The Zamolodchikov tetrahedron equation inherits almost all the richness of structures and topics in which the Yang–Baxter equation is involved. At the same time, this transition symbolizes the growth of the order of the problem, the step from the Yang–Baxter equation to the local Yang–Baxter equation, from the Lie algebra to the 2-Lie algebra, from ordinary knots in
to 2-knots in
. These transitions are followed in several examples, and there are also discussions of the manifestation of the tetrahedron equation in the long-standing question of integrability of the three-dimensional Ising model and a related model of neural network theory: the Hopfield model on a two-dimensional lattice.
Bibliography: 82 titles.








![$\mathfrak{gl}_2[t]$](https://content.cld.iop.org/journals/0036-0279/75/5/791/revision3/RMS_75_5_791ieqn1.gif?Expires=1707477014&Signature=u~j4iK60TdMZF49SJi0Ex0MmK5j8BMLcBU3JIFiFtTeyAIUc-4b9NJO1WVd4ZgjCSsnVwNW0hHRBcQGCjvk6gvZRpOXEO6eCl3Lp4fsumTv1oPF-CGteMI6VDO7NliQi4GHRTAMCc3y2Zf~1ee~jjQL2yXtFl59pwCZialH8nfzZ0xYp5vhkzmE1PPPJPWvr6EyUZseHwLo2xAXsPj0dxl2jJqnuMq6UwpqWkfYmJvrPKQq3s1Ux8l5ex8~inARCjimwH8WFcPz-OFP1lVnjOY38KHQxQ8XCGDgaCSIkOqLIDyfHR9HiOdSPp1pH~R7aC5kVd0iLVKg4C-KdlN0fnQ__&Key-Pair-Id=KL1D8TIY3N7T8)
![$\mathbb{C}^2[t]$](https://content.cld.iop.org/journals/0036-0279/75/5/791/revision3/RMS_75_5_791ieqn2.gif?Expires=1707477014&Signature=GNwcc~URz0d8Ve3BSvKekEHMkA6Iz8PS2mvmJQdHcwiYDlr66x96xwydET7JgzEmhgDhF-nlvraPo0LeCRCDtKv6ktE-kOWqn8amURSFTmbKvOGaLGSDsNezZP~1rS0UEA9ov~7Dsvi20k2cg4hF8wdUgg~MhOo-XpPwHQZiHnQwZYr5fCE6HTUCq0JWbMCJFkFwV25-MzZUOSVSZJPUAbyN0K3fxwL-dyAQQx~aJ-3G2TETJh7u0gzlv3aXQWskggnn3AntozYskpFsn5pjGPs3O36L4XIInEg4a1q53HYFr9n2KqylAN5~0H8e7JSumdr9zBPd9FvHpjnjw55qfA__&Key-Pair-Id=KL1D8TIY3N7T8)

1.1. Spectral measures and power-function growth of dispersion 1.2. Proof of Theorem 3 1.3. Correlation coefficients and dispersion growth § 2. Decay of the probability of an ε-deviation 2.1. The case of independent
2.2. Decay of
and growth of
by functions cohomologous to zero 2.4. Proofs of Theorems 11 and 12 § 3. On the law of the iterated logarithm 3.1. The growth of 





















![$m\in[m_l^{(1)}, m_l^{(2)}]$](https://content.cld.iop.org/journals/0036-0279/69/3/539/revision1/rms_69_3_539ieqn13.gif?Expires=1707477018&Signature=XiBXCtUp9N6s~OP2buLcQ2ZfY~6Sv4TGy0GstQyTRKVqgrlfozs4Z8H5RMlUbCNYfHZV8vsPEKEaGDYOe0dzHnHzIfAqlbMvNkFnS-S7UAxtSW1kAO6OfAWR1G3SBMlXhNta7KnKvd0vtmbRM8o4jGPHV0x68N4fAID4RWOMumhxR1Ygt4BkjAWaODfsltII36DLYDzAFovvwP1n7NOVEdvVJvYEqpHRzgHopTCXbCE2-esKsgDYaLY~PqbB-60Utn1vzk~R3mOhlUewCDJhSNrX39BVbMu7XMZ0a8wuwcovGNQn3GJ4MXngmlaRI2cxTie~9BO7DRQVlX5S9GFwQQ__&Key-Pair-Id=KL1D8TIY3N7T8)









