This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

032

and

In direct dark matter detection experiments, conventional elastic scattering of WIMPs results in exponentially falling recoil spectra. In contrast, theories of WIMPs with excited states can lead to nuclear recoil spectra that peak at finite recoil energies ER. The peaks of such signals are typically fairly broad, with ΔER/Epeak ∼ 1. We show that in the presence of dark matter structures with low velocity dispersion, such as streams or clumps, peaks from up-scattering can become extremely narrow with FWHM of a few keV only. This differs dramatically from the conventionally expected WIMP spectrum and would, once detected, open the possibility to measure the dark matter velocity structure with high accuracy. As an intriguing example, we confront the observed cluster of 3 events near 42 keV from the CRESST commissioning run with this scenario. Inelastic dark matter particles with a wide range of parameters are capable of producing such a narrow peak. We calculate the possible signals at other experiments, and find that such particles could also give rise to the signal at DAMA, although not from the same stream. Over some range of parameters, a signal would be visible at xenon experiments. We show that such dark matter peaks are a very clear signal and can be easily disentangled from potential backgrounds, both terrestrial or due to WIMP down-scattering, by an enhanced annual modulation in both the amplitude of the signal and its spectral shape.

031

, , and

We calculate the total cross section for the production of photons from the scattering of axions by a strong inhomogeneous magnetic field in the form of a 2D δ-function, a cylindrical step function and a 2D Gaussian distribution, which can be approximately produced by a solenoidal current. The theoretical result is used to estimate the axion-photon conversion probability which could be expected in a reasonable experimental situation. Comparison between the 2D conversion probabilities for QCD inspired axions and those derived by applying the celebrated 1D calculation of the (inverse) coherent Primakoff effect is made using an averaging prescription procedure of the 1D case. We also consider scattering at a resonance Eaxionmaxion, which corresponds to the scattering from a δ-function and gives the most enhanced results. Finally, we analyze the results of this work in the astrophysical extension to suggest a way in which they may be directed to a solution to some basic solar physics problems and, in particular, the coronal heating problem.

030

, , , , and

Several recent studies have considered the implications for astrophysics and cosmology of some possible nonclassical properties of spacetime at the Planck scale. The new effects, such as a Planck-scale-modified energy-momentum (dispersion) relation, are often inferred from the analysis of some quantum versions of Minkowski spacetime, and therefore the relevant estimates depend heavily on the assumption that there could not be significant interplay between Planck-scale and curvature effects. We here scrutinize this assumption, using as guidance a quantum version of de Sitter spacetime with known Inönü-Wigner contraction to a quantum Minkowski spacetime. And we show that, contrary to common (but unsupported) beliefs, the interplay between Planck-scale and curvature effects can be significant. Within our illustrative example, in the Minkowski limit the quantum-geometry deformation parameter is indeed given by the Planck scale, while in the de Sitter picture the parameter of quantization of geometry depends both on the Planck scale and the curvature scalar. For the much-studied case of Planck-scale effects that intervene in the observation of gamma-ray bursts we can estimate the implications of ``quantum spacetime curvature'' within robust simplifying assumptions. For cosmology at the present stage of the development of the relevant mathematics one cannot go beyond semiheuristic reasoning, and we here propose a candidate approximate description of a quantum FRW geometry, obtained by patching together pieces (with different spacetime curvature) of our quantum de Sitter. This semiheuristic picture, in spite of its limitations, provides rather robust evidence that in the early Universe the interplay between Planck-scale and curvature effects could have been particularly significant.

029

In our earlier work on the development of a model-independent data analysis method for reconstructing the (moments of the) time-averaged one-dimensional velocity distribution function of Weakly Interacting Massive Particles (WIMPs) by using measured recoil energies from direct Dark Matter detection experiments directly, it was assumed that the analyzed data sets are background-free, i.e., all events are WIMP signals. In this article, as a more realistic study, we take into account a fraction of possible residue background events, which pass all discrimination criteria and then mix with other real WIMP-induced events in our data sets. Our simulations show that, for the reconstruction of the one-dimensional WIMP velocity distribution, the maximal acceptable fraction of residue background events in the analyzed data set(s) of Script O(500) total events is ∼ 10%–20%. For a WIMP mass of 50 GeV with a negligible uncertainty and 20% residue background events, the deviation of the reconstructed velocity distribution would in principle be ∼ 7.5% with a statistical uncertainty of ∼ 18% ( ∼ 19% for a background-free data set).

