Brought to you by:

Highlights of 2021

Welcome to the Chinese Physics C highlights of 2021, our annual selection of the best papers published in the previous year, which represent the breadth and excellence of the work published in the journal.

To view the articles listed below, please ensure that you are logged in to your institutional network.

We would like to thank all of the journal's authors, reviewers, readers and Editorial Board, for their invaluable dedication and support over the last year.

We hope that you enjoy reading these papers and that you will consider publishing your next paper with Chinese Physics C.

All selected articles are free to read for the duration of 2022.

Highlights 2021

Show article list

Rapidity dependence of global polarization in heavy ion collisions

Zuo-Tang Liang et al 2021 Chinese Phys. C 45 014102

We use a geometric model for hadron polarization in heavy ion collisions with an emphasis on the rapidity dependence. The model is based on the model of Brodsky, Gunion, and Kuhn, as well as the Bjorken scaling model. We make predictions regarding the rapidity dependence of global $\Lambda$ polarization in the collision energy range of 7.7-200 GeV by assuming the rapidity dependence of two parameters, $\kappa$ and $\left\langle p_{T}\right\rangle $. The predictions can be tested by future beam-energy-scan experiments at the Relativistic Heavy Ion Collider of Brookhaven National Lab.

Open access
Feasibility and physics potential of detecting 8B solar neutrinos at JUNO

Angel Abusleme et al 2021 Chinese Phys. C 45 023004

The Jiangmen Underground Neutrino Observatory (JUNO) features a 20 kt multi-purpose underground liquid scintillator sphere as its main detector. Some of JUNO's features make it an excellent location for $ ^8 $B solar neutrino measurements, such as its low-energy threshold, high energy resolution compared with water Cherenkov detectors, and much larger target mass compared with previous liquid scintillator detectors. In this paper, we present a comprehensive assessment of JUNO's potential for detecting $ ^8 $B solar neutrinos via the neutrino-electron elastic scattering process. A reduced 2 MeV threshold for the recoil electron energy is found to be achievable, assuming that the intrinsic radioactive background $ ^{238} $U and $ ^{232} $Th in the liquid scintillator can be controlled to 10$ ^{-17} $ g/g. With ten years of data acquisition, approximately 60,000 signal and 30,000 background events are expected. This large sample will enable an examination of the distortion of the recoil electron spectrum that is dominated by the neutrino flavor transformation in the dense solar matter, which will shed new light on the inconsistency between the measured electron spectra and the predictions of the standard three-flavor neutrino oscillation framework. If $ \Delta m^{2}_{21} = 4.8\times10^{-5}\; (7.5\times10^{-5}) $ eV$ ^{2} $, JUNO can provide evidence of neutrino oscillation in the Earth at approximately the 3$ \sigma $ (2$ \sigma $) level by measuring the non-zero signal rate variation with respect to the solar zenith angle. Moreover, JUNO can simultaneously measure $ \Delta m^2_{21} $ using $ ^8 $B solar neutrinos to a precision of 20% or better, depending on the central value, and to sub-percent precision using reactor antineutrinos. A comparison of these two measurements from the same detector will help understand the current mild inconsistency between the value of $ \Delta m^2_{21} $ reported by solar neutrino experiments and the KamLAND experiment.

Search for electron-antineutrinos associated with gravitational-wave events GW150914, GW151012, GW151226, GW170104, GW170608, GW170814, and GW170817 at Daya Bay

F. P. An et al 2021 Chinese Phys. C 45 055001

The establishment of a possible connection between neutrino emission and gravitational-wave (GW) bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge. In the Daya Bay experiment, using the data collected from December 2011 to August 2017, a search was performed for electron-antineutrino signals that coincided with detected GW events, including GW150914, GW151012, GW151226, GW170104, GW170608, GW170814, and GW170817. We used three time windows of ±10, ±500, and ±1000 s relative to the occurrence of the GW events and a neutrino energy range of 1.8 to 100 MeV to search for correlated neutrino candidates. The detected electron-antineutrino candidates were consistent with the expected background rates for all the three time windows. Assuming monochromatic spectra, we found upper limits (90% confidence level) of the electron-antineutrino fluence of (1.13 − 2.44)×1011 cm−2 at 5 MeV to 8.0×107 cm−2 at 100 MeV for the three time windows. Under the assumption of a Fermi-Dirac spectrum, the upper limits were found to be (5.4 − 7.0)×109 cm−2 for the three time windows.

