Table of contents

Volume 8

Number 1, March 2017

Previous issue Next issue

Reviews

013001
The following article is Open access

, , , , and

Agriculture stands to benefit from nanotechnology in areas such as combating pests and pathogens, regulating the growth and quality of crops, and developing intelligent materials and nanosensors. The objective of this paper is to provide an overview of the use of nanomaterials (NMs) and nanoparticles (NPs) in plant nutrition, highlighting their advantages and potential uses, but also reviewing their possible environmental destination and effects on ecosystems and consumers. NPs and NMs have been shown to be an attractive alternative for the manufacture of nanofertilizers (NFs), which are more effective and efficient than traditional fertilizers. Because of their impact on crop nutritional quality and stress tolerance in plants, the application of NFs is increasing. However, there are virtually no studies on the potential environmental impact of NPs and NMs when used in agriculture. These studies are necessary because NPs and NMs can be transferred to ecosystems by various pathways where they can cause toxicity to organisms, affecting the biodiversity and abundance of these ecosystems, and may ultimately even be transferred to consumers.

013002
The following article is Open access

, and

High-performance permanent magnets are indispensable in the production of high-efficiency motors and generators and ultimately for sustaining the green earth. The central issue of modern permanent magnetism is to realize high coercivity near and above room temperature on marginally hard magnetic materials without relying upon the critical elements such as heavy rare earths by means of nanostructure engineering. Recent investigations based on advanced nanostructure analysis and large-scale first principles calculations have led to significant paradigm shifts in the understandings of coercivity mechanism in Nd–Fe–B permanent magnets, which includes the discovery of the ferromagnetism of the thin (2 nm) intergranular phase surrounding the Nd2Fe14B grains, the occurrence of negative (in-plane) magnetocrystalline anisotropy of Nd ions and some Fe atoms at the interface which degrades coercivity, and visualization of the stochastic behaviors of magnetization in the magnetization reversal process at high temperatures. A major change may occur also in the motor topologies, which is currently overwhelmed by the magnetic flux weakening interior permanent magnet motor type, to other types with variable flux permanent magnet type in some applications to open up a niche for new permanent magnet materials.

Papers

015001
The following article is Open access

, , and

Over the past decades, biopolymer-based nanomaterials have been developed to overcome the limitations of other macro- and micro- synthetic materials as well as the ever increasing demand for the new materials in nanotechnology, biotechnology, biomedicine and others. Owning to their high stability, biodegradability, low toxicity, and biocompatibility, biopolymer-based nanomaterials hold great promise for various biomedical applications. The pursuit of this review is to briefly describe our recent studies regarding biocompatible biopolymer-based nanomaterials, particularly in the form of dendrimers, hydrogels, and hydrogel composites along with the synthetic and modification approaches for the utilization in drug delivery, tissue engineering, and biomedical implants. Moreover, in vitro and in vivo studies for the toxicity evaluation are also discussed.

015002
The following article is Open access

, , and

In this work we report the isolation of DNA aptamer that is specifically bound to a HER-2 overexpressing SK-BR-3 human breast cancer cell line, using SELEX strategy. Paclitaxel (PTX) loaded chitosan graft Pluronic F127 copolymer micelles conjugate with a DNA aptamer was synthesized and its structure was confirmed by TEM image. This binary mixed system consisting of DNA aptamer modified Pluronic F127 and chitosan could enhance PTX loading capacity and increase micelle stability. Morphology images confirmed the existence of PTX micelles, with an average size of approximately 86.22 ± 1.45 nm diameters. Drug release profile showed that the PTX conjugate maintained a sustained PTX release. From in vitro cell experiment it was shown that 89%–93%, 50%–58%, 55%–62%, 24%–28% and 2%–7% of the SK-BR-3, NS-VN-67, LH-VN-48, HT-VN-26 and NV-VN-31, respectively, were dead after 6–48 h. These results demonstrated a novel DNA aptamer-micelle assembly for efficient detection and a system for the delivery of PTX targeting specific HER-2 overexpressing. We have also successfully cultivated cancer tissues of explants from Vietnamese patients on a type I collagen substrate. The NS-VN-67, LH-VN-48, HT-VN-26 and NV-VN-31cell lines were used as cellular model sources for the study of chemotherapy drug in cancer.