028

, , and

The study of the hydrodynamics of bubble growth in first-order phase transitions is very relevant for electroweak baryogenesis, as the baryon asymmetry depends sensitively on the bubble wall velocity, and also for predicting the size of the gravity wave signal resulting from bubble collisions, which depends on both the bubble wall velocity and the plasma fluid velocity. We perform such study in different bubble expansion regimes, namely deflagrations, detonations, hybrids (steady states) and runaway solutions (accelerating wall), without relying on a specific particle physics model. We compute the efficiency of the transfer of vacuum energy to the bubble wall and the plasma in all regimes. We clarify the condition determining the runaway regime and stress that in most models of strong first-order phase transitions this will modify expectations for the gravity wave signal. Indeed, in this case, most of the kinetic energy is concentrated in the wall and almost no turbulent fluid motions are expected since the surrounding fluid is kept mostly at rest.

027

, , , and

High energy electrons and positrons from decaying dark matter can produce a significant flux of gamma rays by inverse Compton off low energy photons in the interstellar radiation field. This possibility is inevitably related with the dark matter interpretation of the observed PAMELA and FERMI excesses. The aim of this paper is providing a simple and universal method to constrain dark matter models which produce electrons and positrons in their decay by using the Fermi LAT gamma-ray observations in the energy range between 0.5 GeV and 300 GeV. We provide a set of universal response functions that, once convolved with a specific dark matter model produce the desired constraints. Our response functions contain all the astrophysical inputs such as the electron propagation in the galaxy, the dark matter profile, the gamma-ray fluxes of known origin, and the Fermi LAT data. We study the uncertainties in the determination of the response functions and apply them to place constraints on some specific dark matter decay models that can well fit the positron and electron fluxes observed by PAMELA and Fermi LAT. To this end we also take into account prompt radiation from the dark matter decay. We find that with the available data decaying dark matter cannot be excluded as source of the PAMELA positron excess.

026

, , and

We consider a scale invariant model which includes a R2term in action and show that a stable ``emerging universe'' scenario is possible. The model belongs to the general class of theories, where an integration measure independent of the metric is introduced. To implement scale invariance (S.I.), a dilaton field is introduced. The integration of the equations of motion associated with the new measure gives rise to the spontaneous symmetry breaking (S.S.B) of S.I. After S.S.B. of S.I. in the model with the R2term (and first order formalism applied), it is found that a non trivial potential for the dilaton is generated. The dynamics of the scalar field becomes non linear and these non linearities are instrumental in the stability of some of the emerging universe solutions, which exists for a parameter range of the theory.

025

and

We show that the cosmological phase transition from the first accelerated expansion in the early universe to the second accelerated expansion over the intermediate decelerated expansion is possible in the HL gravity without the ``detailed balance'' condition if the dark scalar energy density is assumed to be negative. Moreover, we obtain various evolutions depending on the scale factor and the expansion rate. Finally, we discuss the existence of the minimum scale in connection with the singularity free condition.

024

and

The multiverse/landscape paradigm that has emerged from eternal inflation and string theory, describes a large-scale multiverse populated by ``pocket universes'' which come in a huge variety of different types, including different dimensionalities. In order to make predictions in the multiverse, we need a probability measure. In (3+1)d landscapes, the scale factor cutoff measure has been previously shown to have a number of attractive properties. Here we consider possible generalizations of this measure to a transdimensional multiverse. We find that a straightforward extension of scale factor cutoff to the transdimensional case gives a measure that strongly disfavors large amounts of slow-roll inflation and predicts low values for the density parameter Ω, in conflict with observations. A suitable generalization, which retains all the good properties of the original measure, is the ``volume factor'' cutoff, which regularizes the infinite spacetime volume using cutoff surfaces of constant volume expansion factor.