Open access
Analytic continuation and reciprocity relation for collinear splitting in QCD

Hao Chen et al 2021 Chinese Phys. C 45 043101

It is well-known that direct analytic continuation of the DGLAP evolution kernel (splitting functions) from space-like to time-like kinematics breaks down at three loops. We identify the origin of this breakdown as due to splitting functions not being analytic functions of external momenta. However, splitting functions can be constructed from the squares of (generalized) splitting amplitudes. We establish the rules of analytic continuation for splitting amplitudes, and use them to determine the analytic continuation of certain holomorphic and anti-holomorphic part of splitting functions and transverse-momentum dependent distributions. In this way we derive the time-like splitting functions at three loops without ambiguity. We also propose a reciprocity relation for singlet splitting functions, and provide non-trivial evidence that it holds in QCD at least through three loops.

Open access
Antineutrino energy spectrum unfolding based on the Daya Bay measurement and its applications

F. P. An et al 2021 Chinese Phys. C 45 073001

The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era. The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by the Daya Bay experiment, in combination with the fission rates of fissile isotopes in the reactor, is used to extract the positron energy spectra resulting from the fission of specific isotopes. This information can be used to produce a precise, data-based prediction of the antineutrino energy spectrum in other reactor antineutrino experiments with different fission fractions than Daya Bay. The positron energy spectra are unfolded to obtain the antineutrino energy spectra by removing the contribution from detector response with the Wiener-SVD unfolding method. Consistent results are obtained with other unfolding methods. A technique to construct a data-based prediction of the reactor antineutrino energy spectrum is proposed and investigated. Given the reactor fission fractions, the technique can predict the energy spectrum to a 2% precision. In addition, we illustrate how to perform a rigorous comparison between the unfolded antineutrino spectrum and a theoretical model prediction that avoids the input model bias of the unfolding method.

Initial years' neutron-induced cross-section measurements at the CSNS Back-n white neutron source

Jingyu Tang et al 2021 Chinese Phys. C 45 062001

The Back-n white neutron source (known as Back-n) is based on back-streaming neutrons from the spallation target at the China Spallation Neutron Source (CSNS). With its excellent beam properties, e.g., a neutron flux of approximately 1.8×107 n/cm2/s at 55 m from the spallation target, energy range spanning from 0.5 eV to 200 MeV, and time-of-flight resolution of a few per thousand, along with the equipped physical spectrometers, Back-n is considered to be among the best facilities in the world for carrying out nuclear data measurements. Since its completion and commencement of operation in May 2018, five types of cross-section measurements concerning neutron capture cross-sections, fission cross-sections, total cross-sections, light charged particle emissions, in-beam gamma spectra, and more than forty nuclides have been measured. This article presents an overview of the experimental setup and result analysis on the neutron-induced cross-section measurements and gamma spectroscopy at Back-n in the initial years.

