dr

vr

(
1 − v2

c

v2

)∫ E

φ(r)
dE′g(E′, t)

(
E′ − φ

E − φ

)1/2
]

.

(58)

This equation was integrated forward using an explicit
scheme with second-order space derivatives and first-order
time derivative. Two choices were considered for the stellar
phase-space density g: (1) a time-independent model with an
“anisotropic core” and (2) a time-dependent, isotropic model in
which g evolves according to Equation (55). In both cases, the
phase-space density of the BHs was assumed to be the same as
that of the stars at t = 0.

If the mass density in stellar BHs becomes comparable to that
of the stars at any radius, Equations (59) are no longer valid,
since the BHs will begin to feel perturbations from each other
and because the stellar distribution will be affected by heating
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Figure 13. Evolution of the density of stellar BHs assuming a fixed background
density, shown by the thin (blue) line. Curves show the density at times
(0, 1, 2, 4, 8, 16) Gyr.

(A color version of this figure is available in the online journal.)

from the BHs. Whether, or when, this occurs depends on the
assumed initial normalization of ρBH. In plots that follow, BHs
were assumed to be a fraction 10−2 of the total mass density
initially.

Results in this section are expressed in years, assuming that
mBH = 10 M�. Times can be scaled to different values of mBH
using the simple proportionality of the dynamical friction force
on mBH (Equation (46)).

5.2. Results

Figure 13 shows the evolution of the BH mass density
assuming a fixed stellar background, corresponding to an
“anisotropic-core” model with rb = 0.2 pc. The initial BH
distribution is likewise anisotropic. As time progresses, the
density of BHs drops at a radius of a few parsecs and rises
inside ∼1 pc; BHs accumulate at energies near the core due to
the falloff in the dynamical friction force there, as discussed
above. At late times (�5 Gyr), the BH velocity distribution
is slightly biased toward circular motions beyond ∼1 pc,
and toward radial motions inside ∼1 pc; as noted above,
dynamical friction in the presence of a core does not efficiently
circularize orbits. To a reasonable approximation, the phase-
space distribution of the BHs at late times is isotropic, and
because the stellar distribution has not been allowed to evolve,
the BH density remains zero on orbits with energies below
Ec ≈ Eb/2. The result is a ρBH ∼ r−0.5 cusp at r � 2rb ≈ 0.4
pc. Note that the density of BHs just approaches that of the stars
at the final time (16 Gyr) in this integration.

Allowing the stellar distribution to evolve is more realistic.
Figures 14 and 15 show the results of two such integrations.
In Figure 14, the initial distributions of stars and BHs were
generated from an “isotropic-core” model with rb = 2 pc.
The stellar distribution was allowed to evolve according to
Equations (43), yielding a time-dependent g(E, t) which was
inserted into Equation (58) at each time step to compute the
diffusion coefficients acting on gBH. In these integrations, the

Figure 14. Evolution of the number density of stellar BHs (thick/black curves)
assuming an evolving background (stellar) density (thin/blue curves), starting
from an “isotropic-core” model with rb = 2 pc in both components. Times
shown are (0, 1, 2, 4, 8) Gyr.

(A color version of this figure is available in the online journal.)

stellar core shrinks, on a timescale that is ∼10 times longer than
the timescale for the BHs to accumulate around the core. As a
result, the BHs “follow” the stellar core inward. Their density
does not rise so steeply toward the core as in the integrations
with fixed stellar density (Figure 13) since the radius at which
they would otherwise accumulate changes with time. Figure 15
shows the mass enclosed within (0.1, 0.3, 1) pc versus time
for both components, in a second integration starting from
rb = 1 pc. Also shown for comparison is the mass in BHs
estimated by Miralda-Escudé & Gould (2000) to lie within the
central parsec after 10 Gyr, assuming dynamical friction against
a fixed stellar background, and the mass in BHs estimated by
Hopman & Alexander (2006a) to lie within 0.1 pc, based on
their steady-state multi-mass Fokker–Planck solutions.

The feature that we wish to emphasize here is the sensitivity,
in our models, of the final density in BHs to the elapsed time.
Figures 14 and 15 suggest that it would be unjustified to assume
that the stellar BHs have reached a steady-state density by now at
any radius inside ∼1 pc. This is even more true if star formation
has been an ongoing process in the NSC (e.g., Serabyn & Morris
1996; Figer et al. 2004), since the mean age of stars and remnants
may be much less than 10 Gyr (Section 6.1).

This point is made more forcefully in Figure 16, which
compares stellar and BH densities at r = 0.01 pc in three models
with different initial core sizes. The figure shows that when the
evolving stellar core reaches a size consistent with the observed
core, the density in stellar BHs can be substantially less than
that of the stars at this radius. In the steady-state models, the BH
density meets or exceeds that of the stars at radii of 10−2 to 10−1

pc (e.g., Freitag et al. 2006a, Figure 10), and gravitational-wave
inspiral of BHs is dominated by BHs at these distances (Hils
& Bender 1995; Hopman & Alexander 2005). The much lower
densities found here have potentially important implications for
the predicted rate of inspiral events, as discussed in more detail
in Section 6.4.
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Figure 15. Evolution of the enclosed mass in stellar BHs (dash-dotted lines)
and stars (solid lines) in an integration like that of Figure 14, with rb = 0.1 pc.
Curves show mass enclosed within (0.1, 0.3, 1.0) pc assuming that stellar BHs
have initially 1% the mass density of stars at each radius. The hatched regions
show the estimates of Miralda-Escudé & Gould (2000) for the mass of stellar
BHs within 1 pc after 10 Gyr, assuming dynamical friction against a fixed stellar
density cusp, and of Hopman & Alexander (2006a) for the mass of BHs within
0.1 pc based on steady-state Fokker–Planck solutions. The vertical width of
each hatched region corresponds to an (arbitrary) factor 2 in mass.