023

We explore the cosmic evolution of a scalar field with the kinetic term coupled to the Einstein tensor. We find that, in the absence of other matter sources or in the presence of only pressureless matter, the scalar behaves as pressureless matter and the sound speed of the scalar is vanishing. These properties enable the scalar field to be a candidate of cold dark matter. By also considering the scalar potential, we find the scalar field may play the role of both dark matter and dark energy. In this case, the equation of state of the scalar can cross the phantom divide, but this can lead to the sound speed becoming superluminal as it crosses the divide, and so is physically forbidden. Finally, if the kinetic term is coupled to more than one Einstein tensor, we find the equation of state is always approximately equal to -1 whether the potential is flat or not, and so the scalar may also be a candidate for the inflaton.

022

, and

The Alpha Magnetic Spectrometer (AMS-02), which is scheduled to be deployed onboard the International Space Station later this year, will be capable of measuring the composition and spectra of GeV-TeV cosmic rays with unprecedented precision. In this paper, we study how the projected measurements from AMS-02 of stable secondary-to-primary and unstable ratios (such as boron-to-carbon and beryllium-10-to-beryllium-9) can constrain the models used to describe the propagation of cosmic rays throughout the Milky Way. We find that within the context of fairly simple propagation models, all of the model parameters can be determined with high precision from the projected AMS-02 data. Such measurements are less constraining in more complex scenarios, however, which allow for departures from a power-law form for the diffusion coefficient, for example, or for inhomogeneity or stochasticity in the distribution and chemical abundances of cosmic ray sources.

021

and

Cosmological density fields are assumed to be translational and rotational invariant, avoiding any special point or direction, thus satisfying the Copernican Principle. A spatially inhomogeneous matter distribution can be compatible with the Copernican Principle but not with the stronger version of it, the Cosmological Principle which requires the additional hypothesis of spatial homogeneity. We establish criteria for testing that a given density field, in a finite sample at low redshifts, is statistically and/or spatially homogeneous. The basic question to be considered is whether a distribution is, at different spatial scales, self-averaging. This can be achieved by studying the probability density function of conditional fluctuations. We find that galaxy structures in the SDSS samples, the largest currently available, are spatially inhomogeneous but statistically homogeneous and isotropic up to ∼ 100 Mpc/h. Evidences for the breaking of self-averaging are found up to the largest scales probed by the SDSS data. The comparison between the results obtained in volumes of different size allows us to unambiguously conclude that the lack of self-averaging is induced by finite-size effects due to long-range correlated fluctuations. We finally discuss the relevance of these results from the point of view of cosmological modeling.

020

, and

We propose to address the fine tuning problem of inflection point inflation by the addition of extra vacuum energy that is present during inflation but disappears afterwards. We show that in such a case, the required amount of fine tuning is greatly reduced. We suggest that the extra vacuum energy can be associated with an earlier phase transition and provide a simple model, based on extending the SM gauge group to SU(3)C × SU(2)L × U(1)Y × U(1)BL, where the Higgs field of U(1)BL is in a false vacuum during inflation. In this case, there is virtually no fine tuning of the soft SUSY breaking parameters of the flat direction which serves as the inflaton. However, the absence of radiative corrections which would spoil the flatness of the inflaton potential requires that the U(1)BL gauge coupling should be small with gBL ⩽ 10−4.

019

, , and

We develop a theory of nonlinear cosmological perturbations on superhorizon scales for a single scalar field with a general kinetic term and a general form of the potential. We employ the ADM formalism and the spatial gradient expansion approach, characterised by O(epsilonm), where epsilon = 1/(HL) is a small parameter representing the ratio of the Hubble radius to the characteristic length scale L of perturbations. We obtain the general solution for a full nonlinear version of the curvature perturbation valid up through second-order in epsilon (m = 2). We find the solution satisfies a nonlinear second-order differential equation as an extension of the equation for the linear curvature perturbation on the comoving hypersurface. Then we formulate a general method to match a perturbative solution accurate to n-th-order in perturbation inside the horizon to our nonlinear solution accurate to second-order (m = 2) in the gradient expansion on scales slightly greater than the Hubble radius. The formalism developed in this paper allows us to calculate the superhorizon evolution of a primordial non-Gaussianity beyond the so-called δN formalism or separate universe approach which is equivalent to leading order (m = 0) in the gradient expansion. In particular, it can deal with the case when there is a temporary violation of slow-roll conditions. As an application of our formalism, we consider Starobinsky's model, which is a single field model having a temporary non-slow-roll stage due to a sharp change in the potential slope. We find that a large non-Gaussianity can be generated even on superhorizon scales due to this temporary suspension of slow-roll inflation.

