This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

IGS/BIPM pilot project: GPS carrier phase for time/frequency transfer and timescale formation

and

Published 5 June 2003 Published under licence by IOP Publishing Ltd
, , Citation J Ray and K Senior 2003 Metrologia 40 S270 DOI 10.1088/0026-1394/40/3/307

This article is corrected by 2003 Metrologia 40 205

0026-1394/40/3/S270

Abstract

The development within the International GPS Service (IGS) of a suite of clock products, for both satellites and tracking receivers, offers some experiences which mirror the operations of the Bureau International des Poids et Mesures (BIPM) in its formation of TAI/UTC but some aspects differ markedly. The IGS relies exclusively on the carrier phase-based geodetic technique whereas BIPM time/frequency transfers use only common-view and two-way satellite (TWSTFT) methods. The carrier-phase approach has the potential of very high precision but suitable instrumental calibration procedures are only in the initial phases of deployment; the current BIPM techniques are more mature and widely used among timing labs, but are either less precise (common-view) or much more expensive (TWSTFT). In serving its geodetic users, the essential requirement for IGS clock products is that they be fully self-consistent in relative terms and also fully consistent with all other IGS products, especially the satellite orbits, in order to permit an isolated user to apply them with accuracy of a few centimetres. While there is no other strong requirement for the IGS timescale except to be reasonably close to broadcast GPS time, it is nonetheless very desirable for the IGS clock products to possess additional properties, such as being highly stable and being accurately relatable to UTC. These qualities enhance the value of IGS clock products for applications other than pure geodesy, especially for timing operations. The jointly sponsored `IGS/BIPM Pilot Project to Study Accurate Time and Frequency Comparisons using GPS Phase and Code Measurements' is developing operational strategies to exploit geodetic GPS methods for improved global time/frequency comparisons to the mutual benefit of both organizations. While helping the IGS to refine its clock products and link them to UTC, this collaboration will also provide new time transfer results for the BIPM that may eventually improve the formation of TAI and allow meaningful comparisons of new cold atom clocks. Thus far, geodetic receivers have been installed at many timing labs, a new internally realized IGS timescale has been produced using a weighted ensemble algorithm, and instrumental calibration procedures developed. Formulating a robust frequency ensemble from a globally distributed network of clocks presents unique challenges compared with intra-laboratory timescales. We have used these products to make a detailed study of the observed time transfer performance for about 30 IGS stations equipped with H-maser frequency standards. The results reveal a large dispersion in quality which can often be related to differences in local station factors. The main elements of the Project's original plan are now largely completed or in progress. In major ways, the experiences of this joint effort can serve as a useful model for future distributed timing systems, for example, Galileo and other GNSS operations.

Export citation and abstract BibTeX RIS