(A color version of this figure is available in the online journal.)

In models with initial core radii �1.5 pc (small enough to
reproduce the currently observed core), the density of stellar
BHs after 10 Gyr becomes large enough that self-interactions
between the BHs would be significant. A high enough density
of BHs would also tend to accelerate the relaxation of the stellar
component. While beyond the scope of this paper, tests of these
predictions could be carried out via two-component, f (E,L, t)
models or N-body integrations.

5.2.1. Summary

The timescale for inspiral of 10 M� BHs to the center of
the Galaxy is longer in models with a core than in models
with a cusp, both because of the lower density of stars in
the core, but also because the dynamical friction force drops
essentially to zero at energies near the phase-space truncation
energy that defines the core. Assuming that the BHs and the stars
have the same distributions initially, the radius of peak density
of the BHs tends to “follow” the stellar core as the latter shrinks.
The density of BHs can remain substantially less than that of
the stars at small radii (r � 0.01–0.1 pc) even after the stellar
core has shrunk to its observed size of ∼0.5 pc.

6. DISCUSSION

Topics discussed in this section include the dynamical con-
sequences of ongoing star formation, predicted rates of stellar
tidal disruptions and gravitational wave inspirals at the Galac-
tic center, mechanisms for enhanced relaxation, the effect of a
parsec-scale stellar core on inspiral of IMBHs, the rate of pro-
duction of hypervelocity stars (HVSs) by collisions involving

Figure 16. Density of stellar BHs (dash-dotted curves) and stars (solid curves)
at r = 0.01 pc in three models with cores of different initial size, rb = (0.5, 1, 2)
pc. Horizontal axis is core radius of the stars, which decreases with time as the
core shrinks. Integration times are 10 Gyr. Vertical hatched region indicates the
radius of the observed core.

(A color version of this figure is available in the online journal.)

stellar BHs, and the connection between the core at the center
of our Galaxy and the cores observed in other galaxies.

6.1. Star Formation

The Milky Way NSC sits at the center of a kiloparsec-scale
Galactic bulge or bar which consists mainly of old (∼10 Gyr)
evolved stars. On sub-kiloparsec scales, the Milky Way shows
evidence for stellar populations with a range of ages. Serabyn
& Morris (1996) argued that the conditions of the interstellar
medium in the “Central Molecular Zone” would lead inexorably
to inflow of molecular material and to continuous star formation
activity in the central ∼102 pc. Figer et al. (2004) modeled the
luminosity function of stars in the inner ∼50 pc and argued
that single-burst star formation models could be securely ruled
out; they inferred a nearly constant rate of star formation rate
over the last ∼10 Gyr. These and other studies (e.g., Mezger
et al. 1999; Philipp et al. 1999) suggest that the NSC is not a
simple inward extrapolation of the old bulge, but rather consists
of an intermediate age population that has been undergoing
continuous star formation since the creation of the Galaxy.

In a general way, continuous star formation strengthens the
picture presented here of a nuclear cluster that is less than ∼1
relaxation time old, by reducing the mean age of stars from
∼10 Gyr to ∼5 Gyr.

Of more direct interest is the evidence for recent star for-
mation in the inner ∼0.5 pc (Paumard 2008), the same region
where the old stars exhibit a low-density core. The total mass
of the young stars currently observed in this region is proba-
bly less than 104 M� (Figer 2008), making them dynamically
insignificant. On the other hand, the starburst that created this
population may have been just the most recent instance of an
ongoing or episodic process. How would such a “source term”
modify the evolutionary calculations presented above?

The answer clearly depends on the accumulated stellar mass
and on the radial dependence of the star formation rate; both



754 MERRITT Vol. 718

are highly uncertain. Here, we limit ourselves to answering
a simpler question: how would a population of stars, formed
initially in a disk, evolve against the background of a pre-existing
stellar core? We specifically ignore interactions between the
disk stars, and assume that the background stars are fixed in
their distribution. More detailed calculations, in which both
populations are allowed to evolve, will be described in a
subsequent paper (H. B. Perets et al. 2010, in preparation).

If the surface density of the young stellar disk is Σ(r) ∝
r−n, the distribution of orbital energies is dN/dE =
(dN/dr)(dr/dE) ∝ |E|n−3. To simplify the evolutionary cal-
culation, we suppose that the orbits of the young stars “ran-
domize” in orientation and eccentricity on a timescale shorter
than tr. (Without trying to justify that assumption quantita-
tively, we note several mechanisms that might achieve this:
standard relaxation as in Section 3, “resonant relaxation” as
in Section 6.4, and torques from another disk or from a large-
scale non-axisymmetric bulge component, etc.) The young stars
can then be described by an isotropic f where f (E, t = 0) ∝
p(E)−1N (E) ∝ |E|n−1/2. The corresponding space density is
ρ(r, t = 0) ∝ r−1−n. If the disk is truncated at an inner radius
rin, then ρ(r, t = 0) ∝ r−1/2 inside ∼rin. We assume n = 2 and
that the disk stars are initially distributed between 0.1 pc and
0.4 pc.

