Focus on Water Storage for Managing Climate Extremes and Change

Guest Editors

Vladimir Smakhtin United Nations University
Bridget Scanlon University of Texas at Austin




Image credit: IWMI.



Synthesis and Review

Scope

Water storage may not be new, but increasing climate and water resources variability (including extremes like droughts and floods), continuous population growth, controversy surrounding development of traditional storage, increasing sensitivity to environmental issues globally, and general understanding of the need to find ways for buffering variability in the future for food security reasons keep the issues of water storage development firmly on the development agenda. This is despite the fact that storage-related issues may vary between developed and developing countries. Projected increases in magnitude and frequency of water-related extremes with climate change and reduced natural storage associated with wetlands, groundwater floodplains, glaciers and snow amplify these problems. Water storage, in its various forms, provides a mechanism for dealing with water resources variability. If planned and managed correctly, it could increase water and energy security, food production, and overall adaptive capacity of nations and regions. Various water storage options should be considered, such as rainwater harvesting, soil water storage, ponds, reservoirs, and groundwater banks to store water from times of excess for potable water use, electricity generation, and irrigation during droughts.

The focus issue calls for papers on the following topics related to water storage and climate:

  • Built and natural storage options to increase reliability of water supplies, enhance drought resilience, mitigate storage losses from snowmelt, and improve storage management.
  • Future of large dams and trends in the water storage sector overall-analysed.
  • Cost/benefit analyses of different storage options and related economic aspects, including financing.
  • Governance aspects of managing various storage options.
  • Water availability for storage, including unappropriated flood flows, environmental flow issues.
  • Socioeconomic factors, related to access to water and equity and fairness issues will also be assessed; storage and energy issues will also be examined

The focus issue should synthesize new research, current trends and thinking about water storage and provide valuable information to enhance storage options in the future for increased water, energy, and food security within the context of increasing water resources variability and scarcity worldwide.

The list below forms the complete collection.

Research

Open access
A global water supply reservoir yield model with uncertainty analysis

Faith W Kuria and Richard M Vogel 2014 Environ. Res. Lett. 9 095006

Understanding the reliability and uncertainty associated with water supply yields derived from surface water reservoirs is central for planning purposes. Using a global dataset of monthly river discharge, we introduce a generalized model for estimating the mean and variance of water supply yield, Y, expected from a reservoir for a prespecified reliability, R, and storage capacity, S assuming a flow record of length n. The generalized storage–reliability–yield (SRY) relationships reported here have numerous water resource applications ranging from preliminary water supply investigations, to economic and climate change impact assessments. An example indicates how our generalized SRY relationship can be combined with a hydroclimatic model to determine the impact of climate change on surface reservoir water supply yields. We also document that the variability of estimates of water supply yield are invariant to characteristics of the reservoir system, including its storage capacity and reliability. Standardized metrics of the variability of water supply yields are shown to depend only on the sample size of the inflows and the statistical characteristics of the inflow series.

Open access
Generalized storage–reliability–yield relationships for rainwater harvesting systems

L S Hanson and R M Vogel 2014 Environ. Res. Lett. 9 075007

Sizing storage for rainwater harvesting (RWH) systems is often a difficult design consideration, as the system must be designed specifically for the local rainfall pattern. We introduce a generally applicable method for estimating the required storage by using regional regression equations to account for climatic differences in the behavior of RWH systems across the entire continental United States. A series of simulations for 231 locations with continuous daily precipitation records enable the development of storage–reliability–yield (SRY) relations at four useful reliabilities, 0.8, 0.9, 0.95, and 0.98. Multivariate, log-linear regression results in storage equations that include demand, collection area and local precipitation statistics. The continental regression equations demonstrated excellent goodness-of-fit (R2 0.96–0.99) using only two precipitation parameters, and fits improved when three geographic regions with more homogeneous rainfall characteristics were considered. The SRY models can be used to obtain a preliminary estimate of how large to build a storage tank almost anywhere in the United States based on desired yield and reliability, collection area, and local rainfall statistics. Our methodology could be extended to other regions of world, and the equations presented herein could be used to investigate how RWH systems would respond to changes in climatic variability. The resulting model may also prove useful in regional planning studies to evaluate the net benefits which result from the broad use of RWH to meet water supply requirements. We outline numerous other possible extensions to our work, which when taken together, illustrate the value of our initial generalized SRY model for RWH systems.