018

and

We investigate neutralino dark matter in the framework of NMSSM performing a scan over its parameter space and calculating neutralino capture and annihilation rates in the Sun. We discuss the prospects of searches for neutralino dark matter in neutrino experiments depending on neutralino content and its main annihilation channel. We recalculate the upper limits on neutralino-proton elastic cross sections directly from neutrino telescopes upper bounds on annihilation rates in the Sun. This procedure has advantages as compared with corresponding recalcalations from the limits on muon flux, namely, it is independent on details of the experiment and the recalculation coefficients are universal for any kind of WIMP dark matter models. We derive 90% c.l. upper limits on neutralino-proton cross sections from the results of the Baksan Underground Scintillator Telescope.

017

, , and

Recently, spatially inhomogeneous cosmological models have been proposed as an alternative to the ΛCDM model, with the aim of reproducing the late time dynamics of the Universe without introducing a cosmological constant or dark energy. This paper investigates the possibility of distinguishing such models from the standard ΛCDM using background or large scale structure data. It also illustrates and emphasizes the necessity of testing the Copernican principle in order to confront the tests of general relativity with the large scale structure.

016

and

Ghost inflation predicts almost scale-invariant primordial cosmological perturbations with relatively large non-Gaussianity. The bispectrum is known to have a large contribution at the wavenumbers forming an equilateral triangle and the corresponding nonlinear parameterfNLequil is typically of order O(102). In this paper we calculate trispectrum from ghost inflation and show that the corresponding nonlinear parameter τNL is typically of orderO(104). We investigate the shape dependence of the trispectrum and see that it has some features different from DBI inflation. Therefore, our result may be useful as a template to distinguish ghost inflation from other models of inflation by future experiments.

015

, and

We present a suite of full hydrodynamical cosmological simulations that quantitatively address the impact of neutrinos on the (mildly non-linear) spatial distribution of matter and in particular on the neutral hydrogen distribution in the Intergalactic Medium (IGM), which is responsible for the intervening Lyman-α absorption in quasar spectra. The free-streaming of neutrinos results in a (non-linear) scale-dependent suppression of power spectrum of the total matter distribution at scales probed by Lyman-α forest data which is larger than the linear theory prediction by about 25 % and strongly redshift dependent. By extracting a set of realistic mock quasar spectra, we quantify the effect of neutrinos on the flux probability distribution function and flux power spectrum. The differences in the matter power spectra translate into a ∼ 2.5% (5%) difference in the flux power spectrum for neutrino masses with Σmν = 0.3 eV (0.6 eV). This rather small effect is difficult to detect from present Lyman-α forest data and nearly perfectly degenerate with the overall amplitude of the matter power spectrum as characterised by σ8. If the results of the numerical simulations are normalized to have the same σ8 in the initial conditions, then neutrinos produce a smaller suppression in the flux power of about 3% (5%) for Σmν = 0.6 eV (1.2 eV) when compared to a simulation without neutrinos. We present constraints on neutrino masses using the Sloan Digital Sky Survey flux power spectrum alone and find an upper limit of Σmν < 0.9 eV (2σ C.L.), comparable to constraints obtained from the cosmic microwave background data or other large scale structure probes.

014

and

We investigate thermodynamics of the apparent horizon inf(R) gravity in the Palatini formalism with non-equilibrium and equilibrium descriptions. We demonstrate that it is more transparent to understand the horizon entropy in the equilibrium framework than that in the non-equilibrium one. Furthermore, we show that the second law of thermodynamics can be explicitly verified in both phantom and non-phantom phases for the same temperature of the universe outside and inside the apparent horizon.