For the old stars, we assume a (fixed) fold(E) = f0|E|A,
which corresponds to a density ρold(r) = ρ0r

−γ , γ =
A + 3/2, r < rinfl. Substituting this expression for fold into the
energy-space diffusion coefficients DE and DEE of Equation
(43) gives

DE(E) = −32
√

2π5

3 − 2A
f0G

5M3
•m2 ln Λ|E|A−3/2, (59a)

DEE(E) = 32
√

2π5

(1 + A)(1 − 2A)
f0G

5M3
•m2 ln Λ|E|A−1/2

(59b)
again assuming that the gravitational potential is due to the
SMBH alone.

We adopt units for time and energy such that

4πΓf0[T ][E]A = 1, (60)

where Γ ≡ 4πG2m2 ln Λ. A natural energy unit is

[E] = ψ0 ≡ GM•
rinfl

, (61)

which makes the unit of time

[T ]−1 = 16π2G2m2 ln Λf0ψ
A
0 . (62)

In dimensionless variables, Equation (43) for the young stars
then becomes

∂f

∂t
= −E5/2 dF

dE
, (63a)

F (E) = − 2

(1 + A)(1 − 2A)
EC d

dE
(EBf ), (63b)

where

B = −(1 + A)(1 − 2A)

3 − 2A
, C = −1 + 6A − 8A2

2(3 − 2A)
. (64)

The steady-state solution is given by setting F (E) = 0:

f (E, t → ∞) ∝ E−B. (65)

Choosing A = 1/4 (γ = 7/4) implies B = −1/4; in other
words, test particles interacting with stars in a Bahcall–Wolf
cusp evolve also to the Bahcall–Wolf form. However, other
choices for A imply different steady-state solutions for the young
stars.

Figure 17 shows time-dependent solutions to Equation (63)
under two assumptions about the background population. In
both cases, the (fixed) density of the old population was
normalized to give a mass within 1 pc of 1.5 × 106 M�.
Figure 17(a) assumes ρold ∝ r−7/4 (A = 1/4), a Bahcall–Wolf
cusp. In this case, the relaxation time at the initial disk radius
is just a few Gyr, and the young stellar population also reaches
a distribution close to the Bahcall–Wolf form after 5 Gyr, as
expected. Gravitational encounters with the old stars tend to
redistribute the young stars to both smaller and larger radii.

Figure 17(b) shows the case ρold ∝ r−3/4 (A = −3/4), a
lower-density core. Now, the relaxation time increases toward
the center; the distribution of young stars hardly changes inside
the original inner disk radius, and the net result of gravitational
encounters is mostly to scatter the disk stars to larger radii. The
steady-state form, ρ ∝ r−1.63, is only gradually approached, and
only at radii outside the initial disk radius. There is essentially
no evolution toward a Bahcall–Wolf cusp.

In both cases, the number of young stars that remain within
the original outer disk radius after 5 Gyr is a small fraction of
the initial number: ∼10−3 in the A = 1/4 case and ∼0.15 for
A = −3/4.

These results, while very preliminary, suggest that ongoing
star formation need not greatly modify the conclusions that were
arrived at above. As long as star formation occurs against the
backdrop of a stellar core, the density profile of the young stars
can remain relatively flat inside the initial disk radius. Their
mean density is also strongly diluted by encounters with the
older stars.

This conclusion may need to be modified in the case of the
stellar remnants. The ∼10–100 very massive blue giant stars in
the stellar disks will probably end their lives as an equal number
of 10 M� BHs, with total mass ∼102–103 M�. If such star
forming events occur once per 108 yr, then 104 M�–105 M� in
stellar BHs could accumulate in the central parsec over 10 Gyr.1

The expected number of remnants will also depend strongly on
the form of the IMF; for instance, a “top-heavy” IMF (Paumard
et al. 2006) would produce many more stellar BHs per unit of
total mass.

6.2. Rates of Tidal Disruption

The existence of a core implies a smaller rate of stellar tidal
disruptions at the Galactic center than in models that assume a
density cusp. The rate of scattering of stars into the SMBH’s
tidal disruption sphere, r � rt , can be written as

Ṅ =
∫

F(E)dE, (66)

where F(E) is the number of stars scattered per unit time and
unit energy into rt. In the models considered here, setting the
core radius to zero gives ρ ∝ r−1.8 at all radii (Equation (12)),
and this is also approximately the form of the density in the

1 I thank Tal Alexander for pointing this out.
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Figure 17. Evolution of f(E,t) and ρ(r, t) describing an isotropic population of “young” stars that formed initially in a disk, and subsequently scatter off of the “old”
stars, assumed to have a fixed phase-space distribution. Initial conditions are shown in bold; subsequent times are (1, 2, 3, 4, 5) × 109 yr, assuming that the mass in the
old population within 1 pc is 1.5 × 106 M�. Length units were scaled to the Galactic center. (a) fold ∝ E0.25, ρold ∝ r−7/4, the Bahcall–Wolf form. (b) fold ∝ E−3/4,
ρold ∝ r−3/4. Dashed lines show the steady-state slopes.

single-mass Bahcall–Wolf steady-state solution at r � rinfl,
ρ ∝ r−1.75. Both density laws, in turn, are close to a singular
isothermal sphere, ρ ∝ r−2, for which the feeding rate has been
shown to be

Ṅ ≈ 4.6 × 10−4 yr−1

(
σ

90 km s−1

)7/2 (
M•

4 × 106 M�

)−1

(67)
assuming solar-type stars (Wang & Merritt 2004).

