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23 Abstract. Stochastic neurons are efficient hardware accelerators for solving a large
24 variety of combinatorial optimization problems: “]iinary” stochastic neurons (BSN)
25 are those whose states fluctuate randemly’ between two levels +1 and -1, with the
26 probability of being in either leyel.determined by/an external bias. “Analog” stochastic
27 neurons (ASNs), in contrast, can assume any state between the two levels randomly
28 (hence “analog”) and can perform analog signal processing. They may be leveraged
29 for such tasks as temporal sequence learning, processing and prediction. Both BSNs
30 and ASNs can be used to build efficient and scalable neural networks. Both can be
31 implemented with low (potential energy) barrier nanomagnets (LBMs) whose random
32 magnetization orientations encode the binary or analog state variables. The difference
2431 between them is that the potential energy barrier in a BSN LBM, albeit low, is much
35 higher than that im an ASN LBM. As a result, a BSN LBM has a clear double
36 well potential profile, which makes its magnetization orientation assume one of two
37 orientations atfany time, resulting in the binary behavior. ASN nanomagnets, on
38 the other hand, hardlyshave any energy barrier at all and hence lack the double well
39 feature. That makes their magnetizations fluctuate in an analog fashion. Hence, one
40 can reconfigure antASN to a BSN, and vice-versa, by simply raising and lowering
41 the energy barrier, If the LBM is magnetostrictive, then this can be done with local
42 (elegtricallyhgenerated) strain. Such a reconfiguration capability heralds a powerful
43 field programmable architecture for a p-computer whereby hardware for very different
44 functionalities such as combinatorial optimization and temporal sequence learning can
45 be integrated in the same substrate in the same processing run. This is somewhat
2? refniniscent of heterogeneous integration, except this is integration of functionalities
48 orcomputational fabrics rather than components. The energy cost of reconfiguration
49 isfminiscule. There are also other applications of strain mediated barrier control that
50 do not involve reconfiguring a BSN to an ASN or vice versa, e.g., adaptive annealing
51 in energy minimization computing (Boltzmann or Ising machines), emulating memory
52 hierarchy in a dynamically reconfigurable fashion, and control over belief uncertainty
53 in analog stochastic neurons. Here, we present a study of strain engineered barrier
54 control in unconventional computing.

55

56

;73 Keywords: binary stochastic neurons, analog stochastic neurons, reconfigurability, low
59 barrier nanomagnets, magnetostriction, strain
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1. Introduction: Binary and analog stochastic neurons implemented swith
LBMs

Binary stochastic neurons (BSNs) are a well known route to implementing“spins™ in
Ising machines [1, 2] and have been used to solve computationally hard problems,such
as graph theoretic problems like Max Cut [3], factorization [4], etcesvery, efficiently.
A popular approach to realizing them is with a low (energy) barrier manomagnet
(LBM), whose magnetization fluctuates randomly between two-preferred /orientations
representing the binary bits +1 and -1. The probability of béing im €ither bit can be
altered by a “bias”, such as a spin-polarized current injectedyinto the LBM [1].

The LBM is usually a nanomagnet with in-plane anisotropy ‘that is shaped like
an elliptical disk with small (but non-zero) eccentricity.“The in-plane potential energy
profile (energy versus magnetization orientation) of suc¢h @ LBMis shown schematically
in Fig. 1(a). Normally, there is a clear double-well featuréywhich can be discerned
despite the low potential barrier. The two greund states (or wells) correspond to
the magnetization pointing along either direction along.the major axis (or easy axis)
of the elliptical nanomagnet. At roomstemperature, thermal energy can allow the
magnetization to transcend the energy barrier separating the wells, which will allow
the magnetization to fluctuate randomly betweennthe two potential wells. If we take a
snapshot in time, we will usually findsthe magnetization in one of the two wells, i.e., it
will tend to point along one of the twondirections along the major axis, which encode
the bits +1 and -1. This leadsito the digitabor “binary” behavior.

