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Abstract
W-doped ZnO thin films deposited on Si substrates with (100) orientation by sol–gel spin
coating method at temperature 500 °C. W/Zn atomic ratio varies from 0% to 4%. Then, the UV
detection performance analysis of p–n heterojunction UV photodetectors based on W-doped
ZnO/Si is analyzed. The current–voltage curves of W-doped ZnO/Si are investigated in dark
and exhibit diode-like rectifying behavior. Among doped ZnO/Si, sample with atomic ratio of
W/Zn = 2% is the best candidate to study photodetector characteristics in UV range. The
resulting device exhibits a rectification ratio RR of 5587 at ±5 V, a higher responsivity of
3.84 AW−1 and a photosensitivity value of 34 at 365 nm under 0.5 mW cm−2. The experimental
findings reveal that the UV detection performance of the heterojunction-based photodetectors
strongly dependent on the properties of metal oxide layer. The main goal of this work is to
investigate the effect of W doping on the performance of ZnO/Si based photodetectors. Based
on our results, it is observed that 2 at% of W dopant is the optimum amount of doping for high
performance photodetector of ZnO:W/Si heterojunction thanks to the suppressed recombination
ratio and enhanced carrier separation properties in the depletion zone.

Keywords: tungsten doping, ZnO thin films, heterojunction, photodetectors

1. Introduction

In the realm of optoelectronics, photodetectors play a pivotal
role in converting light signals into electrical signals. They are
widely used in various applications such as imaging, com-
munication systems, sensing technologies, and missile
warning systems [1–3]. The working principle of a photo-
detector is based on the phenomenon of photoconductivity.
When light strikes the surface of a photosensitive material, it
excites the electrons within the material, causing them to
transition from the valence band to the conduction band. This
process generates electron–hole pairs, resulting in an increase
in electrical conductivity within the material [4].

Up to now, photodetectors have been designed in many
different structures such as metal–semiconductor–metal
(MSM), metal–insulator–metal (MIS), p–n homojunction or
heterojunction [5–7]. In recent years, metal oxide-based het-
erojunctions have gained significant importance in the fabri-
cation of advanced photonic and electronic devices.
Particularly, the integration of metal oxide on rigid or flexible
substrates has been a key focus of research and development
[8, 9]. In this regard, zinc oxide (ZnO) has emerged as a
highly preferred material for various applications such as
photovoltaics, photodetection, and photocatalysis, thanks to
its favorable properties including a wide bandgap, long-term
chemical stability, easy availability, and non-toxicity [10].
Additionally, the optical and electrical properties of ZnO can
be optimized by doping with some elements including man-
ganese (Mg) [11], cobalt (Co) [12], aluminum (Al) [13],
gallium (Ga) [14], indium (In) [15], and tungsten (W) [16].
Among them, tungsten trioxide attracts attention thanks to its
favorable optoelectronic features [17]. Besides, it has also
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been reported that tungsten-doping leads to improved pho-
tocatalytic activity, high structural stability and enhanced
optoelectrical property [18–20].

In this study, we have achieved a successful deposition of
pure ZnO and various concentrations (0.5 at%, 1 at%, 2 at%,
and 4 at%) of tungsten-doped ZnO onto a p-silicon substrate
utilizing the sol–gel spin coating method. Through char-
acterization of the fabricated sample, we evaluated its per-
formance in UV detection and conducted a quantitative
comparison with p–n heterojunction analogues, considering
multiple performance parameters. Notably, we discovered
that the device designed with a 2 at% of W doping exhibited
exceptional performance, demonstrating a remarkable pho-
toresponsivity of 3.84 AW−1 at 365 nm together with high
detectivity of 3.30 × 1012 Jones, large external quantum
efficiency of 1305% and high linear dynamic range of
30.63 dB. This breakthrough sets the stage for cost-effective
manufacturing of high-performance devices.