Carving out a core changes Ṅ for two reasons. (1) The energy
integral, Equation (66), now has Eb as a lower limit rather than
−∞. (2) The diffusion coefficients DR,DRR that determine the
scattering rate at every E (Equations (36)) are smaller due again
to the absence of stars with E < Eb.

A commonly made approximation (e.g., Cohn & Kulsrud
1978) is to ignore the contribution to F (E) from scattering off
of stars with energies that are smaller (i.e., more tightly bound)
than E. In this approximation, the diffusion coefficients are not
changed, at energies E > Eb, by the truncation of f at Eb,
and the only change in Ṅ comes from the change in the lower
integration limit for Equation (66).

Table 1 shows Ṅ for the Milky Way computed under this
approximation, for various values of rb, assuming an “isotropic
core.” (Recall that rb is essentially equal to the core radius of the
corresponding density profile, Figure 4, so that setting rb ≈ 0.5
pc gives a core of roughly the correct size for the Milky Way.)
A 0.5 pc core implies a tidal flaring rate that is almost an order
of magnitude smaller than for a coreless cusp.

Table 1
Stellar Tidal Disruption Rates

rb (pc) Ṅ (yr−1)

0 4.6 × 10−4

0.1 2.7 × 10−4

0.2 1.7 × 10−4

0.5 5.6 × 10−5

1 2.7 × 10−5

2 2.0 × 10−5

This conclusion should be considered extreme since it ignores
changes in f that will necessarily tend to refill the depleted orbits
over relaxation timescales. In principle, the time integrations of
f in Section 4 could be used to compute the evolution of the
tidal disruption rate. We postpone that calculation to a later
paper, but make a related point here: if f is not in a steady state,
the standard expressions for the flux into the loss cone (like
the expressions that were used to derive Equation (67)) are not
strictly valid (Milosavljević & Merritt 2003; Merritt & Wang
2005). This highlights the need to develop a more complete
theory of time-dependent loss cones.

6.3. Enhanced Relaxation

The evolution equations for f and fBH that were solved in
Sections 4 and 5 were based on a standard, orbit-averaged
Fokker–Planck treatment of gravitational encounters. The
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results were scaled to physical time units assuming that re-
laxation is driven by perturbers with masses of roughly M�.

Both of these assumptions have been questioned, in recent
papers that argue for more efficient relaxation near the Galactic
center (Hopman & Alexander 2006b; Perets et al. 2007). Two
important points have been made: (1) the effectiveness of
gravitational encounters at inducing changes in orbital angular
momenta is increased for stars orbiting within the gravitational
field of an SMBH, r < rinfl, since the orbits are nearly
Keplerian and they maintain their orientations for many radial
periods, allowing torques to accumulate linearly with time
(“resonant relaxation”; Rauch & Tremaine 1996). (2) If there is a
distribution of masses in the scattering population, the effective
relaxation time is determined by the second moment of the
mass function (Equations (15)). The presence of even a small
population of very massive objects (“massive perturbers”) in
the region of interest can reduce the effective relaxation time
considerably.

We briefly discuss the applicability of these ideas to the
evolutionary models discussed here.

Resonant relaxation. Resonant relaxation is relevant to the
timescale for isotropization that was computed in Section 4.
The resonant relaxation time is

tRR ≈ 1

N (<a)

(
M•
m�

)2
P 2(a)

tprecess
(68)

(Hopman & Alexander 2006b) where N (<a) is the number of
perturbing stars, of mass m�, inside the orbit of the test star
whose semimajor axis is a, P is the orbital period, and tprecess
is the timescale above which orbits lose their coherence due to
precession. If precession is due primarily to the gravitational
force from the N stars, distributed spherically inside r = a, then

tprecess ≈ 1

N (<a)

M•
m�

P (a) (69)

and

tRR ≈ M•
m�

P (a) (70a)

≈ 2 × 1011 yr

(
M•/m�

4 × 106

) (
a

1 pc

)3/2

, (70b)

independent of the density of perturbers. Hopman & Alexander
(2006b) note that this time falls below the standard relaxation
time (Equation (8)) at a distance 0.1–0.5 pc from SgrA∗. This
suggests that resonant relaxation may reduce somewhat the
timescale for isotropization compared with the values computed
in Section 4.

The counter-intuitive result that tRR is independent of the
density of perturbing stars (Equation (70b)) is due to the fact
that the coherence time tprecess becomes long as N becomes small,
allowing even small torques to build up for long times. In the
core models discussed here, N can be essentially zero, and other
processes would likely begin to dominate the precession rate.
For instance, a nuclear bar (e.g., Alard 2001) would generate
a non-axisymmetric component to the gravitational potential
in its interior, setting an upper limit to the precession time and
reducing the effectiveness of resonant relaxation compared with
the expressions given above as N → 0.

Massive perturbers: Equation (15) says that the rate of grav-
itational scattering by a background population of perturbers
scales as

np

〈
m2

p

〉
, (71)

where np is the number density of perturbers of individual
mass mp and the brackets denote a number-weighted average.
This expression ignores differences in the velocity distribution
between the different populations, which is reasonable if the
relaxation time is long and/or if the perturbers were recently
formed. Perets et al. (2007) noted that the mass spectrum of
giant molecular clouds implies that they should dominate the
scattering rate beyond a few parsecs from SgrA∗, reducing the
relaxation time in this region by as much as several orders of
magnitude. Inside ∼5 pc, they suggested that gas clumps in
the circumnuclear gas disk, with masses 103–105 M�, might be
similarly important.