015003
The following article is Open access

, , , and

This paper presents the entire fabrication process including photolithography, sputtering, deep reactive ion etching (Bosch DRIE process) on silicon substrate and bonding process between the lid and silicon substrate to create a designed filtration microfluidic chip with dimension of 28 mm × 7 mm, one inlet port and one outlet port. A pattered silver thin film was deposited on a silicon sample by the lift-off method. Subsequently the newly fabricated sample was anisotropically etched by Bosch DRIE process. Some parameters of Bosch DRIE process such as bias power, duration of etching step and passivation step, oxygen presence were studied to explore the dependence of silicon channel depth and etched shape profile on these parameters. An optimized process was utilized to fabricate a featured silicon channel with vertical, smooth sidewalls and an overall good uniformity. The silicon channel has four arrays of microposts with various distances between microposts from 25 μm to 100 μm. The depth of the silicon channel was about 150 μm. After that, silicon substrate was bonded with mica lid by adhesive bonding method to form the completed filtration microfluidic chip. The samples were characterized by scanning electron microscopy (SEM), mechanical profilometer (DEKTAK 6 M), optical microscopy (Olympus MX51). In this paper a test was performed to demonstrate how the microfluidic chip works by pumping solution with many various sizes of particles through the inlet port of the microfluidic chip and obtaining a solution with desired particles sizes (smaller than 25 μm) through another port. Moreover, the chip could be pumped de-ionized water through outlet port for backwash in order to make this microfluidic chip reusable. Finally, a few applications of microfluidic chips are presented to illustrate the advantages of this technology and the potential for future development.

015004
The following article is Open access

, , , and

In this paper the influence of surface topography on Rutherford backscattering spectrometry (RBS) is discussed. (Cu/Fe/Pd) multilayers with total thickness of about 10 nm were deposited by physical vapor deposition on self-organized array of SiO2 nanoparticles with the size of 50 nm and 100 nm. As a reference, the multilayered systems were also prepared on flat substrates under the same conditions. After the deposition, morphology of the systems was studied by scanning electron microscopy (SEM), while chemical analysis was performed using Rutherford backscattering spectrometry. It was found that the RBS spectra and determined compositions for flat and patterned multilayers differ. The difference is discussed by taking into account the effect of additional inelastic scattering and energy straggling occurring due to developed topography of patterned systems. Then, the multilayers were annealed in 600 °C in order to obtain FePdCu alloy. The phenomenon of solid-state dewetting resulted in the formation of isolated alloy islands on the top of SiO2 nanoparticles. The SEM and RBS analysis were repeated showing correlation between the size distribution of obtained alloy islands and broadening of peaks appearing in RBS spectra.

015005
The following article is Open access

and

UH3-type hydrides were formed by hydrogenation of splat-cooled U-based alloys upon applying high H2 pressures (>2.5 bar). Hydrogenation of U1−xMox alloys (with x  ⩾  0.12 (12 at.% Mo) containing the cubic γ-U phase leads to a formation of nanocrystalline β-UH3, why those of U1−xZrx alloys (with x  ⩾15 at.% Zr) implies a pure α-UH3. The Curie temperature of hydride (UH3)0.85Mo0.15 reaches 200 K; it may be the first U-based ferromagnet with such high TC. The results reflect the dominant U–H interaction.

015006
The following article is Open access

, , , , and

Stoichiometry and lattice structure of epitaxial layers of topological insulators Bi2Te3 and Bi2Se3 grown by molecular-beam epitaxy is studied by high-resolution x-ray diffraction. We show that the stoichiometry of Bi2X3 – δ (X  =  Te, Se) epitaxial layers depends on the additional flux of the chalcogens Te or Se during growth. If no excess flux is employed, the resulting structure is very close to Bi1X1 (δ  =  1), whereas with a high excess flux the stoichiometric Bi2X3 phase is obtained. From the x-ray data we determined the lattice parameters of the layers and their dependence on composition δ, as well as the degree of crystal quality of the layers.

