Table of contents

029

and

In recent work we physically interpreted a special gravastar solution characterized by a zero Schwarzschild mass. In fact, in that case, none gravastar was formed and the shell collapsed without forming an event horizon, originating what we called a massive non-gravitational object. This object has two components of non zero mass but the exterior spacetime is de Sitter. One of the component is a massive thin shell and the other one is de Sitter spacetime inside. The total mass of this object is zero Schwarzschild mass, which characterizes an exterior vacuum spacetime. Here, we extend this study to the case where we have a charged shell. Now, the exterior is a Reissner-Nordström spacetime and, depending on the parameter ω = 1−γ of the equation of state of the shell, and the charge, a gravastar structure can be formed. We have found that the presence of the charge contributes to the stability of the gravastar, if the charge is greater than a critical value. Otherwise, a massive non-gravitational object is formed for small charges.

028

and

We investigate the new agegraphic dark energy scenario in a universe governed by Hořava-Lifshitz gravity. We consider both the detailed and non-detailed balanced version of the theory, we impose an arbitrary curvature, and we allow for an interaction between the matter and dark energy sectors. Extracting the differential equation for the evolution of the dark energy density parameter and performing an expansion of the dark energy equation-of-state parameter, we calculate its present and its low-redshift value as functions of the dark energy and curvature density parameters at present, of the Hořava-Lifshitz running parameter λ, of the new agegraphic dark energy parameter n, and of the interaction coupling b. We find that w0 = −0.82+0.08−0.08 and w1 = 0.08+0.09−0.07. Although this analysis indicates that the scenario can be compatible with observations, it does not enlighten the discussion about the possible conceptual and theoretical problems of Hořava-Lifshitz gravity.

027

and

We explore the possibility that the dark matter and dark energy are mimicked by a single fluid or by a single k-essence-like scalar field. The so called Chaplygin gas unified dark matter models can reproduce the observed matter power spectrum by adding a baryon component. It has been argued that the evolution of the baryon fluctuations is particularly favoured for the ``superluminal'' case where the sound speed of the Chaplygin gas exceeds the speed of light at late times, as well as for the models with the negligibly small sound speed. In this note we compute the integrated Sachs-Wolfe signal in the Chaplygin gas models, focusing on the superluminal case which has not been investigated before because of the premature understanding of causality. It is shown that the superluminal model leads to large enhancement of the integrated Sachs-Wolfe effect, which is inconsistent with the CMB measurements.

026

, , and

The first stars to form in the Universe may be powered by the annihilation of weakly interacting dark matter particles. These so-called dark stars, if observed, may give us a clue about the nature of dark matter. Here we examine which models for particle dark matter satisfy the conditions for the formation of dark stars. We find that in general models with thermal dark matter lead to the formation of dark stars, with few notable exceptions: heavy neutralinos in the presence of coannihilations, annihilations that are resonant at dark matter freeze-out but not in dark stars, some models of neutrinophilic dark matter annihilating into neutrinos only and lighter than about 50 GeV. In particular, we find that a thermal DM candidate in standard Cosmology always forms a dark star as long as its mass is heavier than ≃ 50 GeV and the thermal average of its annihilation cross section is the same at the decoupling temperature and during the dark star formation, as for instance in the case of an annihilation cross section with a non-vanishings-wave contribution.

025

We calculate the trispectrum in ghost inflation where both the contact diagram and scale-exchange diagram are taken into account. The shape of trispectrum is discussed carefully and we find that the local form is absent in ghost inflation. In general, for the non-local shape trispectrum there are not analogous parameters to τNLloc. and gNLloc. which can completely characterize the size of local form trispectrum.

024

and

In Brans-Dicke theory a non-linear self interaction of a scalar field ϕ allows a possibility of realizing the late-time cosmic acceleration, while recovering the General Relativistic behavior at early cosmological epochs. We extend this to more general modified gravitational theories in which a de Sitter solution for dark energy exists without using a field potential. We derive a condition for the stability of the de Sitter point and study the background cosmological dynamics of such theories. We also restrict the allowed region of model parameters from the demand for the avoidance of ghosts and instabilities. A peculiar evolution of the field propagation speed allows us to distinguish those theories from the ΛCDM model.