Massive perturbers beyond ∼1 pc would affect the distribu-
tion of stars near the SMBH in two distinct ways (Perets et al.
2007). (1) Deflection of unbound (with respect to the SMBH)
stars onto radial orbits would fill in some of the phase-space
volume that was evacuated by formation of the core. This pop-
ulation would have a spatial distribution n ∼ r−1/2, similar to
that of the pre-existing core. (2) Three-body interactions of field
binaries deflected by massive perturbers can create a population
of bound stars around the SMBH, initially on very eccentric
orbits. The radial distribution of these bound stars will reflect
the semimajor axis distribution of the parent binary population,
which is uncertain. The capture rate is estimated to be as large
as ∼10−4 yr−1 in the inner parsec; the accumulated mass could
therefore potentially exceed the number of stars in the evolution-
ary models considered here. These arguments, while very ap-
proximate, suggest that massive perturbers could compete with
stellar-mass perturbers in terms of refilling an evacuated core.

In a general way, the fact that the Milky Way does contain
a low-density core implies an upper limit on the effectiveness
of any relaxation process, particularly those that change orbital
energies.

6.4. Extreme-mass-ratio Inspirals

The inspiral of compact remnants (stellar-mass BHs, NSs,
and WDs) into an SMBH is accompanied by the emission of
gravitational waves with frequencies that will be detectable by
the Laser Interferometer Space Antenna (LISA; Sigurdsson &
Rees 1997; Barack & Cutler 2004; Amaro-Seoane et al. 2007).
Event rates of these extreme-mass-ratio inspirals (EMRIs) are
generally computed assuming that the stars and stellar remnants
are distributed in a relaxed, multi-mass density cusp (Hils &
Bender 1995; Hopman & Alexander 2005; Hopman 2009). In
such a cusp, the density of solar-mass stars follows n ∼ r−1.5

while the 10 M� BHs have a steeper dependence, n ∼ r−1.75 −
r−2. The radius at which the mass density of BHs rises above
that of the less massive objects depends on the choices made for
the mass function, and (in the time-dependent models) the initial
spatial distributions and the elapsed time. Typically, ρBH > ρ�

inside 0.01–0.1 pc (Freitag et al. 2006a; Hopman & Alexander
2006a). The EMRI event rate is dominated by BHs (as opposed
to NSs or WDs) due to their high masses and high mass densities.
Most of the signal is contributed by BHs inside ∼10−2 pc (e.g.,
Hopman & Alexander 2006a, Figure 2).

Here, we estimate BH inspiral rates for models of the NSC that
include a core. A distribution-function-based approach, similar
to what was used above to compute stellar tidal disruption rates,
would require an additional Monte Carlo calculation to estimate
the probability that a star on a loss cone orbit will evade being
scattered directly into the SMBH before emitting gravitational
waves. Instead, we follow the more approximate treatments in
Hils & Bender (1995), Hopman & Alexander (2005), and Ivanov



No. 2, 2010 STARS AND REMNANTS AT THE GALACTIC CENTER 757

(2002) based only on the density profiles of the two components.
We first derive an expression for the inspiral rate based on
the observed stellar distribution, Figures 1 and 3. Event rates
predicted by the evolving, two-component models of Section 5
are then computed.

Gravitational-wave emission is dominated by BHs that are
scattered into the SMBH from orbits with a � acrit, where acrit
is the orbital radius such that the decay time due to emission of
gravitational waves equals the time for the BH to be scattered
in or out of the loss cone by stars or by other BHs. The angular
momentum of a loss cone orbit is

Jlc ≈ 4GM•
c

. (72)

Stars with a � rcrit can avoid scattering for a time long enough
to spiral in via emission of gravitational waves. The inspiral rate
is approximately

ṄGW ≈
∫ acrit

0

fBH(a)N (a)

tr (a) ln Θ
da, (73)

where N (a)da is the number of stars and BHs with semimajor
axes a to a+da, fBH � 1 is the fraction of objects which are
BHs, and Θ = Jc/Jlc.

The gravitational-wave inspiral time for an eccentric orbit,
J � Jc, is (Hopman & Alexander 2005)

tGW = 3 × 214

85

√
GM•a
c2

M•
mBH

(
J

Jlc

)7

, (74)

where mBH is the mass of a stellar BH. The critical radius is
defined as the radius where tGW = tlc with

tlc =
(

Jlc

Jc

)2

tr , (75)

the diffusion time into the loss cone. Combining Equations (74)
and (75) and identifying the relaxation time on an orbit with its
value at r = a gives an implicit relation for acrit:

85

3

mBH

M•

(
GM•
a3

crit

)1/2

tr (acrit) = 210 (76)

the solution to which determines the upper limit to the rate
integral (Equation (73)).

For the relaxation time, we use the estimate plotted in Figure 3
for the Galactic center, which was based on the parametric model
fit to the number counts, Figure 1, with n ∝ r−1/2 enforced at
small radii. This is the flattest central dependence consistent
with an isotropic f for the stars (Section 3), and is also similar
to what is found in the evolving models (Sections 4 and 5). The
relaxation time plotted in Figure 3 can be written as

tr (r) ≈ 1×1010 yr

(
m̃

M�

)−1 (
r

0.2 pc

)−1

, r � 0.2 pc, (77)

where m̃ is defined in Equation (15b) and accounts for the
possibility that stellar BHs may contribute significantly to
the density of scatterers. (Note however that this expression
assumes a particular normalization for the total mass density;
this assumption will be relaxed below). In our two-component
model, m̃ is fixed by fBH:

m̃

m
= 1 − fBH + fBHm2

BH/m2

1 − fBH + fBHmBH/m
≈ 1 + 99fBH

1 + 9fBH
(78)

with m the stellar mass; the last relation assumes mBH =
10m.