Open access
NLO effects for ΩQQQ baryons in QCD Sum Rules

Ren-Hua Wu et al 2021 Chinese Phys. C 45 093103

We study the triply heavy baryons $\Omega_{QQQ}$ $(Q=c, b)$ in the QCD sum rules by performing the first calculation of the next-to-leading order (NLO) contribution to the perturbative QCD part of the correlation functions. Compared with the leading order (LO) result, the NLO contribution is found to be very important to the $\Omega_{QQQ}$. This is because the NLO not only results in a large correction but also reduces the parameter dependence, making the Borel platform more distinct, especially for the $\Omega_{bbb}$ in the $\overline{\rm{MS}}$ scheme, where the platform appears only at NLO but not at LO. Particularly, owing to the inclusion of the NLO contribution, the renormalization schemes ($\overline{\rm{MS}}$ and On-Shell) dependence and the scale dependence are significantly reduced. Consequently, after including the NLO contribution to the perturbative part in the QCD sum rules, the masses are estimated to be $4.53^{+0.26}_{-0.11}$ GeV for $\Omega_{ccc}$ and $14.27^{+0.33}_{-0.32}$ GeV for $\Omega_{bbb}$, where the results are obtained at $\mu=M_B$ with errors including those from the variation of the renormalization scale μ in the range $(0.8-1.2) M_B$. A careful study of the μ dependence in a wider range is further performed, which shows that the LO results are very sensitive to the choice of μ whereas the NLO results are considerably better. In addition to the $\mu=M_B$ result, a more stable value, (4.75-4.80) GeV, for the $\Omega_{ccc}$ mass is found in the range of $\mu=(1.2-2.0) M_B$, which should be viewed as a more relevant prediction in our NLO approach because of $ \mu $ dependence.

Open access
Analytic two-loop master integrals for tW production at hadron colliders: I

Long-Bin Chen and Jian Wang 2021 Chinese Phys. C 45 123106

We present the analytic calculation of two-loop master integrals that are relevant for tW production at hadron colliders. We focus on the integral families with only one massive propagator. After selecting a canonical basis, the differential equations for the master integrals can be transformed into the d ln form. The boundaries are determined by simple direct integrations or regularity conditions at kinematic points without physical singularities. The analytical results in this work are expressed in terms of multiple polylogarithms, and have been checked via numerical computations.

Open access
The NUBASE2020 evaluation of nuclear physics properties

F.G. Kondev et al 2021 Chinese Phys. C 45 030001

The NUBASE2020 evaluation contains the recommended values of the main nuclear physics properties for all nuclei in their ground and excited, isomeric (T1/2$\ge$100 ns) states. It encompasses all experimental data published in primary (journal articles) and secondary (mainly laboratory reports and conference proceedings) references, together with the corresponding bibliographical information. In cases where no experimental data were available for a particular nuclide, trends in the behavior of specific properties in neighboring nuclei were examined and estimated values are proposed. Evaluation procedures and policies that were used during the development of this evaluated nuclear data library are presented, together with a detailed table of recommended values and their uncertainties.

Observation of the Crab Nebula with LHAASO-KM2A − a performance study

F. Aharonian et al 2021 Chinese Phys. C 45 025002

A sub-array of the Large High Altitude Air Shower Observatory (LHAASO), KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV. Even though the detector construction is still underway, half of the KM2A array has been operating stably since the end of 2019. In this paper, we present the KM2A data analysis pipeline and the first observation of the Crab Nebula, a standard candle in very high energy γ-ray astronomy. We detect γ-ray signals from the Crab Nebula in both energy ranges of 10$ - $100 TeV and $ \gt $100 TeV with high significance, by analyzing the KM2A data of 136 live days between December 2019 and May 2020. With the observations, we test the detector performance, including angular resolution, pointing accuracy and cosmic-ray background rejection power. The energy spectrum of the Crab Nebula in the energy range 10-250 TeV fits well with a single power-law function dN/dE = (1.13$ \pm $0.05$ _{\rm stat} $$ \pm $0.08$ _{\rm sys} $)$ \times $10$ ^{-14} $$ \cdot $(E/20 TeV)$ ^{-3.09\pm0.06_{\rm stat}\pm0.02_{\rm sys}} $ cm$ ^{-2} $ s$ ^{-1} $ TeV$ ^{-1} $. It is consistent with previous measurements by other experiments. This opens a new window of γ-ray astronomy above 0.1 PeV through which new ultrahigh-energy γ-ray phenomena, such as cosmic PeVatrons, might be discovered.