015007
The following article is Open access

Transition metal oxides with a general formula AxMaOb (A  =  Li, Na, M  =  transition metal) constitute a group of potential electrode materials for a new generation of alkaline batteries. This application is related to the fact that these compounds can reversibly intercalate high amounts of alkaline ions (1 or more moles per mole of MaOb) already at room temperature, without significant changes in their crystallographic structure. The author of this work basing on her own investigations of AxMaOb (A  =  Li, Na; M  =  3d, 4d, 5d) has demonstrated that the electronic structure of these materials plays an important role in the intercalation process. Electronic model of intercalation process is presented. Author's studies show that electronic structure 'engineering' is an excellent method of controlling properties of the cathode materials for Li-ion and Na-ion batteries, changing their unfavorable character of the discharge curve, from step-like to monotonic, through modification and control density of states function of a cathode material.

015008
The following article is Open access

, , , , , , and

Cancer targeted therapies have attracted considerable attention over the past year. Recently, 5-fluouracil (5-FU), which has high toxicity to normal cells and short half-life associated with rapid metabolism, is one of the most commonly used therapies in the treatment of cancer. In this study the folic acid-conjugated pegylated nanoliposomes were synthesized and then loaded into them with 5-FU to improve the anti-tumor efficacy. The average size of liposomes (LPs) was about 52.7 nm which was identified by TEM. In the liposome uptake studies, the level uptake of folate-conjugated liposomes has increased compared to non-conjugated LPs according to LPs concentration, incubation time and presence of concentration of free folic acid (FA). The MTT assay and apoptotic test were carried out in HCT116 and MCF-7 cells for 24 or 48 h. The results revealed that the folate-PEG modified 5-Fu loaded nanoliposomes had strong cytotoxicity to cancer cell compared to pure 5-FU or PEG modified 5-FU loaded liposomes in a concentration- and time-dependent manner, and mainly enhanced the cancer cell death through folate-mediated endocytosis. Hence, the folate-PEG modified nanoliposome is a potential targeted drug-delivery system for the treatment of FR-positive cancers.

015009
The following article is Open access

, , , and

The solar spectrum consists of 8% UV radiation, while 45% of solar energy is from visible light. It is therefore desirable to fabricate a hybrid material which is able to harvest energy from a wide range of photons from the sun for applications such as solar cells, photovoltaics, and photocatalysis. In this study we report on the fabrication of a TiO2@porphyrin hybrid material by surfactant-assisted co-assembly of monomeric porphyrin molecules with TiO2 nanoparticles. The obtained TiO2@porphyrin composite shows excellent integration of TiO2 particles with diameters of 15–30 nm into aggregated porphyrin nanofibers, which have a width of 70–90 nm and are several µm long. SEM, XPS, XRD, FTIR, UV–Vis and fluorescence spectroscopy were employed to characterize the TiO2@TCPP hybrid material. This material exhibits efficient photocatalytic performance under simulated sunlight, due to synergistic photocatalytic activities of the porphyrin aggregates in visible light and TiO2 particles in the UV region. A plausible mechanism for photocatalytic degradation is also proposed and discussed.

015010
The following article is Open access

, , , , and

The BiFe1−xNixO3 (x  =  0, 0.05, 0.1, 0.2, and 0.3) nanoparticles were prepared by a simple solution method. Their nanostructures were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray absorption spectroscopy (XAS) and gas absorption techniques. The magnetic properties of the nanoparticles were studied by using a vibrating sample magnetometer (VSM). The increasing of Ni content with decreasing of crystallize size can improve magnetization. Moreover, the samples were fabricated as electrodes to study the electrochemical properties by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). The high specific capacitances of the electrodes are in the range of 193–514 F g−1. Although the increasing of the Ni content leads to decreasing of the specific capacitances, the 5% Ni-doped BiFeO3 can improve the capacity retention (82%) after 500 cycles at 10 A g−1.