023

and

Most proposed dark matter candidates are stable and are produced thermally in the early Universe. However, there is also the possibility of unstable (but long-lived) dark matter, produced thermally or otherwise. We propose a strategy to distinguish between dark matter annihilation and/or decay in the case that a clear signal is detected in gamma-ray observations of Milky Way dwarf spheroidal galaxies with gamma-ray experiments. The sole measurement of the energy spectrum of an indirect signal would render the discrimination between these cases impossible. We show that by examining the dependence of the intensity and energy spectrum on the angular distribution of the emission, the origin could be identified as decay, annihilation, or both. In addition, once the type of signal is established, we show how these measurements could help to extract information about the dark matter properties, including mass, annihilation cross section, lifetime, dominant annihilation and decay channels, and the presence of substructure. Although an application of the approach presented here would likely be feasible with current experiments only for very optimistic dark matter scenarios, the improved sensitivity of upcoming experiments could enable this technique to be used to study a wider range of dark matter models.

022

, , , and

The matter power spectrum as derived from large scale structure (LSS) surveys contains two important and distinct pieces of information: an overall smooth shape and the imprint of baryon acoustic oscillations (BAO). We investigate the separate impact of these two types of information on cosmological parameter estimation for current data, and show that for the simplest cosmological models, the broad-band shape information currently contained in the SDSS DR7 halo power spectrum (HPS) is by far superseded by geometric information derived from the baryonic features. An immediate corollary is that contrary to popular beliefs, the upper limit on the neutrino mass mν presently derived from LSS combined with cosmic microwave background (CMB) data does not in fact arise from the possible small-scale power suppression due to neutrino free-streaming, if we limit the model framework to minimal ΛCDM+mν. However, in more complicated models, such as those extended with extra light degrees of freedom and a dark energy equation of state parameter w differing from -1, shape information becomes crucial for the resolution of parameter degeneracies. This conclusion will remain true even when data from the Planck spacecraft are combined with SDSS DR7 data. In the course of our analysis, we update both the BAO likelihood function by including an exact numerical calculation of the time of decoupling, as well as the HPS likelihood, by introducing a new dewiggling procedure that generalises the previous approach to models with an arbitrary sound horizon at decoupling. These changes allow a consistent application of the BAO and HPS data sets to a much wider class of models, including the ones considered in this work. All the cases considered here are compatible with the conservative 95%-bounds ∑mν < 1.16eV, Neff = 4.8±2.0.

021

and

We study a model of scalar field with a general non-minimal kinetic coupling to itself and to the curvature, as a source of dark energy, and analyze the cosmological dynamics of this model and the issue of accelerated expansion. Solutions giving rise to power-law expansion have been found. The dynamical equation of state is studied for the two cases, without and with free kinetic term . In the first case, a behavior very close to that of the cosmological constant was found. In the second case, a solution was found, which match the current phenomenology of the dark energy. The model shows a rich variety of dynamical scenarios.

020

, and

We study the impact of the cosmological parameters uncertainties on the measurements of primordial non-Gaussianity through the large-scale non-Gaussian halo bias effect. While this is not expected to be an issue for the standard ΛCDM model, it may not be the case for more general models that modify the large-scale shape of the power spectrum. We consider the so-called local non-Gaussianity model, parametrized by the fNLnon-Gaussianity parameter which is zero for a Gaussian case, and make forecasts on fNL from planned surveys, alone and combined with a Planck CMB prior. In particular, we consider EUCLID- and LSST-like surveys and forecast the correlations amongfNL and the running of the spectral index αs, the dark energy equation of state w, the effective sound speed of dark energy perturbations c2s, the total mass of massive neutrinos Mν = ∑mν, and the number of extra relativistic degrees of freedom Nνrel. Neglecting CMB information onfNL and scales k > 0.03h/Mpc, we find that, ifNνrel is assumed to be known, the uncertainty on cosmological parameters increases the error on fNL by 10 to 30% depending on the survey. Thus the fNL constraint is remarkable robust to cosmological model uncertainties. On the other hand, if Nνrel is simultaneously constrained from the data, the fNL error increases by ∼ 80%. Finally, future surveys which provide a large sample of galaxies or galaxy clusters over a volume comparable to the Hubble volume can measure primordial non-Gaussianity of the local form with a marginalized 1-σ error of the order ΔfNL ∼ 2−5, after combination with CMB priors for the remaining cosmological parameters. These results are competitive with CMB bispectrum constraints achievable with an ideal CMB experiment.