2. Experimental

The undoped and 0.5 at%, 1 at%, 2 at%, and 4 at% of W-doped
ZnO (WZO) films were spin-coated onto square glass sub-
strates (25× 25mm2) (ISOLAB glass) of superior quality. The
solution for spin coating was prepared by dissolving zinc
acetate dihydrate, ZAD (ZnC4H6O4.2H2O; EMSUR), and
tungsten (VI) chloride, WCl6 (ALDRICH, 99.9% trace metals
base) in ethanol (C2H6O; EMSUR), followed by the addition
of a monoethanolamide, MEA (C2H7NO; EMSUR, 99.5%)
stabilizer. The concentration of ZAD in the ethanol solvent was
0.6M, and the MEA:ZAD molar ratio was maintained at 1:1.
The concentration of W dopant ([nW/[nW+nZn]) was calcu-
lated to be 0.5%, 1%, 2%, and 4 at%, respectively. Using a
magnetic stirrer, the resultant mixtures were stirred for 2 h at
60 °C to obtain a clear, transparent, and homogenous solution.
Before being utilized as a coating solution, the solution was
aged for 48 h at room temperature. In brief, it is noteworthy to
mention that some factors including concentration, aging time,
deposition technique, annealing temperature, etc affect the
properties of the thin films [21, 22]. In particular, it has been
reported that solution aging time changes the optical, structural
and electrical properties of the thin film [23]. The results of
investigation on the effect of aging on ZnO thin films show that
48 h is the optimum aging time for achieving high grain size
and low defect density [24].

Prior to deposition, Al conductive paste was applied to the
bottom of pre-cleaned p-Si substrates by using screen-printing
method. Five cycles of coating were applied in spin coating
method to deposit undoped and W-doped ZnO (WZO) films on
pre-cleaned p-Si substrates. The deposition of WZO films was
carried out at a spinning speed of 2000 rpm for a duration of
30 s. After each spin coating process, the deposited films were
dried at 500 °C for 5 min. The coating-drying process were
repeated five times, and the obtained films were annealed at
500 °C for 1 h to get the polycrystalline thin-films. Subse-
quently, the grid-shaped front contacts of the samples were
achieved by using Ag conductive paste.

X-ray diffraction (Rigaku Miniflex 600) measurements
were accomplished to evaluate the structural properties of
ZnO and W doped-ZnO films. Scanning electron microscopy
(SEM) (Hitachi SU5000) was utilized to characterize the
surface morphology of the films. Also, the thickness of
W-ZnO layer was determined from cross-sectional SEM
measurement. UV–vis spectrophotometer (Shimadzu 1700)
was used to estimate the optical profiles of the films. The
current–voltage (I–V ) characteristics were determined using
semiconductor measurement unit (Keithley 2400) in the dark
and under UV light of 365 nm (0.5 mW cm−2). The capaci-
tance–voltage (C–V ) profiles of the devices were measured at
a frequency of 100 kHz in the dark.

3. Results and discussions

Figure 1 displays the XRD patterns of undoped and W-doped
ZnO films with various doping percentage. The crystal peaks
of (200), (100) and (002) are observed for all the samples.
Peaks in the data are consistent with the ZnO structure
described by JCPDS 01-084-3901.

A strong peak at about 2θ = 34.5°, corresponding to the
(002) peak indicates that the samples with hexagonal structures
having a preferred orientation perpendicular to the substrate.
The position of (002) peak slightly shifts to the left with
increasing W percentage. Doping of W leads no additional
peaks belonging secondary phase of W, unveiling that that Zn
ion sites are replaced by W ions in the lattice. Crystallite size of
the samples (D) calculated by Debye-Scherer formula [25] is
given in table 1. As seen, the value of D slightly increases to
some extent after W incorporation in ZnO lattice, suggesting an
improvement in crystallinity, and then decreases upon further
increasing the W content. The size of the crystallites was found
to decrease as the concentration of W increased further. It
indicates that the higher concentration of W can obstruct the
movement of the grain boundary, causing to the formation of
smaller particles by limiting the grain growth [26, 27]. Dilawar
et al reported similar results for La and Sm doped ZnO thin

Figure 1. XRD pattern of the undoped and W-doped ZnO thin films.
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films [28]. In addition, lattice strain has an impact on the
decreasing in crystallinity [29].

Surface morphology of the undoped and W-doped ZnO
thin films formed at various W percentages is shown in
figure 2. According to SEM images, the substrate is completely
coated in numerous compact grains that are uniformly dis-
tributed. Porous regions are also seen in the samples. From the
results, one can comprehend that the change in doping con-
centration plays little role in the differentiation of the surface
morphologies of the films. The inset of figure 2 indicates the
cross-sectional SEM image of the undoped and W-doped ZnO
thin films. To carefully investigate the effect of W doping on
the properties of ZnO films, all the WZO films were deposited
under the same experimental conditions including the factors of
solution concentration, aging time, spinning speed, annealing
temperature, etc. Hence, the thickness value of the films is
measured to be in range of ∼140–170 nm.