Open access
Water management during climate change using aquifer storage and recovery of stormwater in a dunefield in western Saudi Arabia

O Lopez et al 2014 Environ. Res. Lett. 9 075008

An average of less than 50 mm yr−1 of rainfall occurs in the hyperarid region of central Western Saudi Arabia. Climate change is projected to create greater variation in rainfall accumulation with more intense rainfall and flood events and longer duration droughts. To manage climate change and variability in ephemeral stream basins, dams are being constructed across wadi channels to capture stormwater, but a large percentage of this stored water is lost to evaporation. A dam/reservoir system located in Wadi Al Murwani in Western Saudi Arabia was recently constructed and is expected to contain a maximum stored water volume of 150 million m3. A hydrologic assessment of a dunefield lying 45 km downstream was conducted to evaluate its potential use for aquifer storage and recovery of the reservoir water. A 110 m elevation difference between the base of the dam and the upper level of the dunefield occurs, allowing conveyance of the water from the reservoir to the dunefield storage site by gravity feed without pumping, making the recharge system extremely energy efficient. Aquifer storage and recovery coupled with dams would allow water management during extreme droughts and climate change and has widespread potential application in arid regions.

Open access
The costs of uncoordinated infrastructure management in multi-reservoir river basins

Marc Jeuland et al 2014 Environ. Res. Lett. 9 105006

Though there are surprisingly few estimates of the economic benefits of coordinated infrastructure development and operations in international river basins, there is a widespread belief that improved cooperation is beneficial for managing water scarcity and variability. Hydro-economic optimization models are commonly-used for identifying efficient allocation of water across time and space, but such models typically assume full coordination. In the real world, investment and operational decisions for specific projects are often made without full consideration of potential downstream impacts. This paper describes a tractable methodology for evaluating the economic benefits of infrastructure coordination. We demonstrate its application over a range of water availability scenarios in a catchment of the Mekong located in Lao PDR, the Nam Ngum River Basin. Results from this basin suggest that coordination improves system net benefits from irrigation and hydropower by approximately 3–12% (or US$12-53 million/yr) assuming moderate levels of flood control, and that the magnitude of coordination benefits generally increases with the level of water availability and with inflow variability. Similar analyses would be useful for developing a systematic understanding of the factors that increase the costs of non-cooperation in river basin systems worldwide, and would likely help to improve targeting of efforts to stimulate complicated negotiations over water resources.

Open access
An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales

Günther Grill et al 2015 Environ. Res. Lett. 10 015001

The global number of dam constructions has increased dramatically over the past six decades and is forecast to continue to rise, particularly in less industrialized regions. Identifying development pathways that can deliver the benefits of new infrastructure while also maintaining healthy and productive river systems is a great challenge that requires understanding the multifaceted impacts of dams at a range of scales. New approaches and advanced methodologies are needed to improve predictions of how future dam construction will affect biodiversity, ecosystem functioning, and fluvial geomorphology worldwide, helping to frame a global strategy to achieve sustainable dam development. Here, we respond to this need by applying a graph-based river routing model to simultaneously assess flow regulation and fragmentation by dams at multiple scales using data at high spatial resolution. We calculated the cumulative impact of a set of 6374 large existing dams and 3377 planned or proposed dams on river connectivity and river flow at basin and subbasin scales by fusing two novel indicators to create a holistic dam impact matrix for the period 1930–2030. Static network descriptors such as basin area or channel length are of limited use in hierarchically nested and dynamic river systems, so we developed the river fragmentation index and the river regulation index, which are based on river volume. These indicators are less sensitive to the effects of network configuration, offering increased comparability among studies with disparate hydrographies as well as across scales. Our results indicate that, on a global basis, 48% of river volume is moderately to severely impacted by either flow regulation, fragmentation, or both. Assuming completion of all dams planned and under construction in our future scenario, this number would nearly double to 93%, largely due to major dam construction in the Amazon Basin. We provide evidence for the importance of considering small to medium sized dams and for the need to include waterfalls to establish a baseline of natural fragmentation. Our versatile framework can serve as a component of river fragmentation and connectivity assessments; as a standardized, easily replicable monitoring framework at global and basin scales; and as part of regional dam planning and management strategies.