One can depress the energynbarrier separating the two wells with (electrically
generated) mechanical strain if the nanemagnet is made of a magnetostrictive material
like Co or FeGa or Terfenol—Q For ghis to happen, the sign of the product of the
magnetostriction and the strain hasto be negative. When the energy barrier is depressed
sufficiently, it begins toloseithe double-well feature, as shown in Fig. 1(b). At that point,
the magnetization haswery little tendency to settle into either of the two degenerate
ground states preferentiallypand all orientations are almost equally likely. Consequently,
the magnetization will fluctuate among all orientations with the same likelihood, leading
to the “analog”sbehavior.. We can, therefore, reconfigure a stochastic neuron from binary
to analog, and vice-versa, with strain.

2. Strain effects on energy barrier

The' steady=state in-plane potential energy in an elliptical nanomagnet with in-
plane anisotropy subjected to uniaxial strain along the major axis depends on the
magnetization orientation as [5]

E = (po/2) M2 [Nycos® + Nasin®0] — (3/2)A,Y eQcos™d), (1)
where o is the permeability of vacuum, M, is the saturation magnetization of

the nanomagnet’s material, {2 is the nanomagnet volume, A, is the saturation
magnetostriction of the nanomagnet material, Y is the Young’s modulus of the
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Figure 1. (a) Potential energy as a function of the in-plane magnetization
orientation in a magnetostrictivesnanomagnet shaped like an elliptical disk

with small eccentricity. (b) Peotential, energy as a function of the in-plane

magnetization orientagiomwhen the nanomagnet is subjected to uniaxial strain
along the major axis such, that the sign of the product of the strain and

the magnetostriction is negative. The inset shows the nanomagnet and

the magnetization ‘erientation, with 6 being the angle subtended by the
magnetization with the nanomagnet’s major axis.

nanomagnet, € is the uniaxial Rrain applied along the major axis of the nanomagnet,
0 is the angle shown in the inset of Fig. 1 to denote the magnetization orientation (it
is the angle subtended by theiin-plane component of the magnetization with the major
axis of the ellipticalmanomagnet), and

I 2
lef 3 1_1 a—b _i a—b
4 \a 4 a 16 a
T (1
W, — 2 | =
A (2)

'1+5 a—b\, 2 (a—b 2]
4\ a 16\ a ’
where ais the major axis, b is the minor axis and ¢ is the thickness of the nanomagnet
[6];

Equation (1) clearly shows that if the product Ase has a negative sign, then

application of uniaxial strain along the major axis of the nanomagnet will depress the
energy barrier, which is what we depicted schematically in Fig. 1. A material like Co
has negative magnetostriction and hence a tensile uniaxial strain along the major axis of
the nanomagnet will depress the energy barrier. A material like FeGa or Terfenol-D has
positive magnetostriction and hence a compressive uniaxial strain along the major axis
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will depress the energy barrier. Fig. 2 shows the potential energy E — E,in (Endin 1S the
minimum value of E) as a function of the magnetization orientation in a Co nanomagnet
of major axis 100 nm, minor axis 99 nm and thickness 5 nm. The energy barrier is,the
maximum of this quantity, and can be seen to decrease with increasing stress:
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—2.0 MPa
3.0 MPa
0.08~ —4.0MPa
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Figure 2, The potential energy profile in a Co nanomagnet shaped like an
elliptical disk as function of the angle # subtended by the magnetization with
the major axis. The results are shown for different values of uniaxial stress
applied along the major axis of the nanomagnet. The quantity F is calculated
from Equation (1) and E,,;, is the minimum value of E. The nanomagnet has
majoriaxis = 100 nm, minor axis = 99 nm and thickness = 5 nm.