013

, , , and

Since the PAMELA results on the ``anomalously'' high positron fraction and the lack of antiproton excess in our Galaxy, there has been a tremendous number of studies advocating new types of dark matter, with larger couplings to electrons than to quarks. This raises the question of the production of dark matter particles (and heavy associated coloured states) at LHC. Here, we explore a very simple benchmark dark matter model and show that, in spite of the agreement between the PAMELA antiproton measurements and the expected astrophysical secondary background, there is room for large couplings of a WIMP candidate to heavy quarks. Contrary to what could have been naively anticipated, the PAMELA bar p/p measurements do not challenge dark matter model building, as far as the quark sector is concerned. A quarkophillic species is therefore not forbidden. Owing to these large couplings, one would expect that a new production channel opens up at the LHC, through quark-quark and quark-gluon interactions. Alas, when the PDF of the quark is taken into account, prospects for a copious production fade away.

012

and

We study the supergravity hybrid inflation model of Antusch in the presence of a modulus field. The η-problem is solved by a shift symmetry for the inflaton, which protects the inflaton mass even in the presence of the modulus field. Inflation is (nearly) unaffected by moduli stabilization, provided the scale of supersymmetry breaking in the post-inflation vacuum is small. Therefore the model has the nice phenomenology that it combines low scale supersymmetry breaking with high scale (grand unification scale) inflation.

011

and

In this work we study the contribution of magnetic fields to the Sunyaev Zeldovich (SZ) effect in the intracluster medium. In particular we calculate the SZ angular power spectrum and the central temperature decrement. The effect of magnetic fields is included in the hydrostatic equilibrium equation by splitting the Lorentz force into two terms – one being the force due to magnetic pressure which acts outwards and the other being magnetic tension which acts inwards. A perturbative approach is adopted to solve for the gas density profile for weak magnetic fields (⩽ 4μG). This leads to an enhancement of the gas density in the central regions for nearly radial magnetic field configurations. Previous works had considered the force due to magnetic pressure alone which is the case only for a special set of field configurations. However, we see that there exists possible sets of configurations of ICM magnetic fields where the force due to magnetic tension will dominate. Subsequently, this effect is extrapolated for typical field strengths (∼ 10μG) and scaling arguments are used to estimate the angular power due to secondary anisotropies at cluster scales. In particular we find that it is possible to explain the excess power reported by CMB experiments like CBI, BIMA, ACBAR at ℓ > 2000 with σ8 ∼ 0.8 (WMAP 5 year data) for typical cluster magnetic fields. In addition we also see that the magnetic field effect on the SZ temperature decrement is more pronounced for low mass clusters (⟨T⟩ ∼ 2 keV). Future SZ detections of low mass clusters at few arc second resolution will be able to probe this effect more precisely. Thus, it will be instructive to explore the implications of this model in greater detail in future works.

010

, and

We point out an interesting theoretical prediction for elliptical galaxies residing inside galaxy clusters in the framework of modified Newtonian dynamics (MOND), that could be used to test this paradigm. Apart from the central brightest cluster galaxy, other galaxies close enough to the centre experience a strong gravitational influence from the other galaxies of the cluster. This influence manifests itself only as tides in standard Newtonian gravity, meaning that the systematic acceleration of the centre of mass of the galaxy has no consequence. However, in the context of MOND, a consequence of the breaking of the strong equivalence principle is that the systematic acceleration changes the own self-gravity of the galaxy. We show here that, in this framework, initially axisymmetric elliptical galaxies become lopsided along the external field's direction, and that the centroid of the galaxy, defined by the outer density contours, is shifted by a few hundreds parsecs with respect to the densest point.

009

, , , and

We study the CMB observables in axion monodromy inflation. These well-motivated scenarios for inflation in string theory have monomial potentials over super-Planckian field ranges, with superimposed sinusoidal modulations from instanton effects. Such periodic modulations of the potential can drive resonant enhancements of the correlation functions of cosmological perturbations, with characteristic modulations of the amplitude as a function of wavenumber. We give an analytical result for the scalar power spectrum in this class of models, and we determine the limits that present data places on the amplitude and frequency of modulations. Then, incorporating an improved understanding of the realization of axion monodromy inflation in string theory, we perform a careful study of microphysical constraints in this scenario. We find that detectable modulations of the scalar power spectrum are commonplace in well-controlled examples, while resonant contributions to the bispectrum are undetectable in some classes of examples and detectable in others. We conclude that resonant contributions to the spectrum and bispectrum are a characteristic signature of axion monodromy inflation that, in favorable cases, could be detected in near-future experiments.