Substituting Equation (77) into Equation (76) gives for the
critical radius

acrit ≈ 0.08 pc

(
m̃

mBH

)−0.4

. (79)

For m̃/mBH = 0.1(0.5)1, acrit/pc = 0.2(0.11)0.08. These are
somewhat larger than the critical radii computed assuming
a relaxed density cusp (acrit ≈ 10−2 pc) but are still small
compared with the observed core radius of ∼0.5 pc.

The event rate (Equation (73)) becomes

ṄGW ≈ 3 × 102 Gyr−1fBH

(
m̃

mBH

)−0.4
N0.1/104

ln Θ/5
, (80)

where N0.1 is the number of stars and BHs inside 0.1 pc; the den-
sity normalization assumed in making Figure 3, Equation (10),
implies N0.1 ≈ 8.6 × 103.

Setting fBH = 0.001 and m̃ ≈ 1 M� in this formula
gives an estimate of the inspiral rate for an unsegregated
model in which the BHs follow the same density profile as
the observed stars. Not surprisingly, the resultant rate is very
low, Ṅ ≈ 1 Gyr−1. If instead fBH is set to the higher values
found in the steady-state models, i.e., fBH = 0.01(0.05)0.1,
Equation (80) gives ṄGW ≈ 2(9)15 Gyr−1. These rates are still
1–2 orders of magnitude lower than those in the steady-state
models, due to the very different total densities assumed at the
relevant radii; for instance, Hopman & Alexander (2006a) find
ṄGW ≈ 300 Gyr−1 in models that have 0.01 � fBH � 0.1
at r ≈ acrit. The magnitude of the difference is at first sight
surprisingly small given that the steady-state models have total
densities at 10−3 to 10−2 pc that are orders of magnitude higher
than here. The reason is that the longer relaxation time in the
core models implies a ∼10× larger value of acrit and a ∼103×
larger volume from which inspirals can occur (e.g., Hopman &
Alexander 2005).

In the time-dependent models of Section 5, not only are total
densities smaller than in the steady-state models, but fBH also
remains well below its value in a mass-segregated cusp until late
times. Figure 18 shows BH inspiral rates computed in the same
way as above, using the densities of stars and BHs in the time-
dependent models. In these models, the BHs have initially the
same spatial distribution as the stars; as the stellar core shrinks,
the BHs “follow” it inward, increasing both their density near
the center and their relative density with respect to the stars
(Figure 16). By the time the stellar core shrinks to its observed
value of ∼0.5 pc, the BH density at r � acrit is still much lower
than in the steady-state models and ṄGW is also correspondingly
lower.

It must be emphasized that these evolutionary models are
idealized and that one could imagine other, reasonable initial
conditions that would produce rather different rates after 10 Gyr.
For instance, the distribution of BHs might have exhibited some
degree of segregation even at early times. The main point to be
made here is that in models for the NSC that contain a core,
ṄGW could plausibly be as much as 10–100 times lower than in
models based on a steady-state, mass-segregated density cusp.

6.5. Inspiral of an IMBH

IMBHs, with masses of 102–103 M�, may form in dense star
clusters through runaway mergers of massive stars (Portegies
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Figure 18. Evolution of the BH inspiral rate in the models of Figure 16. The
solid part of each curve terminates at the time when the stellar core radius is
0.5 pc. The dashed (blue) line shows the event rate computed by Hopman &
Alexander (2006a) in steady-state, mass-segregated models (cf. their Figure 2).

(A color version of this figure is available in the online journal.)

Zwart & McMillan 2002; Freitag et al. 2006b). Inspiral of an
IMBH into the Galactic center is usually modeled assuming
that the dynamical friction force originates in a stellar density
cusp with ρ ∼ r−γ , 1.5 � γ � 2 (Baumgardt et al. 2006;
Matsubayashi et al. 2008; Löckmann & Baumgardt 2008). In
these circumstances, inspiral continues until the IMBH reaches
a distance from SgrA∗ such that the enclosed stellar mass is
roughly equal to mIMBH, or 10−3 pc � r � 10−2 pc.

If there is a pre-existing core in the stellar distribution, inspiral
would stall at roughly 1/2 the core radius, or ∼0.25 pc in the
case of the Galactic center (Figure 12), independent of the IMBH
mass. Furthermore, as noted above, the orbital eccentricity of
the IMBH would not be expected to decrease strongly during
the inspiral.

Merritt et al. (2009) and Gualandris & Merritt (2009) noted
one consequence of a “stalled” IMBH on an eccentric orbit:
the IMBH very efficiently randomizes the orbits of ambient
stars, producing a nearly “thermal” distribution of orbital
eccentricities, N (<e) ∼ e2, on Myr timescales. Merritt et al.
(2009) postulated stalling radii inside ∼0.1 pc in order to
explain the observed distribution of the S-star orbits (Ghez et al.
2008; Gillessen et al. 2009). The somewhat larger stalling radii
made plausible here suggest that IMBHs might be lurking on
somewhat wider orbits, roughly the size of the two stellar disks at
0.1 pc � r � 0.5 pc (Paumard et al. 2006; Lu et al. 2009; Bartko
et al. 2009a). As shown by Levin et al. (2005) and Berukoff
& Hansen (2006), an IMBH at these radii could play a role in
truncating the stellar disks and scattering disk stars onto inclined
and eccentric orbits. Those authors assumed efficient inspiral of
the IMBHs, which limited the time over which interactions could
occur. If orbital decay stalls at distances of ∼0.2 pc, dynamical
interactions with disk stars could be prolonged indefinitely,
potentially resulting in much greater changes in the stellar orbits.