One way to strain a nanomagnet electrically is to use the configuration shown is
Fig. 3. The nanomagnet is deposited on a poled piezoelectric film and gate pads are
delineated aaround it such that the line joining the pads passes through the major axis.
The two pads are shorted together and a voltage is applied between the shorted pads
and the grounded conducting substrate. The substrate is made ‘conducting’ so that the
applied gate voltage drops mostly across the piezoelectric layer and not the substrate.
If the resulting electric field is parallel to the direction of the poling, then tensile strain
will appear along the major axis and compressive along the minor axis of the elliptical
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33 Figure 3. Methodology to reconfigure a BSN into an ASN and vice versa.
34 Applying a gate yeltage of the right polarity will generate the right type of
35 biaxial strain in/the polednpiezoelectric region underneath the nanomagnet.
36 This strain will be\transferred to the nanomagnet and it will lower the energy
g; barrier in the latter, making its magnetization fluctuate in an analog manner
39 rather than'a binary manner. We can build a magnetic tunnel junction (MTJ)
40 on top of the nanoemagnet which will act as its soft layer. This MTJ will be a
41 fluctuating resistor that can be transformed from a BSN to an ASN by turning
42 on the gate voltage to generate strain.

43

44

45 nanomagnet{ Reversing the polarity of the gate voltage will reverse the signs of the
2? strains. Since the strain ¢omponents along the major and minor axes have opposite
48 signs, beth will'hayve the same effect on the barrier height, i.e. both will either lower or
49 raise the barrier, depending on the voltage polarity. Therefore, by choosing the polarity
2(1) correctly, we.can lower the energy barrier within the nanomagnet. The dimensions of the
52 nanomagnét and the electrodes, the separation between the nanomagnet edge and the
53 nearest, electrode, and the piezoelectric film thickness have to satisfy certain conditions
gg for the biaxial strain generation as described [7], but these conditions are relatively easy
56 to fulfill.

57 Using the technique of ref. [7], one can address each nanomagnet separately by
gg putting a gate around each one. Application of a local voltage to a pair of gates
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surrounding any targeted nanomagnet will generate a local strain in that nanomagnet,
at the exclusion of other nanomagnets. This provides the means to address each
nanomagnet, serving as a computational element, individually.

We can build a magnetic tunnel junction (MTJ) on top of the nanemagnet, with
the latter acting as the soft layer whose magnetization fluctuates. This will transform
the MTJ into a fluctuating resistance that acts as either a BSN (no gate voltage applied
to cause strain and lower the energy barrier) or an ASN (gate woltage ©f the right
polarity applied to cause strain that lowers the energy barrier)¢"Thisyis the basis of a
reconfigurable stochastic neuron (RSN). .

An important question now is whether the strain generated by the/gate voltage can
be non-volatile. This will allow the reconfiguration to be non-veolatile as well. There
are many reports of non-volatile remanent strain in piezoelectrics /at room temperature
8,9, 10, 11, 12, 13, 14] although the strain’s longevity‘hasnet been studied. If the strain
remains non-volatile, we can reconfigure a BSN to am ASN and the reconfiguration will
survive subsequent removal of the gate voltage. /To revert.the ASN back to a BSN, we
can simply apply strain of the opposite sign, whichwill vaise the energy barrier back in
the nanomagnet and convert the ASN to‘a, BSN.

3. Landau-Lifshitz-Gilbert simulations to study random magnetization
dynamics in an LBM under differentistrains

We carried out Landau-Lifshitz-Gilbert (LLG) simulations of the magnetization
dynamics in an LBM at room temperature under different (barrier lowering) strains to
see how the magnetization fluctuation behaves. The LBM we studied is an elliptical Co
nanomagnet of major axis LO0:mmn, minor axis 99 nm and thickness 5 nm. A nanomagnet
of these dimensions are likely t6 beanonodomain and hence the macrospin approximation
holds. The saturation magnétization M, = 10° A /m, the magnetostriction coefficient \,
= -35 ppm and the Gilbert damping coefficient a = 0.01 correspond to a Co nanomagnet.

The coupled/LLG, equations governing the temporal evolutions of the scalar
components of ghe magnetization were solved with finite difference method [15, 16]
with a time steprof 0.1 ps. Although the voltage in Fig. 3 will cause biaxial strain, the
strain components alongithe major and minor axes will have opposite signs and hence
reinforce each otherdn lowering the barrier. Therefore, we can approximate the biaxial
strain a8 a uniaxial strain along the major axis with a magnitude larger than the actual
magnitude. The initial condition was that the magnetization was aligned close to the
major axis of the nanomagnet.