To determine the impact of the W doping on transmit-
tance (T) and energy band gap (Eg) of ZnO, ultraviolet-visible
(UV–vis) absorption of the samples are measured, the results
of which are presented in figure 3. Average transmittance
(Tav) value taken in visible region gradually increases with
W dopant and reaches a maximum value of 83.6% at 2 at% of

W doping (table 1). Then, it drops with further doping of
4 at% of W. Herein, ZnO layer will be used as an n-type layer
to form p–n heterojunction. In this respect, therefore, 2 at% of
W doping seems to be the best candidate being used in the
device. The inset of figure 3 shows Tauc’s plot which is
employed to estimate Eg values [30]. Accordingly, the
incorporation of W dopant in ZnO results in a blue shift in the
absorption edge (table 1).

To determine the resistivity of the films, the sheet
resistance (Rsh) values are calculated using the following
equation [31].

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

R
V

I

V

Iln 2
4.532 1sh ( )

( )p
= =

where, 4.532 is the correction factor, V and I refer to the
measured voltage and current passing through the film,
respectively. Once the values of Rsh and thickness (t) are
known, the resistivity of the films can be obtained utilizing the
equation of ρ = R tsh [31]. To judge the quality of thin films in
terms of their both optical and electrical characteristics, the
figure of merit (FOM) values of the films are determined using
the equation of FOM R T1 lnsh[ ( )]= - / [32].

Table 1. Various parameters estimated from XRD, UV–vis, SEM and four-point probe.

Sample (W at%) Thickness (nm) D (nm) Tav (%) Eg (eV) Rsh (MΩ/sq) ρ (Ω.cm) FOM (×10−7 Ω−1)

0 146 27.5 76.5 3.132 98.34 14.357 0.379 604
0.5 164 31.1 79.9 3.163 80.66 13.228 0.552 497
1 172 31.3 82.3 3.184 63.87 10.985 0.803 741
2 155 30.3 83.6 3.191 47.55 7.370 1.174 057
4 142 29.6 82.8 3.198 54.82 7.784 0.966 478

Figure 2. SEM images of the undoped and W-doped ZnO thin films. The inset figures demonstrate the side-view SEM images of the films.
The thickness values are estimated from cross-sectional SEM image as 146, 164, 172, 155 and 142 nm for (a) undoped, and (b) 0.5%, (c) 1%,
(d) 2%, and (e) 4 at% of W doped ZnO, respectively.
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The FOM values of the samples are found to be as 0.0379,
0.0552, 0.0803, 0.1174, and 0.0966μΩ−1 for undoped and
0.5 at%, 1 at%, 2 at%, and 4 at% of W-doped ZnO (WZO) films.
A higher FOM value indicates that the sample has superior
performance in terms of optoelectronic properties. It can be
observed that the 2 at% of W-doped ZnO (WZO) film reaches
the highest FOM value of 1.174 × 10−7Ω−1 thanks to its high
transparency and low resistivity. The calculated values of Rsh, r
and FOM are summarized in table 1. Note that the obtained
values of Rsh, r and FOM are consistent with the reported ones
[16, 33]. Figure 4 shows the variation of Tav, r and FOM as a
function of dopant ratio for the WZO films. It can be seen that the
resistivity of the films decreases with increasing dopant con-
centration, and gets lowest value for 2 at% of W-doped ZnO
film. This decrease in resistivity can be explained by the
increased number of free electrons of donors W6+ ions occu-
pying the locations of Zn2+ cations [34]. On the other hand, the

resistivity of the films exhibits an increasing trend above 2 at%
doping of W, which might be the result of dopant atoms segre-
gating at the grain boundaries and causing disturbances in the
lattice [35].

Figure 5 depicts the schematic of the studied photo-
detectors. All electrical measurements are carried out under
ambient conditions at room temperature. Prior to measuring p–
n photodetector performance, the contacts to W-ZnO and Si on
Ag/WZO and Al/Si junctions are separately tested using lin-
ear I–V characteristics [36, 37]. As we verified elsewhere, they
exhibit Ohmic behavior proving that Schottky behavior rises
from a p–n junction occurring between ZnO and Si.

Figure 6 shows the I–V characteristics of the UV detector
recorded in dark and under 365 nm light illumination at dif-
ferent bias voltages range from −5 to +5 V. The devices
respond to a wavelength of 365 nm of light, displaying

Figure 5. Schematic representation of W-ZnO/p-Si based device.

