Focus on the Physics of Biofilms

Figure
Figure. A biofilm in a porous medium showing preferential channelization. Reproduced with permission from Durham et al 2012 Phys. Fluids 24 091107. Copyright 2012, AIP Publishing LLC.

Sigolene Lecuyer, Institut Fourier CNRS, Université Grenoble, France
Roberto Rusconi, Massachusetts Institute of Technology, USA
Roman Stocker, Massachusetts Institute of Technology, USA

Open access
Focus on the physics of biofilms

Sigolene Lecuyer et al 2015 New J. Phys. 17 030401

Bacteria are the smallest and most abundant form of life. They have traditionally been considered as primarily planktonic organisms, swimming or floating in a liquid medium, and this view has shaped many of the approaches to microbial processes, including for example the design of most antibiotics. However, over the last few decades it has become clear that many bacteria often adopt a sessile, surface-associated lifestyle, forming complex multicellular communities called biofilms. Bacterial biofilms are found in a vast range of environments and have major consequences on human health and industrial processes, from biofouling of surfaces to the spread of diseases. Although the study of biofilms has been biologists' territory for a long time, a multitude of phenomena in the formation and development of biofilms hinges on physical processes. We are pleased to present a collection of research papers that discuss some of the latest developments in many of the areas to which physicists can contribute a deeper understanding of biofilms, both experimentally and theoretically. The topics covered range from the influence of physical environmental parameters on cell attachment and subsequent biofilm growth, to the use of local probes and imaging techniques to investigate biofilm structure, to the development of biofilms in complex environments and the modeling of colony morphogenesis. The results presented contribute to addressing some of the major challenges in microbiology today, including the prevention of surface contamination, the optimization of biofilm disruption methods and the effectiveness of antibiotic treatments.

Biofilms—surface-associated microbial communities encased in a matrix of extracellular polymeric substances—are one of the most studied forms of life in biology, owing to their successful adaptation to a vast multitude of environments. Their implication in disparate infections, together with their striking resistance to antimicrobial treatments, call for a renewed effort to understand the fundamentals of biofilm formation. The last few years have witnessed an unprecedented injection of physical insights into the study of biofilms, a direly needed contribution to complement the wealth of molecular and physiological data. The role of hydrodynamic forces, physical stresses, environmental signals, and nutrient and antibiotic transport on biofilm development promises to considerably augment our ability to extract the recipe of biofilms' success and, ultimately, combat them more effectively to prevent damage, deterioration and disease.

This focus issue of New Journal of Physics, devoted to the 'Physics of Biofilms', aims to highlight this research field by collecting selected contributions from leading authors in the field that tackle either physical processes or the coupling of physical and biological processes underpinning biofilm formation. We hope that, by demonstrating the richness of the physics involved in biofilm formation and the importance of understanding them, this focus issue will serve to attract a broad range of researchers from (but not limited to) the fields of soft condensed matter, complex fluids, polymer physics and statistical mechanics, to augment today's interdisciplinary efforts towards understanding and controlling the formation of biofilms.

The articles listed below form the complete collection.

Open access
Single particle tracking reveals spatial and dynamic organization of the Escherichia coli biofilm matrix

Alona Birjiniuk et al 2014 New J. Phys. 16 085014

Biofilms are communities of surface-adherent bacteria surrounded by secreted polymers known as the extracellular polymeric substance. Biofilms are harmful in many industries, and thus it is of great interest to understand their mechanical properties and structure to determine ways to destabilize them. By performing single particle tracking with beads of varying surface functionalization it was found that charge interactions play a key role in mediating mobility within biofilms. With a combination of single particle tracking and microrheological concepts, it was found that Escherichia coli biofilms display height dependent charge density that evolves over time. Statistical analyses of bead trajectories and confocal microscopy showed inter-connecting micron scale channels that penetrate throughout the biofilm, which may be important for nutrient transfer through the system. This methodology provides significant insight into a particular biofilm system and can be applied to many others to provide comparisons of biofilm structure. The elucidation of structure provides evidence for the permeability of biofilms to microscale objects, and the ability of a biofilm to mature and change properties over time.