015011
The following article is Open access

, , and

In the present work, nano-sized TiO2 polymorphs (anatase, brookite, and rutile) were synthesized via hydrothermal treatment of an amorphous titania. Three polymorphs were characterized by XRD, Raman spectroscopy, SEM, UV–Vis DRS, and N2-sorption measurements. The photocatalytic degradation experiments were performed with low catalyst concentration, high organic loading under a 60 W UV–Vis solarium lamp irradiation. The photocatalytic degradation was monitored by UV–Vis spectroscopy and TOC measurements. Cinnamic acid, ibuprofen, phenol, diatrizoic acid and the dyes rhodamine B and rose bengal were used as model pollutants. The formation of intermediates was studied by ESI-TOF-MS measurements. The presence of active species was checked by quenching the activity by addition of scavengers. The photocatalytic activity decreased in the order: anatase  ⩾  brookite  >  rutile, with growing recalcitrance of organic compounds. The differences in the activity are more pronounced in the degree of mineralization. The valence band holes and superoxide radicals were the major active species in the photocatalytic treatment with anatase and brookite, whereas hydroxyl radicals and superoxide radicals contributed mainly in the treatment with rutile explaining the lower activity of rutile. The complementary use of UV–Vis spectroscopy and TOC measurements was required to obtain a comprehensive realistic assessment on the photocatalytic performance of catalyst.

015012
The following article is Open access

, and

A main obstacle faced by any quantum information processing protocol is the noise that degrades the desired coherence/entanglement. In this work we study by means of Kraus operators the effect of four typical types of noises on the quality of joint remote state preparation of a single-qubit state using a three-qubit Greenberger–Horne–Zeilinger-type state as the initial quantum channel. Assuming that two of the three involved qubits independently suffer a type of noise, we derive analytical expressions not only for the optimal averaged fidelities but also for the boundaries in phase space of the domains in which the joint remote state preparation protocol outperforms the classical one. Detailed discussion is given for each of the total 16 noisy scenarios. We also provide physical interpretation for the obtained results and outline possible future topics.

015013
The following article is Open access

and

We study the critical behaviour of very thin magnetic films. This system can be described by the q-state clock model. In order to determine the critical exponents of the system when there exists the Berezinskii–Kosterlitz–Thouless phase between the two phase transitions, we introduce a new technique for calculating the order parameter. The simulation is performed by very high-resolution Monte Carlo method with including the Wang–Landau algorithm. The results showed that the Berezinskii–Kosterlitz–Thouless phase starts to occur when $q\geqslant 3$ with a small symmetry breaking field. We obtained not only the critical exponents of a common transition at high temperature but also the ones of unclear transition at low temperature.

015014
The following article is Open access

and

An eco-friendly approach for the preparation of silver nanoparticles (AgNPs) from silver nitrate solution using aqueous Eriobotrya japonica leaf extract was investigated. The reduction of silver ions in solution was monitored using UV–visible absorption spectroscopy, and the surface plasmon resonance of AgNPs at 435 nm was observed. The proper condition to biosynthesize AgNPs using E. japonica leaf extract was optimized by UV–visible absorption spectroscopy and dynamic light scattering measurement (DLS). The biosynthesised nanoparticles were characterised using transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), DLS, x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). XRD and EDX analyses confirmed the crystalline character of AgNPs and the presence of elemental silver. The prepared AgNPs were spherical in shape, and their average particle size determined by TEM was about 20 nm. Furthermore the AgNPs were found to exhibit effective antibacterial activities against Escherichia coli and Staphylococcus aureus.