Figure 6. Current–voltage (I–V ) characteristics for the fabricated
devices.

Figure 3. Transmittance characteristics of W-ZnO layers. The inset
demonstrates Tauc’s plot.

Figure 4. The variation of Tav, r and FOM as a function of dopant
ratio for the WZO films.
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increased current as compared to that in the dark. An excel-
lent rectifying behavior and low dark current of the devices,
which originate from the high-quality junction between n-
ZnO and p-Si layers, are readily apparent when their rectifi-
cation performance is assessed. Even though the rectification
ratio (RR= Iforward/Ireverse) of W-doped ZnO layer-based
devices is lower than that of undoped ZnO layer-based device
at the bias of ±5 V (table 2), the observed RR values are
superior to those reported for similar structures [38, 39].
Accordingly, the photocurrent induced by the light at a
wavelength of 365 nm can be ascribed to the electron–hole
pairs generated by the incident photons with wavelength
smaller than the wavelength (380 nm) corresponding to
bandgap. It is obvious that the devices exhibit an exceptional
photoresponse when exposed to 365 nm light illumination.
The photoresponsivity (PR) is defined as [40];

PR
I

P A
2

light ( )=
l

where Ilight, Pλ and A stand for the photocurrent, the intensity
of illuminating light, and the effective area (1 cm2), respec-
tively. The PR represents the photocurrent produced per unit
of the intensity of illuminating light. The PR values calculated
at a reverse bias of 5 V are given in table 2, which is improved
by incorporating of W dopant. Another key parameter is the
photosensitivity (PS) which is expressed as [41];

PS
I I

I
3

light dark

dark
( )=

-

where Idark is the current in the dark. As seen from table 2, the

PS can be improved by incorporating of W dopant as well.
This proposes to boost the performance of ZnO/Si hetero-
junction structure, W dopant should be employed in ZnO lat-
tice. In figure 7, these photodetector metrics for the devices are
compared under different W-dopant percentages. This com-
parative plot illustrates that 2 at% of W-doped ZnO has clear
advantages compared to others, providing 2.95-fold higher
photoresponsivity and 2.42-fold greater photosensitivity.

Other vital photodetector metrics are the specific detec-
tivity (D*), the external quantum efficiency (EQE), linear
dynamic range (LDR) and noise equivalent power (NEP). The
D*, EQE, LDR and NEP evaluate the sensitivity to weak
optical signals, the photon utilization rate, signal-to-noise
ratio, and the input illumination power to generate a signal-to-
noise ratio of 1 at bandwidth of 1 Hz, respectively. They can
be estimated by [40, 42];

D
PRA

qI2
4

1 2

dark
1 2

*
( )

( )=
/

/

EQE
hc

q
PR 10 % 52 ( )

l
= ´

⎜ ⎟
⎛
⎝

⎞
⎠

LDR
I

I
20 log 6

light

dark
( )=

NEP
A

D
7

1 2

*
( )=

/

where q, h, c and λ denote unit charge, Planck’s constant, the
speed of light and the excitation wavelength, respectively.

Table 2. Photodetector parameters of undoped and W-doped ZnO thin films-based devices.

Sample (% at W) RR PR (A/W) PS D* x1012 (Jones) EQE (%) LDR (dB) NEP ×10−13 (W/Hz1/2)

0 17733 1.30 14.03 1.23 519 22.94 8.13
0.5 8224 1.99 19.56 1.82 675 25.83 5.51
1 3658 2.43 12.41 1.57 825 21.87 6.36
2 5587 3.84 34.01 3.30 1305 30.63 2.97
4 4664 2.65 18.09 2.01 901 25.15 4.97

Figure 7. Photoresponsivity (PR) and photosensitivity (PS) versus
dopant ratio plots of the devices.