008

, and

We study Q-ball formation in the expanding universe on 1D, 2D and 3D lattice simulations. We obtain detailed Q-ball charge distributions, and find that the distribution is peaked atQ3Dpeak ≃ 1.9 × 10−2(|Φin|/m)2, which is greater than the existing result by about 60%. Based on the numerical simulations, we discuss how the Q-ball formation proceeds. Also we make a comment on possible deviation of the charge distributions from what was conjectured in the past.

007

, , and

Neutrino-neutrino interactions inside core-collapse supernovae may give rise to collective flavor oscillations resulting in swap between flavors. These oscillations depend on the initial energy spectra, and relative fluxes or relative luminosities of the neutrinos. It has been observed that departure from energy equipartition among different flavors can give rise to one or more sharp spectral swap over energy, termed as splits. We study the occurrence of splits in the neutrino and antineutrino spectra, varying the initial relative fluxes for different models of initial energy spectrum, in both normal and inverted hierarchy. These initial relative flux variations give rise to several possible split patterns whereas variation over different models of energy spectra give similar results. We explore the effect of these spectral splits on the electron fraction, Ye, that governs r-process nucleosynthesis inside supernovae. Since spectral splits modify the electron neutrino and antineutrino spectra in the region where r-process is postulated to happen, and since the pattern of spectral splits depends on the initial conditions of the spectra and the neutrino mass hierarchy, we show that the condition Ye < 0.5 required for successful r-process nucleosynthesis will lead to constraints on the initial spectral conditions, for a given neutrino mass hierarchy.

006

and

We study linear cosmological perturbations in a previously introduced family of deformations of general relativity characterized by the absence of new degrees of freedom. The homogeneous and isotropic background in this class of theories is unmodified and is described by the usual Friedmann equations. The theory of cosmological perturbations is modified and the relevant deformation parameter has the dimension of length. Gravitational perturbations of the scalar type can be described by a certain relativistic potential related to the matter perturbations just as in general relativity. A system of differential equations describing the evolution of this potential and of the stress-energy density perturbations is obtained. We find that the evolution of scalar perturbations proceeds with a modified effective time-dependent speed of sound, which, contrary to the case of general relativity, does not vanish even at the matter-dominated stage. In a broad range of values of the length parameter controlling the deformation, a specific transition from the regime of modified gravity to the regime of general relativity in the evolution of scalar perturbations takes place during the radiation domination. In this case, the resulting power spectrum of perturbations in radiation and dark matter is suppressed on the comoving spatial scales that enter the Hubble radius before this transition. We estimate the bounds on the deformation parameter for which this suppression does not lead to observable consequences. Evolution of scalar perturbations at the inflationary stage is modified but very slightly and the primordial spectrum generated during inflation is not noticeably different from the one obtained in general relativity.

005

, and

We study F(R) modified gravity models which are capable of driving the accelerating epoch of the Universe at the present time whilst not destroying the standard Big Bang and inflationary cosmology. Recent studies have shown that a weak curvature singularity with |R| → can arise generically in viable F(R) models of present dark energy (DE) signaling an internal incompleteness of these models. In this work we study how this problem is cured by adding a quadratic correction with a sufficiently small coefficient to the F(R) function at large curvatures. At the same time, this correction eliminates two more serious problems of previously constructed viable F(R) DE models: unboundedness of the mass of a scalar particle (scalaron) arising in F(R) gravity and the scalaron overabundance problem. Such carefully constructed models can also yield both an early time inflationary epoch and a late time de Sitter phase with vastly different values of R. The reheating epoch in these combined models of primordial and present dark energy is completely different from that of the old R+R2/6M2 inflationary model, mainly due to the fact that values of the effective gravitational constant at low and intermediate curvatures are different for positive and negative R. This changes the number of e-folds during the observable part of inflation that results in a different value of the primordial power spectrum index.