015015
The following article is Open access

, , , and

CeO2–TiO2 nanocomposites with different Ce weight percentages (2, 4, 6 and 8%) were synthesized by sol-gel method. The influence of cerium inclusion on the structural, morphological, optical properties and elemental composition has been analyzed via XRD, BET surface area analysis, UV-DRS, HR-SEM, EDAX, TEM, Raman and photoluminescence spectra. The structural study showed that all the CeO2–TiO2 nanocomposites crystallized in tetragonal structure with anatase phase. Morphological study revealed that the nanocomposites are in spherical shape with size between 13–15 nm. Raman and PL spectra confirmed the presence and influence of oxygen vacancy defects. The adsorption ability of the CeO2–TiO2 nanocomposites was investigated for congo red dye under dark condition. CeO2–TiO2 nanocomposites have enhanced adsorptive performance in comparison with bare TiO2 nanoparticles. The enhanced adsorptive activity of CeO2–TiO2 nanocomposites is due to the higher surface area of the nanocomposites and oxygen vacancies present in the surface of the nanocomposites. The pseudo second order kinetic equation fits well with higher correlation coefficient compared to the pseudo first order in explaining the reaction kinetics.

015016
The following article is Open access

, , , , and

The study investigated the mechanical properties and corrosion behaviour of mild steel coated with carbon nanotubes at different coating conditions. Multi-walled carbon nanotubes (MWCNTs) were synthesized via the conventional chemical vapour deposition reaction using bimetallic Fe–Ni catalyst supported on kaolin, with acetylene gas as a carbon source. The HRSEM/HRTEM analysis of the purified carbon materials revealed significant reduction in the diameters of the purified MWCNT bundles from 50 nm to 2 nm and was attributed to the ultrasonication assisted dispersion with surfactant (gum arabic) employed in purification process. The network of the dispersed MWCNTs was coated onto the surfaces of mild steel samples, and as the coating temperature and holding time increased, the coating thickness reduced. The mechanical properties (tensile strength, yield strength, hardness value) of the coated steel samples increased with increase in coating temperature and holding time. Comparing the different coating conditions, coated mild steels at the temperature of 950 °C for 90 min holding time exhibited high hardness, yield strength and tensile strength values compared to others. The corrosion current and corrosion rate of the coated mild steel samples decreased with increase in holding time and coating temperature. The lowest corrosion rate was observed on sample coated at 950 °C for 90 min.

015017
The following article is Open access

and

Silver nanoparticles (AgNPs) have been synthesized from the alkalinized leaf extract of Cymbopogon citratus, also known as lemon grass (LG), and characterized for their size and shape using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The total formation of the AgNPs was observed visually with a color change from yellow to brownish-black. Fourier transform infrared spectroscopy (FTIR) and energy dispersive x-ray spectroscopy (EDS/EDX) were conducted to determine the various functional groups and the concentration of metal ions in the nanoparticles. The data analysis showed spherically shaped nanoparticles with a size of 10–33 nm, as revealed by TEM, thereby complementing the result for SEM. FTIR identifies the ethylene group as a reducing and capping agent for the formation of the nanoparticles. The x-ray diffraction pattern confirmed the presence of silver crystallites as well as their size, further confirming the result of the TEM. AgNPs do not exhibit very good potential as free radical scavengers when compared to the standards. The synthesized AgNPs in suspension showed activity against both gram-positive and gram-negative bacteria, with minimum inhibitory concentrations (MICs) in the range of 31.25–62.5 µg ml−1. In summary, the synthesized AgNPs possessed an acceptable size and shape.

015018
The following article is Open access

, , , , , , , , , et al

Double-walled carbon nanotubes (DWNT) are made of two concentric and weakly van der Waals coupled single-walled carbon nanotubes (SWNT). DWNTs are the simplest systems for studying the mechanical and electronic interactions between concentric carbon layers. In this paper we review recent results concerning the intrinsic features of phonons of DWNTs obtained from Raman experiments performed on index-identified DWNTs. The effect of the interlayer distance on the strength of the mechanical and electronic coupling between the layers, and thus on the frequencies of the Raman-active modes, namely the radial breathing-like modes (RBLMs) and G-modes, are evidenced and discussed.