019

, and

The non-linear evolution of the energy density of the radiation induces spectral distortions of the cosmic microwave background both at recombination and during the reionization era. This distortion has the same spectral signature as the one produced by the re-scattering of photons by non-relativistic hot electrons, the thermal Sunyaev-Zeldovich effect, whose amplitude is quantified by a Compton y parameter. A diffuse y-sky is then expected to emerge from mode couplings in the non-linear evolution of the cosmological perturbations and to superimpose to the point source contributions of galaxy clusters. The equations describing the evolution of the y field and a hierarchy governing its angular multipoles are derived from the second order Boltzmann equation. These equations are then integrated numerically to obtain the first predicted power spectrum of the diffuse y-sky. It is found to be a remarkable tracer of the reionization history of the Universe.

018

, and

We constrain an interacting, holographic dark energy model, first proposed by two of us in [1], with observational data from supernovae, CMB shift, baryon acoustic oscillations, x-rays, and the Hubble rate. The growth function for this model is also studied. The model fits the data reasonably well but still the conventional ΛCDM model fares better. Nevertheless, the holographic model greatly alleviates the coincidence problem and shows compatibility at 1σ confidence level with the age of the old quasar APM 08279+5255.

017

, , and

Supersymmetric scenarios incorporating thermal leptogenesis as the origin of the observed matter-antimatter asymmetry generically predict abundances of the primordial elements which are in conflict with observations. In this paper we propose a simple way to circumvent this tension and accommodate naturally thermal leptogenesis and primordial nucleosynthesis. We postulate the existence of a light hidden sector, coupled very weakly to the Minimal Supersymmetric Standard Model, which opens up new decay channels for the next-to-lightest supersymmetric particle, thus diluting its abundance during nucleosynthesis. We present a general model-independent analysis of this mechanism as well as two concrete realizations, and describe the relevant cosmological and astrophysical bounds and implications for this dark matter scenario. Possible experimental signatures at colliders and in cosmic-ray observations are also discussed.

016

, and

We study in detail (p)reheating after multi-field inflation models with a particular focus on N-flation. We consider a variety of different couplings between the inflatons and the matter sector, including both quartic and trilinear interactions with a light scalar field. We show that the presence of multiple oscillating inflatons makes parametric resonance inefficient in the case of the quartic interactions. Moreover, perturbative processes do not permit a complete decay of the inflaton for this coupling. In order to recover the hot big bang, we must instead consider trilinear couplings. In this case we show that strong nonperturbative preheating is possible via multi-field tachyonic resonance. In addition, late-time perturbative effects do permit a complete decay of the condensate. We also study the production of gauge fields for several prototype couplings, finding similar results to the trilinear scalar coupling. During the course of our analysis we develop the mathematical theory of the quasi-periodic Mathieu equation, the multi-field generalization of the Floquet theory familiar from preheating after single field inflation. We also elaborate on the theory of perturbative decays of a classical inflaton condensate, which is applicable in single-field models also.

015

and

A simple set of diagrammatic rules is formulated for perturbative evaluation of ``in-in" correlators, as is needed in cosmology and other nonequilibrium problems. These rules are both intuitive, and efficient for calculational purposes.