The coupled LLG equations describing the temporal evolution of the three
components of the magnetization are:

dmy(t)
dt

= =y [H()my(t) — Hy(t)m.(1)]
— ay [Hy (t)ymg(t)my (t) — Hy(t)mg(t) — Hy(£)ym2(t) + H.(t)my(t)m.(t)]

Page 6 of 13
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4

5 D) o () — H(yma (1)

6 t

’ — ay [H(t)my ()ym.(t) — Hy()mZ(t) — H,()mg(t) + Hy (8hmy (), (8)]

: WAL o () mat) — H(B)m, (1)

10

n — @y [Ho(O)m. ((yma(t) — Ho(O)m2(t) — H.(E)m?(t) + Hydymydm. ()]
13 2)
1: where « is the Gilbert damping factor of the nanomagnet material, v is the.gyromagnetic
16 factor (a constant), m;(t) is the i-th component of the magnetization at time ¢, and H;(t)
17 is the i-th component of the effective magnetic field experienced by.the nanomagnet at
12 time t. The major axis of the nanomagnet is along the y-directiomyand the minor axis
20 is along the x-direction.

21 Because we have approximated the biaxial strain as a larger uniaxial strain along
;g the major axis (y-axis), the effective magnetic field eomponents are given by

;‘; H,(t) = — M Nym,(t) + hI¢(t) >

26 Hy(t) = — MNymy(t) + hgec(t) + iASery(t)

27 oM s

28 H.(t) = — M Nym.(t) + hI™(t) (3)
30 where Noy=1- M- N, and h?"“e(t)': \/W’fmm%,n@ with Gy () (i =
32 x,y, z) being three uncorrelated Gaussians of zero mean and unit standard deviation,
33 () is the nanomagnet volume, ¥.is the Young’s modulus of the nanomagnet, € is the
gg effective uniaxial strain along the major axis, and At is the attempt period which is the
36 time step of the simulation.

37 Fig. 4 shows the timewariations©f the normalized magnetization component along
gg the major axis of the nanomagnet, i.e. m, (which is also cosf) under different tensile
40 stress. The stress is‘ehosen to,be'tensile because Co has negative magnetostriction and
41 hence a tensile (positive)istress will make the Age product negative. The magnetization
fé is normalized to the saturation magnetization. Clearly under no stress, the behavior is
44 that of a BSN where the magnetization fluctuates rail to rail and is mostly in the state
45 +1 or -1, and not inany intermediate state. As we increase the stress (and depress
46 the energy barrier), the behavior gradually transitions to that of an ASN wherein the
2; magnetization visits all states between -1 and +1 with almost equal likelihood.

49

g? 3.1. HEnergy. cost of reconfiguration

gg We can make an order estimate of the energy cost of reconfiguration. This is the quantity
54 (1/2)C¥}; where C' is the capacitance of the two gate pads in Fig. 3 and Vj is the gate
55 voltage needed to generate the required stress. We see from Fig. 4 that 6.5 MPa of
g? stress is enough to reconfigure a BSN into an ASN. The gate voltage needed to generate
53 a given stress o is given by V, ~ od/(Yds3), where ds;3 is the diagonal element of the
59 piezoelectric tensor and d is the piezoelectric layer thickness. We will assume that the
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Figure 4. Temporal fluctuationsin the.magnetization component directed along
the major axis of the nanomagnet\(m,) at different values of stress. Note that
the behavior gradually transitions:from BSN to ASN with increasing stress as
the energy barrier within the nanomagnet is progressively depressed. Note that
the mean time between flips reduces from ~0.25 us to ~0.05 us as the stress
is increased from 0.to 6:5 MPa. This can be exploited to increase the speed of
clockless autonomous p-proeessors.

