This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Paper The following article is Open access

Synthesis and Characterization of Hybrid CF/MWCNTS/Epoxy Resin Composite System

, , , and

Published under licence by IOP Publishing Ltd
, , Citation Hany Fouda et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 220 012021 DOI 10.1088/1757-899X/220/1/012021

1757-899X/220/1/012021

Abstract

In the present investigation, two methods were used for addition multiwall carbon nanotubes (MWCNTS) into carbon fiber (CF)/epoxy resin composite system. The mechanical properties of the prepared samples were compared to show the best method for addition of MWCNTS from point of view of mechanical properties. The introduction of carbon nanotubes (CNTs) into fiber reinforced polymer composites has been achieved mainly via two routes: mixing CNTs entirely throughout the matrix (matrix modification) or attaching CNTs onto reinforcing fibers (interface modification). In all previous references the addition of CNTs occur through one route from the two routes but in this research, we introduced MWCNTS into CF/epoxy resin composite through the two routes at the same time. Three CF composite samples were prepared CF/epoxy resin composite (C1), CF/1wt% MWCNTS /epoxy resin composite (C2) in which MWCNTS added via one route (epoxy resin system) and the third sample was CF/1wt% MWCNTS / epoxy resin composite (C3) in which MWCNTS added via two routes (epoxy resin and CF fabric). The result shows that the mechanical properties of C3>C2>C1, for example, the flexural strength of C3 higher than C2 by 19% and C2 higher than C1 by 51% respectively. This is because addition MWCNTS via two routes increase the ability of good mixing of CNTS with epoxy resin and good dispersion of CNTs into the CF fabric surface and this leads to improve the interface bonding between the CF and epoxy so improve the mechanical properties.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1757-899X/220/1/012021