Open access
Global surveys of reservoirs and lakes from satellites and regional application to the Syrdarya river basin

Jean-François Crétaux et al 2015 Environ. Res. Lett. 10 015002

Large reservoirs along rivers regulate downstream flows to generate hydropower but may also store water for irrigation and urban sectors. Reservoir management therefore becomes critical, particularly for transboundary basins, where coordination between riparian countries is needed. Reservoir management is even more important in semiarid regions where downstream water users may be totally reliant on upstream reservoir releases. If the water resources are shared between upstream and downstream countries, potentially opposite interests arise as is the case in the Syrdarya river in Central Asia. In this case study, remote sensing data (radar altimetry and optical imagery) are used to highlight the potential of satellite data to monitor water resources: water height, areal extent and storage variations. New results from 20 years of monitoring using satellites over the Syrdarya basin are presented. The accuracy of satellite data is 0.6 km3 using a combination of MODIS data and satellite altimetry, and only 0.2 km3 with Landsat images representing 2–4% of average annual reservoir volume variations in the reservoirs in the Syrdarya basin. With future missions such as Sentinel-3A (S3A), Sentinel-3B (S3B) and surface water and ocean topography (SWOT), significant improvement is expected. The SWOT mission's main payload (a radar interferometer in Ka band) will furthermore provide 2D maps of water height, reservoirs, lakes, rivers and floodplains, with a temporal resolution of 21 days. At the global scale, the SWOT mission will cover reservoirs with areal extents greater than 250  ×  250 m with 20 cm accuracy.

Open access
The role of storage capacity in coping with intra- and inter-annual water variability in large river basins

Franziska Gaupp et al 2015 Environ. Res. Lett. 10 125001

Societies and economies are challenged by variable water supplies. Water storage infrastructure, on a range of scales, can help to mitigate hydrological variability. This study uses a water balance model to investigate how storage capacity can improve water security in the world's 403 most important river basins, by substituting water from wet months to dry months. We construct a new water balance model for 676 'basin-country units' (BCUs), which simulates runoff, water use (from surface and groundwater), evaporation and trans-boundary discharges. When hydrological variability and net withdrawals are taken into account, along with existing storage capacity, we find risks of water shortages in the Indian subcontinent, Northern China, Spain, the West of the US, Australia and several basins in Africa. Dividing basins into BCUs enabled assessment of upstream dependency in transboundary rivers. Including Environmental Water Requirements into the model, we find that in many basins in India, Northern China, South Africa, the US West Coast, the East of Brazil, Spain and in the Murray basin in Australia human water demand leads to over-abstraction of water resources important to the ecosystem. Then, a Sequent Peak Analysis is conducted to estimate how much storage would be needed to satisfy human water demand whilst not jeopardizing environmental flows. The results are consistent with the water balance model in that basins in India, Northern China, Western Australia, Spain, the US West Coast and several basins in Africa would need more storage to mitigate water supply variability and to meet water demand.