N

piezoelectric is PMN-PT whase réported dsz value is 2500 pC/N [17] and that d = 300
nm. The Young’s medulus of Co is 209 GPa. This will make the gate voltage needed
to generate 6.5 MPa of stress = 3.6 mV. The capacitance C' of the two gate pads is C'
= 2 x €A/d, where ¢ isithe dielectric constant of PMN-PT = 4000x8.854x107!2 F/m
[18] and A is the area of the gate pads = 100 nm x 100 nm. This makes C' = 2.4 {F.
Hence the energy costrof Teconfiguration (1/2)C'V,? is only ~ 8.5x107* Joules, which is
miniscule. The gate voltage of 3.6 mV is above the noise voltage at room temperature,
which is q/kT/€.=1.3 mV (kT = thermal energy). If more noise resilience is desired,
one can increase the gate voltage beyond 3.6 mV to obtain the desired noise margin,
whilestill dissipating negligible energy to reconfigure.

4. Application Space for Dynamically Reconfigurable Stochastic Neurons

Dynamic reconfigurability of the barrier height in a low barrier nanomagnet through
precise voltage (strain) control opens up some interesting possibilities in neuromorphic
hardware fabrics. We list a few potential applications. They do not necessarily involve
reconfiguration of a stochastic neuron from binary to analog or vice versa, but are based

Page 8 of 13
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: on the ability to continuously vary the barrier height in a nanomagnet acting as a neuron
6 with a small local voltage.

7

8

9 4.1. Precision and Adaptive Annealing Control in Energy-based Computation

1(1) One of the most important application of BSN is in solving binary eptimization
12 problems, specifically finding a bit string that minimizes a complex' Boolean expression
12 [19]. Often such problems are in computationally intractable NP-Complete class and a
15 Monte Carlo approach yields a computationally tractable probabilistiessolution method
16 [20]. Stochastic neurons can be used to build natural Monte Carlo hardware engines for
1; solving such problems. The problem expression can be cast as'an adjacency matrix of
19 a network spanning over the bit string basis set, and 4his adjacency matrix is then
20 analogous to the Hamiltonian of an equivalent Ising'metwork, where the bit string
;; represents the Ising spins [21]. In a purely software implementation, an annealing process
23 is simulated where the “temperature” of the system isislowly reduced and the system
24 settles in its ground state which encodes the solution bit sfring.

;2 In a hardware substrate, we directly build the Ising network and perform a physical
27 annealing. Typically, such a hardware appreach willsise low barrier magnets (LBMs)
28 and a current based scaling factor will controlithe “inverse” temperature [22]. This
gg current factor is global in nature amd,therefore scaling this current up cools the whole
31 network [23]. In contrast, the approach presented here can seamlessly control the
32 temperature via the control over the barrier height through a gate voltage rather than
2431 through current control. This is'significantly easier to implement in a VLSI circuit.

35 We can strain different manomagnets differently using local gates around each
36 nanomagnet [7], which allows ws to address each nanomagnet separately. Since we
;73 can exert voltage control directly over each individual neuron, completely arbitrary
39 annealing schedules can be implemented with only polynomial increase in gate control
40 circuit complexity and. it brings precision control over the annealing approach, i.e. a
2; screwdriver insteadsof.a hammer.

43

44 4.2. Control over Devicesto-Device Variability and Data Retention Time

45

46 The gate control of barrier height via strain can be also used to control variability in
2; the barrierpheight in a large network. Deviation from the designed shape of a LBM
49 due to (lack of gprecision in the fabrication method can lead to significant variations
50 in the natural barrier heights in LBM networks. This, in turn, can introduce large
g; variability in the correlation times and pinning currents of LBMs used as BSNs, resulting
53 in laxge variability in computational outputs of BSN networks [24]. Furthermore, it has
54 been shown that in a network with large barrier height variability, significant error
gg in computational results can be expected unless the compute process is exponentially
57 long on the scale of the barrier height variability spread in the network [25]. Long
58 computation time is unacceptable from the perspectives of both energy cost and
59

throughput. Reducing the barrier height with gate controlled strain can also increase
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oA\

Figure 5. (a) Gate control over the barrier height (blue dashed line to red solid line) of
each individual memory<ell torequalize memory retention and hence reduce device-to-
device variability in a memory,array. (b) Gate control over sections of memory fabric
to emulate memory hierarchy in terms of retention time-scales through barrier height
modulation (color coded as light to dark red boxes and corresponding barrier heights),
e.g. ~ us, ~ s, ~ years in'a single integrated fabric

the flips per second in beth BSNUand ASN - a feature that is clearly evident in Fig.
4 - thereby reducing the computational time significantly in clockless autonomous p-
processors [26]. Theréfore, gate'control of barrier height (Fig. 5a) can enable, better
energy efficiency, throughput sspeed and reliability.