An inspiralling IMBH also ejects stars and stellar remnants
via three-body interactions with the IMBH/SMBH binary.
Some of these stars receive kicks greater than ∼103 km s−1,
allowing them to escape into the Galactic halo as HVSs (Yu
& Tremaine 2003). Simulations of this process (Levin 2006;
Baumgardt et al. 2006; Löckmann & Baumgardt 2008) also
typically assume a steep density cusp for the stars. The resulting
rate of ejection of HVSs increases rapidly with time as the
IMBH spirals in, peaking when the IMBH reaches its (small)
stalling radius of ∼0.01 pc, then falling off due to the local
depletion of stars. The stellar density at this radius is assumed
to be �108 M� pc−3 initially, roughly the density implied by
the (coreless) power-law model of Equation (12).

In the core models considered here, the rate of production
of HVSs would be much smaller than in the relaxed models
due to the lower stellar densities inside ∼1 pc. In addition, the
IMBH would stall at a larger radius of ∼0.2 pc. The density at
this radius is �106 M� pc−3, resulting in a ∼102 times smaller
rate of escapers than the peak values obtained during infall
in models with a steep cusp, i.e., 0.1–1 Myr−1. On the other
hand, at these low rates, ejections by the IMBH would hardly
affect the ambient stellar density and the production of HVSs
could continue indefinitely at an approximately constant rate.
Production of ∼10 HVSs would therefore require a span of
∼10–100 Myr; in fact the observed span of travel times for
escaping HVSs is ∼2 × 108 yr (Brown et al. 2007), roughly
consistent with this crude estimate.

6.6. Dynamical Interactions that Postulate a High Density of
Stellar Black Holes

A dense cluster of stellar-mass BHs has been invoked as a
potential solution to a number of other problems of collisional
dynamics at the Galactic center. Examples include: (1) removing
stellar envelopes via physical collisions between BHs and stars
(e.g., Dale et al. 2009), (2) randomizing the orbits of young stars
via gravitational scattering off of BHs (e.g., Perets et al. 2009),
and (3) production of HVSs through encounters with BHs (e.g.,
O’Leary & Loeb 2008). Typically nbh ∼ r−2 is assumed, as in
the relaxed, mass-segregated models, implying a mass in BHs
of ∼104 M� within one 0.1 pc. The 10–100 times lower BH
densities found in some of the evolutionary models presented
here would imply correspondingly lower rates of interaction.

We note that alternative mechanisms exist for solving many
of these outstanding problems. For instance, a single IMBH can
randomize the orbits of young stars even more efficiently than
a BH cusp (Merritt et al. 2009).

6.7. Cores and Nuclear Star Clusters

As shown above (Section 4), the relaxation time at the
Galactic center is short enough that a parsec-scale core will
shrink appreciably over the course of 10 Gyr. What is the
connection between such a hypothesized initial core, and the
cores that are observed in spheroids brighter than MB ≈ −19.5
(Côté et al. 2007)?

The classification of spheroids into cored or coreless families
is based on data with an angular resolution of ∼0.′′1, correspond-
ing to a linear size of ∼1 pc at a distance of the Virgo galaxy
cluster. Neither the current core at the center of the Milky Way,
nor the larger initial core postulated here, would be easily dis-
cernable at this distance. Instead, the Milky Way would likely
be classified as a galaxy with an NSC: its luminosity profile is
relatively flat outside ∼10 pc and rises steeply inside (Launhardt



No. 2, 2010 STARS AND REMNANTS AT THE GALACTIC CENTER 759

et al. 2002; Schödel et al. 2008; Graham & Spitler 2009). The
observed core sits atop that star cluster. NGC 205 also has both
an NSC and a core; the core radius is ∼0.′′12 ≈ 0.5 pc (Merritt
2009), making it very similar to the Milky Way core (although
it is not clear that NGC 205 contains an SMBH; Valluri et al.
2005).

Many other galaxies with NSCs could also contain undetected
cores. Bright young stars, like those at the center of the Milky
Way, M31, and other galaxies with NSCs (van der Marel et al.
2007), would tend to mask the existence of a core in the old
population, as indeed they did until very recently at the Galactic
center.

While most NSCs are too small for their internal structure to
be resolved, the half-mass relaxation time tnuc can be reliably
estimated for many, and its mean dependence on host galaxy
(not NSC) luminosity is

log10(tnuc/yr) = 9.38 − 0.434(MB + 16) (81)

(Merritt 2009) where MB is the absolute blue magnitude of the
bulge component. If we assume that galaxies with NSCs also
contain SMBHs, and that the relaxation time at rinfl is no greater
than its value at the NSC half-light radius, then relaxation times
drop below 10 Gyr at MB ≈ −17, slightly fainter than the
estimated luminosity of the Milky Way bulge, MB = −17.6
(Marconi & Hunt 2003).

These arguments suggest that cores comparable in size to
SMBH influence radii might exist in other galaxies with NSCs.
Relaxation times in the NSCs are expected to be short enough
that such cores could shrink appreciably in 10 Gyr.

7. CONCLUSIONS

1. The distribution of old stars at the Galactic center exhibits a
low-density core of radius ∼0.5 pc. The deprojected central
density is poorly constrained but is consistent with zero.