014

, , and

Supersymmetric models based on anomaly-mediated SUSY breaking (AMSB) generally give rise to a neutral wino as a WIMP cold dark matter (CDM) candidate, whose thermal abundance is well below measured values. Here, we investigate four scenarios to reconcile AMSB dark matter with the measured abundance: 1. non-thermal wino production due to decays of scalar fields (e.g. moduli), 2. non-thermal wino production due to decays of gravitinos, 3. non-thermal wino production due to heavy axino decays, and 4. the case of an axino LSP, where the bulk of CDM is made up of axions and thermally produced axinos. In cases 1 and 2, we expect wino CDM to constitute the entire measured DM abundance, and we investigate wino-like WIMP direct and indirect detection rates. Wino direct detection rates can be large, and more importantly, are bounded from below, so that ton-scale noble liquid detectors should access all of parameter space for mbar Z1≲500 GeV. Indirect wino detection rates via neutrino telescopes and space-based cosmic ray detectors can also be large. In case 3, the DM would consist of an axion plus wino admixture, whose exact proportions are very model dependent. In this case, it is possible that both an axion and a wino-like WIMP could be detected experimentally. In case 4., we calculate the re-heat temperature of the universe after inflation. In this case, no direct or indirect WIMP signals should be seen, although direct detection of relic axions may be possible. For each DM scenario, we show results for the minimal AMSB model, as well as for the hypercharged and gaugino AMSB models.

013

, , , and

The strong dependence of the large-scale dark matter halo bias on the (local) non-Gaussianity parameter, fNL, offers a promising avenue towards constraining primordial non-Gaussianity with large-scale structure surveys. In this paper, we present the first detection of the dependence of the non-Gaussian halo bias on halo formation history using N-body simulations. We also present an analytic derivation of the expected signal based on the extended Press-Schechter formalism. In excellent agreement with our analytic prediction, we find that the halo formation history-dependent contribution to the non-Gaussian halo bias (which we call non-Gaussian halo assembly bias) can be factorized in a form approximately independent of redshift and halo mass. The correction to the non-Gaussian halo bias due to the halo formation history can be as large as 100%, with a suppression of the signal for recently formed halos and enhancement for old halos. This could in principle be a problem for realistic galaxy surveys if observational selection effects were to pick galaxies occupying only recently formed halos. Current semi-analytic galaxy formation models, for example, imply an enhancement in the expected signal of ∼ 23% and ∼ 48% for galaxies at z = 1 selected by stellar mass and star formation rate, respectively.

012

, and

Acoustic peaks in the spectrum of the cosmic microwave background in spherically symmetric inhomogeneous cosmological models are studied. At the photon-baryon decoupling epoch, the universe may be assumed to be dominated by non-relativistic matter, and thus we may treat radiation as a test field in the universe filled with dust which is described by the Lemaȋtre-Tolman-Bondi (LTB) solution. First, we give an LTB model whose distance-redshift relation agrees with that of the concordance ΛCDM model in the whole redshift domain and which is well approximated by the Einstein-de Sitter universe at and before decoupling. We determine the decoupling epoch in this LTB universe by Gamow's criterion and then calculate the positions of acoustic peaks. Thus obtained results are not consistent with the WMAP data. However, we find that one can fit the peak positions by appropriately modifying the LTB model, namely, by allowing the deviation of the distance-redshift relation from that of the concordance ΛCDM model at z > 2 where no observational data are available at present. Thus there is still a possibility of explaining the apparent accelerated expansion of the universe by inhomogeneity without resorting to dark energy if we abandon the Copernican principle. Even if we do not take this extreme attitude, it also suggests that local, isotropic inhomogeneities around us may seriously affect the determination of the density contents of the universe unless the possible existence of such inhomogeneities is properly taken into account.

011

and

We calculate the quadra-spectrum and quint-spectrum, corresponding to five and six point correlation functions of the curvature perturbation. For single field inflation with standard kinetic term, the quadra-spectrum and quint-spectrum are small, which are suppressed by slow roll parameters. The calculation can be generalized to multiple fields. When there is no entropy perturbation, the quadra-spectrum and quint-spectrum are suppressed as well. With the presence of entropy perturbation, the quadra-spectrum and quint-spectrum can get boosted. We illustrate this boost in the multi-brid inflation model. For the curvaton scenario, the quadra-spectrum and quint-spectrum are also large in the small r limit. We also calculate representative terms of quadra-spectrum and quint-spectrum for inflation with generalized kinetic terms, and estimate their order of magnitude for quasi-single field inflation.