On a different notey magnetic random access memory (MRAM) has long been
touted as a solution to the memory hierarchy problem. However it’s use has thus far
been confined to replacement of solid-state non-volatile memory (NVM). The retention
time in a magunetic memory cell scales as exp(A/kT), where A is the energy barrier
height in the storage nanomagnet. The ability to dynamically control the barrier
heights in certain sections of a large memory array may provide the ability to control
meniory retention times of sections of the memory fabric (Fig. 5b). Since the vast
majority of computing architecture and programming models are optimized to a memory
hierarehy of speed/data retention rates, the ability to emulate the memory hierarchy
in a dynamically reconfigurable fashion can open up intriguing possibilities of software
defined hardware architectures, especially in the new age of heterogeneous integration
and chiplet based compute fabric design.

Page 10 of 13
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: 4.8. Control over Belief Uncertainty in Analog Stochastic Neurons

g In analog-stochastic-neurons the noise is banded around the sigmoidal tzansfer function
8 and it’s magnitude is maximal at the mid point of the transfer curve whilemminimal at
?O the edges (fig. 6 a) [27], a feature which reflects the belief uncertainty of the nemron in
11 its state over the transfer curve:

13 Voue(£) = tamh (B 5 Vin (1) + (Vin(t)) % Vi, (1) (1)
1: Where (3, o are system transfer gain and noise profile function respectively, * is the
16 convolution operator, V2. is the normalized noise voltage (i.e;¥between +Vpp/2 and
1; —Vpp/2), with Vpp being the power supply voltage. Through detailed simulations we
19 have observed that the empirical expression for « is givemby the Gaussian profile:

. WVin

21 (Vin(1) = rexp(="5") o)
23

24 where £, v are non-linear fitting functions dependent omgthe barrier height, whereas
25 oy, is the standard deviation of the noise voltage profile, again a non-linear function of
;? barrier height and the transfer gain of the neuron ‘cell:

28 Voltage control over the noise through barrier height modulation (fig. 6 b) provides
29 a clean way to control dynamically the magnitude of the belief and its spread (fig.
;? 6 ¢) . This can be used in applications such, as reservoir computing in continuous
32 online-training mode where the network ean reduce the noise during the training phase,
33 while incorporating it during theiinference stage. This provides both robustness to the
gg reservoir computing operationgi.e. the training can be made accurate, and the inference
36 can be performed with significantly lower spread of the dynamic range of the observation
37 model weight spread [28]. N

38

39

40 5. Conclusion

41

42 We showed that gtrain mediated control of the energy barrier height in a low barrier
22 nanomagnet allows reconfiguring a BSN to an ASN and vice versa, thus allowing a
45 multitude oftasks torbe performed in the same substrate. We also discussed other
46 applications of this modality. These few applications are only a small subset of the
2; potentialefunctionalities that can be achieved in a gate controlled stochastic neuron
49 compute fabric{The dynamic and precision control over the individual neurons through
50 voltage controlis well suited for conventional VLSI design methodologies and fabrication
g; practices. Eurther exploration and development of this technology will provide a useful
53 widget in the toolkit of the rapidly expanding discipline of hardware neuromorphics.
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Figure 6. (a) Illustrative circuit designgpof an ASN cell with a stochastic MTJ
(piezoelectric substrate omitted for clarity). /(b),Gate control over the barrier height
modulates the stochasticity. (c¢) Three example input-output characteristic curves of
ASN transfer function (noisy signal is instantaneous output, green smooth signal is
expected time averaged output) overithree different barrier heights shows the degree
of uncertainty on the belief of the ASN aver its transfer function.
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