2. Assuming that the old stars trace the mass in the inner
parsec, the two-body relaxation time (for solar-mass stars)
is nowhere shorter than ∼5 Gyr. The relaxation time at
the influence radius of SgrA∗, rinfl ≈ 2.5 pc, is robustly
estimated to be 20–30 Gyr.

3. Reproducing the observed distribution of old stars with
a steady-state distribution function requires a strongly
truncated phase-space density at low energies and/or low
angular momenta. If the stellar density increases more
slowly than r−0.5 toward SgrA∗, the velocity distribution
must be anisotropic in the inner parsec, with a deficit
of eccentric orbits (“anisotropic core”). Otherwise the
distribution function can be isotropic (“isotropic core”).

4. Anisotropic-core models evolve toward isotropy on a Gyr
timescale. In the process, the core radius decreases only
slightly. The observed (small) degree of anisotropy at the
Galactic center is consistent with such models at both early
and late times.

5. On a longer timescale, gravitational encounters produce
changes in stellar orbital energies, causing a pre-existing
core to shrink. Initial core radii in the range 1–1.5 pc evolve,
after 10 Gyr, to cores of the currently observed size.

6. The dynamical friction force acting on an inspiralling
massive body falls essentially to zero at roughly 1/2 the
stellar core radius. This results in an accumulation of 10 M�
BHs in a shell just inside the stellar core. Orbital decay of
an IMBH would also be expected to stall at this radius,
rather than the much smaller stalling radius expected in a
dense stellar cusp.

7. The expected density of 10 M� BHs in the inner parsec
depends sensitively on their initial distribution and on
the elapsed time, but may be substantially lower than in
models that assume the absence of a stellar core. Rates of
gravitational-wave-driven inspirals of stellar-mass BHs are
1–2 orders of magnitude lower than predicted by steady-
state models with a mass-segregated density cusp.

Don Figer, Sungsoo Kim, Rainer Schödel, and especially
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Messineo, H. Perets, and E. Vassiliev are also acknowledged.
The author was supported by grants AST-0807910 (NSF) and
NNX07AH15G (NASA).

APPENDIX

ORBITAL DISTRIBUTIONS IN A CORE AROUND AN
SMBH

In the context of “isotropic-core” models, we derive the
distribution of orbital eccentricities that one would measure at
a point inside the core and near to the SMBH.

We assume that r � rb � rinfl, where r is the point of
observation, rb defines the truncation energy through Eb =
φ(rb), and rinfl is the SMBH influence radius.

Assuming a power law in space density outside the core, the
phase-space density is given by Equation (50),

f (E) = f0|E|γ−3/2, E > Eb

= 0, E � Eb, (A1)

where we have assumed that the gravitational potential is

φ(r) = −GM•
r

, (A2)

i.e., that r � rinfl.
The velocity space volume element is

d3v = 4πv2dv sin θdθ, (A3)

where θ is the angle between v and r and 0 � θ � π/2. Using

E = 1

2
v2 + φ(r) = −GM•

2a
, (A4a)

J = rv sin θ =
√

1 − e2
GM•√−2E

, (A4b)

this becomes

d3v = G2M2
•

2r2vr

e

a
dade, (A5)

where vr = v cos θ . The distribution of eccentricities at r is then
given by the integration over a, or

dN

de
∝ e

∫ r/(1−e)

rb/2

da

avr

f (a). (A6)

The lower limit is the semimajor axis of an orbit of energy Eb.
The upper limit on a corresponds to an orbit of eccentricity e
with periapse at r. The integral is zero unless

r

1 − e
>

rb

2
(A7)
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Figure 19. Distribution of orbital eccentricities that would be measured at a
given distance from the SMBH in an “isotropic-core” model. The density profile
outside the core is n ∝ r−1.8. Curves show N (e) at r = (0.3, 0.1, 0.03, 0.01) ×
rb; line width decreases with decreasing r. The vertical tick marks show 〈e〉 for
each curve.

or
e > 1 − 2

r

rb

. (A8)

Writing

v2
r = GM•

r

[
2 − r

a
− (1 − e2)

a

r

]
(A9)

and f (a) ∝ a3/2−γ , this becomes

dN

de
= N0e

∫ r/(1−e)

rb/2
da

a1/2−γ√
2 − r

a
− (1 − e2) a

r

, e > 1 − 2
r

rb

.

(A10)
Defining a new variable x = (1 − e) a

r
, this takes on the simpler

form

dN

de
= N0e(1 − e)3/2−0γ (1 + e)−1/2

∫ 1

x1

dx
x1−γ√

(1 − x)
(
x − 1−e

1+e

) ,

x1 = (1 − e)
rb

2r
,

1 � e � 1 − 2r

rb

. (A11)

Figure 19 shows N (e), normalized to unit total number, at
radii of

0.3, 0.1, 0.03, 0.01 (A12)

times rb assuming γ = 1.8. Also shown are the mean eccentric-
ities at each radius. N (e) approximates a delta function at e = 1
for r � rb, since the only orbits that reach into these small radii
must be very eccentric.

Proceeding as before, the distribution of orbital semimajor
axes at r is

N (a) = 23/2−γ (γ − 3/2)r−1
b

(
a

rb

)1/2−γ

, a � rb/2, (A13)

where e = 1 and r � rb have also been assumed. The mean
value of a is 〈a〉

rb

= 1

2

γ − 3/2

5/2 − γ
(A14)

and for γ = 1.8,
〈a〉
rb

= 0.214. (A15)

Setting rb ≈ 0.5 pc, the expected orbit should have a semimajor
axis of ∼0.1 pc and an eccentricity near 1.
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