004

We, first, analytically work out the long-term, i.e. averaged over one orbital revolution, perturbations on the orbit of a test particle moving in a local Fermi frame induced therein by the cosmological tidal effects of the inhomogeneous Lemaître-Tolman-Bondi (LTB) model. The LTB solution has recently attracted attention, among other things, as a possible explanation of the observed cosmic acceleration without resorting to dark energy. Then, we phenomenologically constrain both the parameters and of the LTB metric in the Fermi frame by using different kinds of solar system data. The corrections Δdot varpi to the standard Newtonian/Einsteinian precessions of the perihelia of the inner planets recently estimated with the EPM ephemerides, compared to our predictions for them, yield preliminarily K1 = (4±8) × 10−26 s−2, K2 = (3±7) × 10−23 s−2. The residuals of the Cassini-based Earth-Saturn range, compared with the numerically integrated LTB range signature, allow to preliminarily obtain K1K2 ≈ 10−27 s−2. Actually, the LTB effects should be explicitly modeled in the ephemerides softwares, so that the entire planetary and spacecraft data sets should be accordingly re-processed. The LTB-induced distortions of the orbit of a typical object of the Oort cloud with respect to the commonly accepted Newtonian picture, based on the observations of the comet showers from that remote region of the solar system, point towards K1K2≲10−30−10−32 s−2. Such figures have to be compared with those inferred from cosmological data which are of the order of K1K2 = −4 × 10−36 s−2.

003

and

In this paper, we propose a general form of the equation of state (EoS) which is the function of the fractional dark energy density Ωd. At least, five related models, the cosmological constant model, the holographic dark energy model, the agegraphic dark energy model, the modified holographic dark energy model and the Ricci scalar holographic dark energy model are included in this form. Furthermore, if we consider proper interactions, the interactive variants of those models can be included as well. The phase-space analysis shows that the scaling solutions may exist both in the non-interacting and interacting cases. And the stability analysis of the system could give out the attractor solution which could alleviate the coincidence problem.

002

and

We perform a global constraint on the Ricci dark energy model with both the flat case and the non-flat case, using the Markov Chain Monte Carlo (MCMC) method and the combined observational data from the cluster X-ray gas mass fraction, Supernovae of type Ia (397), baryon acoustic oscillations, current Cosmic Microwave Background, and the observational Hubble function. In the flat model, we obtain the best fit values of the parameters in 1σ,2σ regions: Ωm0 = 0.2927+0.0420+0.0542−0.0323−0.0388, α = 0.3823+0.0331+0.0415−0.0418−0.0541, Age/Gyr = 13.48+0.13+0.17−0.16−0.21, H0 = 69.09+2.56+3.09−2.37−3.39. In the non-flat model, the best fit parameters are found in 1σ,2σ regions:Ωm0 = 0.3003+0.0367+0.0429−0.0371−0.0423, α = 0.3845+0.0386+0.0521−0.0474−0.0523, Ωk = 0.0240+0.0109+0.0133−0.0130−0.0153, Age/Gyr = 12.54+0.51+0.65−0.37−0.49, H0 = 72.89+3.31+3.88−3.05−3.72. Compared to the constraint results in the ΛCDM model by using the same datasets, it is shown that the current combined datasets prefer the ΛCDM model to the Ricci dark energy model.

001

, , and

We study the primordial non-Gaussianity predicted from simple models of inflation with a linear potential and superimposed oscillations. This generic form of the potential is predicted by the axion monodromy inflation model, that has recently been proposed as a possible realisation of chaotic inflation in string theory, where the monodromy from wrapped branes extends the range of the closed string axions to beyond the Planck scale. The superimposed oscillations in the potential can lead to new signatures in the CMB spectrum and bispectrum. In particular the bispectrum will have a new distinct shape. We calculate the power spectrum and bispectrum of curvature perturbations in the model, as well as make analytic estimates in various limiting cases. From the numerical analysis we find that for a wide range of allowed parameters the model produces a feature in the bispectrum with fNL ∼ 5−50 or larger while the power spectrum is almost featureless. This model is therefore an example of a string inspired inflationary model which is testable mainly through its non-Gaussian features. Finally we provide a simple analytic fitting formula for the bispectrum which is accurate to approximately 5 % in all cases, and easily implementable in codes designed to provide non-Gaussian templates for CMB analyses.