010

, and

We study the primordial perturbations generated during a stage of single-field inflation in Einstein-aether theories. Quantum fluctuations of the inflaton and aether fields seed long wavelength adiabatic and isocurvature scalar perturbations, as well as transverse vector perturbations. Geometrically, the isocurvature mode is the potential for the velocity field of the aether with respect to matter. For a certain range of parameters, this mode may lead to a sizable random velocity of the aether within the observable universe. The adiabatic mode corresponds to curvature perturbations of co-moving slices (where matter is at rest). In contrast with the standard case, it has a non-vanishing anisotropic stress on large scales. Scalar and vector perturbations may leave significant imprints on the cosmic microwave background. We calculate their primordial spectra, analyze their contributions to the temperature anisotropies, and formulate some of the phenomenological constraints that follow from observations. These may be used to further tighten the existing limits on the parameters for this class of theories. The results for the scalar sector also apply to the extension of Hořava gravity recently proposed by Blas, Pujolàs and Sibiryakov.

009

, , and

We investigate brane inflation driven by two stacks of mobile branes in a throat. The stack closest to the bottom of the throat annihilates first with antibranes, resulting in particle production and a change of the equation of state parameter w. We calculate analytically some observable signatures of the collision; related decays are common in multi-field inflation, providing the motivation for this case study. The discontinuity in w enters the matching conditions relating perturbations in the remaining degree of freedom before and after the collision, affecting the power-spectrum of curvature perturbations. We find an oscillatory modulation of the power-spectrum for scales within the horizon at the time of the collision, and a slightly redder spectrum on super-horizon scales. We comment on implications for staggered inflation.

008

, and

We analyze the recently published Fermi-LAT diffuse gamma-ray measurements in the context of leptonically annihilating or decaying dark matter (DM) with the aim to explain simultaneously the isotropic diffuse gamma-ray and the PAMELA, Fermi and HESS (PFH) anomalous e± data. Five different DM annihilation/decay channels 2e, 2μ, 2τ, 4e, or 4μ (the latter two via an intermediate light particle ϕ) are generated with PYTHIA. We calculate both the Galactic and extragalactic prompt and inverse Compton (IC) contributions to the resulting gamma-ray spectra. To find the Galactic IC spectra we use the interstellar radiation field model from the latest release of GALPROP. For the extragalactic signal we show that the amplitude of the prompt gamma-emission is very sensitive to the assumed model for the extragalactic background light. For our Galaxy we use the Einasto, NFW and cored isothermal DM density profiles and include the effects of DM substructure assuming a simple subhalo model. Our calculations show that for the annihilating DM the extragalactic gamma-ray signal can dominate only if rather extreme power-law concentration-mass relation C(M) is used, while more realistic C(M) relations make the extragalactic component comparable or subdominant to the Galactic signal. For the decaying DM the Galactic signal always exceeds the extragalactic one. In the case of annihilating DM the PFH favored parameters can be ruled out by gamma-ray constraints only if power-law C(M) relation is assumed. For DM decaying into 2μ or 4μ the PFH favored DM parameters are not in conflict with the gamma-ray data. We find that, due to the (almost) featureless Galactic IC spectrum and the DM halo substructure, annihilating DM may give a good simultaneous fit to the isotropic diffuse gamma-ray and to the PFH e± data without being in clear conflict with the other Fermi-LAT gamma-ray measurements.

007

and

Our universe may have formed via bubble nucleation in an eternally-inflating background. Furthermore, the background may have a compact dimension — the modulus of which tunnels out of a metastable minimum during bubble nucleation — which subsequently grows to become one of our three large spatial dimensions. Then the reduced symmetry of the background is equivalent to anisotropic initial conditions in our bubble universe. We compute the inflationary spectrum in such a scenario and, as a first step toward understanding the effects of anisotropy, project it onto spherical harmonics. The resulting spectrum exhibits anomalous multipole correlations, their relative amplitude set by the present curvature parameter, which appear to extend to arbitrarily large multipole moments. This raises the possibility of future detection, if slow-roll inflation does not last too long within our bubble. A full understanding of the observational signal must account for the effects of background anisotropy on photon free streaming, and is left to future work.