Open access
Filaments in curved streamlines: rapid formation of Staphylococcus aureus biofilm streamers

Minyoung Kevin Kim et al 2014 New J. Phys. 16 065024

Biofilms are surface-associated conglomerates of bacteria that are highly resistant to antibiotics. These bacterial communities can cause chronic infections in humans by colonizing, for example, medical implants, heart valves, or lungs. Staphylococcus aureus, a notorious human pathogen, causes some of the most common biofilm-related infections. Despite the clinical importance of S. aureus biofilms, it remains mostly unknown how physical effects, in particular flow, and surface structure influence biofilm dynamics. Here we use model microfluidic systems to investigate how environmental factors, such as surface geometry, surface chemistry, and fluid flow affect biofilm development of S. aureus. We discovered that S. aureus rapidly forms flow-induced, filamentous biofilm streamers, and furthermore if surfaces are coated with human blood plasma, streamers appear within minutes and clog the channels more rapidly than if the channels are uncoated. To understand how biofilm streamer filaments reorient in flows with curved streamlines to bridge the distances between corners, we developed a mathematical model based on resistive force theory of slender filaments. Understanding physical aspects of biofilm formation of S. aureus may lead to new approaches for interrupting biofilm formation of this pathogen.

Open access
Critical occlusion via biofilm induced calcite precipitation in porous media

Tianyu Zhang and Isaac Klapper 2014 New J. Phys. 16 055009

A model for biofilm induced calcite precipitation with pressure driven flow is presented at the scale of a single pore within a porous medium. The system, an extension of previous work (Zhang and Klapper 2010 Water Sci. Technol. 61 2957–64, Zhang and Klapper 2011 Int. J. Non-Linear Mech. 46 657–66), is based on a mixture model including biomaterial, mineral, and water with dissolved components. Computational results suggest the possibility of critical occlusion in the sense that there is a distinguished trans-pore pressure head such that for pressure drops below this level, pore clogging occurs relatively quickly while for pressure drops above, clogging occurs after much longer times if at all. Beyond its relevance to engineered biofilm applications, this phenomenon is suggestive of the subtleties of embedding simple biofilm models in larger media.

Open access
Physics of biofilms: the initial stages of biofilm formation and dynamics

Guillaume Lambert et al 2014 New J. Phys. 16 045005

One of the physiological responses of bacteria to external stress is to assemble into a biofilm. The formation of a biofilm greatly increases a bacterial population's resistance to a hostile environment by shielding cells, for example, from antibiotics. In this paper, we describe the conditions necessary for the emergence of biofilms in natural environments and relate them to the emergence of biofilm formation inside microfluidic devices. We show that competing species of Escherichia coli bacteria form biofilms to spatially segregate themselves in response to starvation stress, and use in situ methods to characterize the physical properties of the biofilms. Finally, we develop a microfluidic platform to study the inter-species interactions and show how biofilm-mediated genetic interactions can improve a species' resistance to external stress.

Open access
Nutrient depletion in Bacillus subtilis biofilms triggers matrix production

Wenbo Zhang et al 2014 New J. Phys. 16 015028

Many types of bacteria form colonies that grow into physically robust and strongly adhesive aggregates known as biofilms. A distinguishing characteristic of bacterial biofilms is an extracellular polymeric substance (EPS) matrix that encases the cells and provides physical integrity to the colony. The EPS matrix consists of a large amount of polysaccharide, as well as protein filaments, DNA and degraded cellular materials. The genetic pathways that control the transformation of a colony into a biofilm have been widely studied, and yield a spatiotemporal heterogeneity in EPS production. Spatial gradients in metabolites parallel this heterogeneity in EPS, but nutrient concentration as an underlying physiological initiator of EPS production has not been explored. Here, we study the role of nutrient depletion in EPS production in Bacillus subtilis biofilms. By monitoring simultaneously biofilm size and matrix production, we find that EPS production increases at a critical colony thickness that depends on the initial amount of carbon sources in the medium. Through studies of individual cells in liquid culture we find that EPS production can be triggered at the single-cell level by reducing nutrient concentration. To connect the single-cell assays with conditions in the biofilm, we calculate carbon concentration with a model for the reaction and diffusion of nutrients in the biofilm. This model predicts the relationship between the initial concentration of carbon and the thickness of the colony at the point of internal nutrient deprivation.

Open access
The ecological basis of morphogenesis: branching patterns in swarming colonies of bacteria

Pan Deng et al 2014 New J. Phys. 16 015006

Understanding how large-scale shapes in tissues, organs and bacterial colonies emerge from local interactions among cells and how these shapes remain stable over time are two fundamental problems in biology. Here we investigate branching morphogenesis in an experimental model system, swarming colonies of the bacterium Pseudomonas aeruginosa. We combine experiments and computer simulation to show that a simple ecological model of population dispersal can describe the emergence of branching patterns. In our system, morphogenesis depends on two counteracting processes that act on different length-scales: (i) colony expansion, which increases the likelihood of colonizing a patch at a close distance and (ii) colony repulsion, which decreases the colonization likelihood over a longer distance. The two processes are included in a kernel-based mathematical model using an integro-differential approach borrowed from ecological theory. Computer simulations show that the model can indeed reproduce branching, but only for a narrow range of parameter values, suggesting that P. aeruginosa has a fine-tuned physiology for branching. Simulations further show that hyperswarming, a process where highly dispersive mutants reproducibly arise within the colony and disrupt branching patterns, can be interpreted as a change in the spatial kernel.

