This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Paper The following article is Open access

The effects of different bending techniques on corrosion resistance and nickel release of superelastic orthodontic NiTi archwires

, , and

Published under licence by IOP Publishing Ltd
, , Citation N Rujeerapaiboon et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 191 012038 DOI 10.1088/1757-899X/191/1/012038

1757-899X/191/1/012038

Abstract

Bending superelastic NiTi archwire is indicated in some stages of orthodontic treatment. The difference in bending techniques may affect corrosion resistance and nickel release. The purpose of this study was to investigate the corrosion resistance and nickel release after different bending techniques of NiTi archwires. Preform-curved NiTi archwires were used as a template for bending and used as a control group. 0.016×0.022 inches superelastic NiTi archwires were bent to curve-shape by cold bending, DERHT bending and cold bending then DERHT technique. Potentiodynamic polarization technique was used to measure corrosion behavior of the wires. Corrosion potential (ECORR), corrosion density (ICORR), and breakdown potential of each wire were determined. In addition, the amount of nickel release in the solution after the test was inductively coupled plasma mass spectrometry (ICP-MS). Although, the results showed that ECORR and ICORR were not statistically significantly different among all groups, the difference in breakdown potential and nickel release were observed. Similar corrosion resistance and nickel release were presented in the preform-curved NiTi archwires, cold bending, and cold bending then DERHT group. The DERHT bending group showed the lowest breakdown potential and highest nickel release.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1757-899X/191/1/012038