006

We study a scalar field with kinetic term coupled to itself and to the curvature, as a source of dark energy, and analyze the role of this new coupling in the accelerated expansion at large times. In the case of scalar field dominance, the scalar field and potential giving rise to power-law expansion are found in some cases, and a dynamical equation of state is calculated for a given solution of the field equations. A behavior very close to that of the cosmological constant was found

005

We investigate some aspects of a recent proposal for a holographic description of the multiverse. Specifically, we focus on the implications on the suggested duality of the fluctuations of a bubble separating two universes with different cosmological constants. We do so by considering a similar problem in a 2+1 CFT with a codimension one defect, obtained by an M5-brane probe embedding in AdS4 × S7, and studying its spectrum of fluctuations. Our results suggest that the kind of behavior required by the spectrum of bubble fluctuations is not likely to take place in defect CFTs with an AdS dual, although it might be possible if the defect supports a non-unitary theory.

004

, , and

In this paper we study possible observational consequences of the bouncing cosmology. We consider a model where a phase of inflation is preceded by a cosmic bounce. While we consider in this paper only that the bounce is due to loop quantum gravity, most of the results presented here can be applied for different bouncing cosmologies. We concentrate on the scenario where the scalar field, as the result of contraction of the universe, is driven from the bottom of the potential well. The field is amplified, and finally the phase of the standard slow-roll inflation is realized. Such an evolution modifies the standard inflationary spectrum of perturbations by the additional oscillations and damping on the large scales. We extract the parameters of the model from the observations of the cosmic microwave background radiation. In particular, the value of inflaton mass is equal to m = (1.7±0.6)·1013 GeV. In our considerations we base on the seven years of observations made by the WMAP satellite. We propose the new observational consistency check for the phase of slow-roll inflation. We investigate the conditions which have to be fulfilled to make the observations of the Big Bounce effects possible. We translate them to the requirements on the parameters of the model and then put the observational constraints on the model. Based on assumption usually made in loop quantum cosmology, the Barbero-Immirzi parameter was shown to be constrained by γ < 1100 from the cosmological observations. We have compared the Big Bounce model with the standard Big Bang scenario and showed that the present observational data is not informative enough to distinguish these models.

003

, and

This article presents the first computation of the complete bispectrum of the cosmic microwave background temperature anisotropies arising from the evolution of all cosmic fluids up to second order, including neutrinos. Gravitational couplings, electron density fluctuations and the second order Boltzmann equation are fully taken into account. Comparison to limiting cases that appeared previously in the literature are provided. These are regimes for which analytical insights can be given. The final results are expressed in terms of equivalent fNL for different configurations. It is found that for moments up to ℓmax = 2000, the signal generated by non-linear effects is equivalent to fNL ≃ 5 for both local-type and equilateral-type primordial non-Gaussianity.

002

, , and

We study the halo bispectrum from non-Gaussian initial conditions. Based on a set of large N-body simulations starting from initial density fields with local type non-Gaussianity, we find that the halo bispectrum exhibits a strong dependence on the shape and scale of Fourier space triangles near squeezed configurations at large scales. The amplitude of the halo bispectrum roughly scales asfNL2. The resultant scaling on the triangular shape is consistent with that predicted by Jeong & Komatsu based on perturbation theory. We systematically investigate this dependence with varying redshifts and halo mass thresholds. It is shown that the fNL dependence of the halo bispectrum is stronger for more massive haloes at higher redshifts. This feature can be a useful discriminator of inflation scenarios in future deep and wide galaxy redshift surveys.

001

and

We show that when the relevant CP violating interactions in leptogenesis are fast, the different matter density asymmetries are determined at each instant by a balance condition between the amount of asymmetry being created and destroyed. This fact allows to understand in a simple way many features of leptogenesis in the strong washout regime. In particular, we find some non-trivial effects of flavour changing interactions that conserve lepton number, which are specially relevant in models for leptogenesis that rely heavily on flavour effects.