Open access
Bacterial biofilm mechanical properties persist upon antibiotic treatment and survive cell death

K Zrelli et al 2013 New J. Phys. 15 125026

Bacteria living on surfaces form heterogeneous three-dimensional consortia known as biofilms, where they exhibit many specific properties one of which is an increased tolerance to antibiotics. Biofilms are maintained by a polymeric network and display physical properties similar to that of complex fluids. In this work, we address the question of the impact of antibiotic treatment on the physical properties of biofilms based on recently developed tools enabling the in situ mapping of biofilm local mechanical properties at the micron scale. This approach takes into account the material heterogeneity and reveals the spatial distribution of all the small changes that may occur in the structure. With an Escherichia coli biofilm, we demonstrate using in situ fluorescent labeling that the two antibiotics ofloxacin and ticarcillin—targeting DNA replication and membrane assembly, respectively—induced no detectable alteration of the biofilm mechanical properties while they killed the vast majority of the cells. In parallel, we show that a proteolytic enzyme that cleaves extracellular proteins into short peptides, but does not alter bacterial viability in the biofilm, clearly affects the mechanical properties of the biofilm structure, inducing a significant increase of the material compliance. We conclude that conventional biofilm control strategy relying on the use of biocides targeting cells is missing a key target since biofilm structural integrity is preserved. This is expected to efficiently promote biofilm resilience, especially in the presence of persister cells. In contrast, the targeting of polymer network cross-links—among which extracellular proteins emerge as major players—offers a promising route for the development of rational multi-target strategies to fight against biofilms.

Open access
Bacterial filamentation accelerates colonization of adhesive spots embedded in biopassive surfaces

Jens Möller et al 2013 New J. Phys. 15 125016

Sessile bacteria adhere to engineered surfaces and host tissues and pose a substantial clinical and economical risk when growing into biofilms. Most engineered and biological interfaces are of chemically heterogeneous nature and provide adhesive islands for bacterial attachment and growth. To mimic either defects in a surface coating of biomedical implants or heterogeneities within mucosal layers (Peyer's patches), we embedded micrometre-sized adhesive islands in a poly(ethylene glycol) biopassive background. We show experimentally and computationally that filamentation of Escherichia coli can significantly accelerate the bacterial surface colonization under physiological flow conditions. Filamentation can thus provide an advantage to a bacterial population to bridge non-adhesive distances exceeding 5 μm. Bacterial filamentation, caused by blocking of bacterial division, is common among bacterial species and can be triggered by environmental conditions or antibiotic treatment. While great awareness exists that the build-up of antibiotic resistance serves as intrinsic survival strategy, we show here that antibiotic treatment can actually promote surface colonization by triggering filamentation, which in turn prevents daughter cells from being washed away. Our combined microfabrication and computational approaches provide quantitative insights into mechanisms that enable biofouling of biopassive surfaces with embedded adhesive spots, even for spot distances that are multiples of the bacterial length.

Open access
Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces

Alexander K Epstein et al 2013 New J. Phys. 15 095018

Most bacteria live in multicellular communities known as biofilms that are adherent to surfaces in our environment, from sea beds to plumbing systems. Biofilms are often associated with clinical infections, nosocomial deaths and industrial damage such as bio-corrosion and clogging of pipes. As mature biofilms are extremely challenging to eradicate once formed, prevention is advantageous over treatment. However, conventional surface chemistry strategies are either generally transient, due to chemical masking, or toxic, as in the case of leaching marine antifouling paints. Inspired by the nonfouling skins of echinoderms and other marine organisms, which possess highly dynamic surface structures that mechanically frustrate bio-attachment, we have developed and tested a synthetic platform based on both uniaxial mechanical strain and buckling-induced elastomer microtopography. Bacterial biofilm attachment to the dynamic substrates was studied under an array of parameters, including strain amplitude and timescale (1–100 mm s−1), surface wrinkle length scale, bacterial species and cell geometry, and growth time. The optimal conditions for achieving up to  ∼ 80% Pseudomonas aeruginosa biofilm reduction after 24 h growth and  ∼ 60% reduction after 48 h were combinatorially elucidated to occur at 20% strain amplitude, a timescale of less than  ∼ 5 min between strain cycles and a topography length scale corresponding to the cell dimension of  ∼ 1 μm. Divergent effects on the attachment of P. aeruginosa, Staphylococcus aureus and Escherichia coli biofilms showed that the dynamic substrate also provides a new means of species-specific biofilm inhibition, or inversely, selection for a desired type of bacteria, without reliance on any toxic or transient surface chemical treatments.