Figure 8. The time-dependent photoresponse characteristics of the
devices consist of undoped and 2 at% of W doped ZnO.
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With amount of W-dopant rises, the recombination ratio of
electron–hole pairs is initially suppressed until 2 at% of W
dopant, then the recombination ratio is boosted with further
increase in amount of W-dopant to 4 at% because of the
increased concentration of charge carriers. Therefore, both
D* and EQE are initially improved until 2 at% of W dopant

then reduced. D* and EQE reach maximum values of 3.3 ×
1012 Jones and 1305% at 2 at% of W dopant, implying a good
ability for weak signal detection and a significant improve-
ment in proportion of photoexcited electron–hole pairs.
Notably, the device including 2 at% of W dopant exhibits a
remarkable LDR and NEP value with the trend observed in
other figures of merit. The LDR is estimated to be ∼31 dB at
2 at% of W dopant. This value is much larger than that of the
device including undoped ZnO, demonstrating a significant
photocurrent to dark current ratio and a strong signal-to-noise
ratio. The NEP of 2.97 × 10−13 W/Hz1/2 is achieved at 2 at%
of W dopant. The ultralow NEP stands for the low noise ratio,
which increases the sensitivity of the detector to optical sig-
nals. The above results reveal that 2 at% of W dopant is the
more suitable amount of doping for high performance pho-
todetector of ZnO:W/Si heterojunction.

The time-resolved photoresponse plots of the photo-
detectors consisting of undoped and 2 at% of W doped ZnO
at a reverse bias of 5 V are shown in figure 8. The rise time
(τr) /decay time (τd) are assumed to be 19, 17 ms, respec-
tively for undoped one, and 25, 20 ms, respectively for 2 at%
of W doped ZnO one. Generally, there is a trade-off between
photoresponsivity and response time [43]. Therefore, such a
response speed is meaningful concerning high photo-
responsivity of W-doped ZnO with respect to undoped one.

The performance comparison of the photodetector para-
meters of current work with those reported for doped ZnO
photodetectors is given in table 3. It is worth noting that the τr,
PR, D*, and EQE in our device are better than other reported
photodetectors. The rapid separation and collection of photo-
generated carriers in our device is primarily responsible for the
impressive performance we achieve in the present invest-
igation. In addition to this, the superior carrier transport
property of W-doped ZnO makes it advantageous for the rapid
drift of charge carriers, resulting in a short response time.

To get insight into the underlying physics of this high
performance of the device having 2% W dopant rate, the
capacitance (C)–voltage (V ) measurements are carried out for
the devices. As shown in figure 9, the slope and x-intercept of
1/C2 versus voltage characteristics are used to estimate the
values of donor concentration (Nd) and built-in potential (Vbi)
[52]. The heterojunction theory can be used to express the
depletion layer capacitance [37].

C
qN N

N N V V2

1
82 a d 1 2

d 1 a 2 bi( )
( )e e

e e
=

+ -

where Nd, V, ε1 and ε2 refer to donor concentration and

Table 3. Comparison of the photodetector parameters of current work with those reported for doped ZnO photodetectors.

Sample τr(s) PR (A/W) PS D* (Jones) EQE (%) References

ZnO:Ni 0.5 7.52 × 10−6 416 7.92 × 108 — [44]
ZnO:Co 1.4 0.93 — 9.32 × 1010 218 [45]
ZnO:Sn 3 1.56 1.2 × 105 1.70 × 1010 — [46]
ZnO:Ga 1 0.38 — 1.24 × 1010 125 [47]
ZnO:Nd 0.3 0.73 — 1.18 × 1011 236 [48]
ZnO:Al 30 3.65 — 1.30 × 1012 — [49]
ZnO:Cd 5 2.96 × 10−5 920 2.4 × 109 — [50]
ZnO:Fe 46 0.75 471 [51]
ZnO:W 0.025 3.84 34.01 3.30 × 1012 1305 This work

Table 4. The parameters extracted from figure 8.

Sample
(at %
of W)

Nd

× 1016

(cm−3) dn (nm) dp (nm) W (nm) Vbi (V)

0 1.36 119 381 500 0.68
0.5 1.91 91 391 482 0.69
1 2.26 73 440 513 0.69
2 4.97 35 475 510 0.71
4 10.3 18 484 502 0.73

Figure 9. 1/C2
–V curves of the devices.
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applied bias voltage, the dielectric constant values of the n-
ZnO and p-Si, respectively. Additionally, the creation of a
heterojunction between n-ZnO and p-Si is implied by the
linear behavior of the C–V characteristics. The obtained
values of Vbi and Nd are listed in table 4. Both parameters
increase with increasing W-dopant ratio. Knowing Vbi allows
us to determine the depletion layer width in the n-type region
(dn) and p-type region (dp) [53],

d
V N

qN N N

2
9n

1 2 bi a

d d 1 a 2( )
( )e e

e e
=

+

d
V N

qN N N

2
10p

1 2 bi d

a d 1 a 2( )
( )e e

e e
=

+

Based on the data, the calculated depletion layer
(W=dn+dp) varies between 482 and 513 nm and always dn <
dp, indicating that the depletion layer is mainly located on the
p-Si side. Expanding the depletion zone into Si results in the
effective collection of carriers created by light illumination in
the Si absorption region. This may enhance the transport and
carrier separation properties in the depletion zone. One might
expect that the device with 4 at% of W dopant would exhibit
the best performance. However, the possibility of recombi-
nation of electron–hole pairs will be promoted due to
the significantly increased concentration of charge carriers
(Nd = 1.03×1017cm−3) with 4 at% of W dopant, which
hinders the development of performance of the device. In the
fabricated devices, ultimately, in the device with 2 at% of W