Open access
Screening reservoir systems by considering the efficient trade-offs—informing infrastructure investment decisions on the Blue Nile

Robel T Geressu and Julien J Harou 2015 Environ. Res. Lett. 10 125008

Multi-reservoir system planners should consider how new dams impact downstream reservoirs and the potential contribution of each component to coordinated management. We propose an optimized multi-criteria screening approach to identify best performing designs, i.e., the selection, size and operating rules of new reservoirs within multi-reservoir systems. Reservoir release operating rules and storage sizes are optimized concurrently for each separate infrastructure design under consideration. Outputs reveal system trade-offs using multi-dimensional scatter plots where each point represents an approximately Pareto-optimal design. The method is applied to proposed Blue Nile River reservoirs in Ethiopia, where trade-offs between total and firm energy output, aggregate storage and downstream irrigation and energy provision for the best performing designs are evaluated. This proof-of concept study shows that recommended Blue Nile system designs would depend on whether monthly firm energy or annual energy is prioritized. 39 TWh/yr of energy potential is available from the proposed Blue Nile reservoirs. The results show that depending on the amount of energy deemed sufficient, the current maximum capacities of the planned reservoirs could be larger than they need to be. The method can also be used to inform which of the proposed reservoir type and their storage sizes would allow for the highest downstream benefits to Sudan in different objectives of upstream operating objectives (i.e., operated to maximize either average annual energy or firm energy). The proposed approach identifies the most promising system designs, reveals how they imply different trade-offs between metrics of system performance, and helps system planners asses the sensitivity of overall performance to the design parameters of component reservoirs.

Open access
Large storage operations under climate change: expanding uncertainties and evolving tradeoffs

Matteo Giuliani et al 2016 Environ. Res. Lett. 11 035009

In a changing climate and society, large storage systems can play a key role for securing water, energy, and food, and rebalancing their cross-dependencies. In this letter, we study the role of large storage operations as flexible means of adaptation to climate change. In particular, we explore the impacts of different climate projections for different future time horizons on the multi-purpose operations of the existing system of large dams in the Red River basin (China–Laos–Vietnam). We identify the main vulnerabilities of current system operations, understand the risk of failure across sectors by exploring the evolution of the system tradeoffs, quantify how the uncertainty associated to climate scenarios is expanded by the storage operations, and assess the expected costs if no adaptation is implemented. Results show that, depending on the climate scenario and the time horizon considered, the existing operations are predicted to change on average from -7 to +5% in hydropower production, +35 to +520% in flood damages, and +15 to +160% in water supply deficit. These negative impacts can be partially mitigated by adapting the existing operations to future climate, reducing the loss of hydropower to 5%, potentially saving around 34.4 million US$ year-1 at the national scale. Since the Red River is paradigmatic of many river basins across south east Asia, where new large dams are under construction or are planned to support fast growing economies, our results can support policy makers in prioritizing responses and adaptation strategies to the changing climate.

Open access
Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona

Bridget R Scanlon et al 2016 Environ. Res. Lett. 11 035013

Projected longer-term droughts and intense floods underscore the need to store more water to manage climate extremes. Here we show how depleted aquifers have been used to store water by substituting surface water use for groundwater pumpage (conjunctive use, CU) or recharging groundwater with surface water (managed aquifer recharge, MAR). Unique multi-decadal monitoring from thousands of wells and regional modeling datasets for the California Central Valley and central Arizona were used to assess CU and MAR. In addition to natural reservoir capacity related to deep water tables, historical groundwater depletion further expanded aquifer storage by ∼44 km3 in the Central Valley and by ∼100 km3 in Arizona, similar to or exceeding current surface reservoir capacity by up to three times. Local river water and imported surface water, transported through 100s of km of canals, is substituted for groundwater (≤15 km3 yr−1, CU) or is used to recharge groundwater (MAR, ≤1.5 km3 yr−1) during wet years shifting to mostly groundwater pumpage during droughts. In the Central Valley, CU and MAR locally reversed historically declining water-level trends, which contrasts with simulated net regional groundwater depletion. In Arizona, CU and MAR also reversed historically declining groundwater level trends in active management areas. These rising trends contrast with current declining trends in irrigated areas that lack access to surface water to support CU or MAR. Use of depleted aquifers as reservoirs could expand with winter flood irrigation or capturing flood discharges to the Pacific (0–1.6 km3 yr−1, 2000–2014) with additional infrastructure in California. Because flexibility and expanded portfolio options translate to resilience, CU and MAR enhance drought resilience through multi-year storage, complementing shorter term surface reservoir storage, and facilitating water markets.