Figure 10. Energy band diagram of W-ZnO/p-Si under illumination condition at zero bias.

Table 5. A comparison of key parameters of p–n heterojunction-based photodetectors containing doped metal oxides.

Sample τr(s) PR (A/W) PS D* (Jones) EQE (%) References

ZnO:Y/Si 30 0.18 1356 3.93 × 1011 — [54]
CuO:Sr/Si — 2.85 — 2.80 × 1012 279 [55]
Ga2O3:Sb/Si 0.07 0.21 1600 — 103 [56]
TiO2:Nb/Si 0.73 1.44 — 9.02 × 1012 464 [57]
TiO2:Er/Si 0.10 1.34 <15 5.76 × 109 — [58]
CdO:Zn:Y/Si 0.80 1.45 6.00 × 109 339 [59]
Ga2O3:Ti/Si 0.073 0.38 — 2.30 × 1010 130 [60]
ZnO:In/Si — 1.07 — 8.40 × 1010 <300 [61]
ZnO:W/Si 0.025 3.84 34.01 3.30 × 1012 1305 This work
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dopant, the separation of the photogenerated carriers by
incident light remains more effective.

Figure 10 presents the energy band diagram for the
fabricated devices under light illumination. Due to the dif-
ference in Fermi levels, once Si and ZnO come in contact,
electrons will diffuse from ZnO to Si (holes will diffuse in the
other direction). The energy band will bend when both Fermi
levels are in alignment, creating the depletion zone and built-
in potential at the interface. Between Si and ZnO, a type II
contact eventually develops. The potential barriers and
depletion zone may be weakened when a forward bias is
given to the p–n junction. Once UV light impinges onto the
device, the light passes into the interface of the ZnO/Si p–n
heterojunction and generates electron–hole pairs, causing the
photodetector to have a significant photocurrent.

To vividly compare the photodetector performance of
current work with those reported for p–n heterojunction-based
photodetectors containing doped metal oxides (MO), finally,
the key parameters of the MO:X (X: dopant)/Si p–n junction
devices are summarized in table 5. In comparison, the overall
performance of the W-doped ZnO/Si heterojunction photo-
detector is generally better than that of the previously reported
devices. The present photodetector specifically outperforms
them with a higher PR, a larger EQE and a shorter τr,
implying that the W-doped ZnO/Si structured device is a
promising candidate for high-performance UV-detecting
applications.

4. Conclusion

In the present study, we investigated the optical, structural
and electrical characteristics of W-doped ZnO/Si based
photodetectors by focusing on the effect of varying the W
content. W-doped ZnO thin films with different W content
varying from 0 at% to 4 at% were deposited on Si substrates
via sol–gel spin coating method. The current–voltage char-
acteristics of the fabricated W-doped ZnO/Si p–n hetero-
junction-based photodetectors were measured in the dark and
under UV illumination. It is observed that all the fabricated
devices show diode-like rectifying behavior and UV detection
property. Among them, sample with atomic ratio of W/
Zn = 2% is the best performing UV photodetector, exhibiting
a high PR of 3.84 AW−1 and a large EQE of 1305%.
Moreover, it is noteworthy to say that the UV detection
performance of the p–n heterojunction-based photodetectors
strongly dependent on the properties of metal oxide layer and
the nature of depletion zone. Ultimately, our results suggest
that 2 at% of W dopant is the more suitable amount of doping
for high performance photodetector of ZnO:W/Si hetero-
junction thanks to the suppressed recombination ratio and
enhanced carrier separation properties in the depletion zone.
In conclusion, our findings show that 2 at% of the W dopant
is the optimum amount of doping for the high-performance
photodetector of the ZnO:W/Si heterojunction, owing to the
suppressed recombination rate together with the improved
carrier separation and transport properties in the depletion
region.
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