Table of contents

Volume 961

Number 2, 2024 February 1

Previous issue Next issue

L27
The following article is Open access

The minimum value of the geomagnetic aa index has served as a remarkably successful predictor of solar cycle amplitude. This value is reached near or just after sunspot minimum, when both the near-Earth solar wind speed and interplanetary magnetic field (IMF) strength fall to their lowest values. At this time, the heliospheric current sheet is flattened toward the heliographic equator and the dominant source of the IMF is the Sun's axial dipole moment, which, in turn, has its source in the polar fields. As recognized previously, the success of ${{aa}}_{\min }$ as solar cycle precursor provides support for dynamo models in which the sunspots of a given cycle are produced by winding up the poloidal field built up during the previous cycle. Because they are highly concentrated toward the poles by the surface meridional flow, the polar fields are difficult to measure reliably. Here we point out that the observed value of the radial IMF strength at solar minimum can be used to constrain the polar field measurements, and that this parameter, which is directly proportional to the Sun's axial dipole strength, may be an even better solar cycle predictor than geomagnetic activity.

L28
The following article is Open access

, , , and

Many mechanisms have been proposed to alleviate the magnetic catastrophe, which prevents the Keplerian disk from forming inside a collapsing magnetized core. Such propositions include inclined field and nonideal magnetohydrodynamics effects, and have been supported with numerical experiments. Models have been formulated for typical disk sizes when a field threads the rotating disk, parallel to the rotation axis, while observations at the core scales do not seem to show evident correlation between the directions of angular momentum and the magnetic field. In the present study, we propose a new model that considers both vertical and horizontal fields and discuss their effects on the protoplanetary disk size.

L29
The following article is Open access

, , , , , , , and

The cause of excess spectral line broadening (nonthermal velocity) is not definitively known, but given its rise before and during flaring, the causal processes hold clues to understanding the triggers for the onset of reconnection and the release of free magnetic energy from the coronal magnetic field. A comparison of data during a 9 hr period from the extreme ultraviolet Imaging Spectrometer on the Hinode spacecraft—at a 3 minute cadence—and nonlinear force-free field extrapolations performed on Helioseismic and Magnetic Imager magnetograms—at a 12 minute cadence—shows an inverse relationship between nonthermal velocity and free magnetic energy on short timescales during two X-class solar flares on 2017 September 6. Analysis of these results supports suggestions that unresolved Doppler flows do not solely cause nonthermal broadening, and instead other mechanisms like Alfvén wave propagation and isotropic turbulence have a greater influence.

L30
The following article is Open access

, , , , , and

Focus on Early Results from the Chinese Hα Solar Explorer (CHASE) Mission

The eruption of solar filaments, also known as prominences appearing off limb, is a common phenomenon in the solar atmosphere. It ejects massive plasma and high-energy particles into interplanetary space, disturbing the solar-terrestrial environment. It is vital to obtain the three-dimensional velocity fields of erupting filaments for space-weather predictions. We derive the three-dimensional kinematics of an off-limb prominence and an on-disk filament, respectively, using the full-disk spectral and imaging data detected by the Chinese Hα Solar Explorer (CHASE). It is found that both the prominence and the filament experience a fast semicircle-shaped expansion at first. The prominence keeps propagating outward with an increasing velocity until escaping successfully, with the south leg of the prominence finally moving back to the Sun in a swirling manner. For the filament, the internal plasma falls back to the Sun in a counterclockwise rotation in the late ejection, matching the failed eruption without a coronal mass ejection. During the eruptions, both the prominence and the filament show material splitting along the line-of-sight direction, revealed by the bimodal Hα spectral profiles. For the prominence, the splitting begins at the top and gradually spreads to almost the whole prominence with a fast blueshift component and a slow redshift component. The material splitting in the filament is more fragmental. As shown by the present results, the CHASE full-disk spectroscopic observations make it possible to systematically study the three-dimensional kinematics of solar filament eruptions.

L31
The following article is Open access

, , , , , , , , , et al

To understand its evolution and the effects of its eruptive events, the Sun is permanently monitored by multiple satellite missions. The optically thin emission of the solar plasma and the limited number of viewpoints make it challenging to reconstruct the geometry and structure of the solar atmosphere; however, this information is the missing link to understand the Sun as it is: a 3D evolving star. We present a method that enables a complete 3D representation of the uppermost solar layer (corona) observed in extreme ultraviolet (EUV) light. We use a deep-learning approach for 3D scene representation that accounts for radiative transfer to map the entire solar atmosphere from three simultaneous observations. We demonstrate that our approach provides unprecedented reconstructions of the solar poles and directly enables height estimates of coronal structures, solar filaments, coronal hole profiles, and coronal mass ejections. We validate the approach using model-generated synthetic EUV images, finding that our method accurately captures the 3D geometry of the Sun even from a limited number of 32 ecliptic viewpoints (∣latitude∣ ≤ 7°). We quantify the uncertainties of our model using an ensemble approach that allows us to estimate the model performance in the absence of a ground truth. Our method enables a novel view of our closest star and is a breakthrough technology for the efficient use of multi-instrument data sets, which paves the way for future cluster missions.

L32
The following article is Open access

, , and

Quasiperiodic oscillations (QPOs) have been widely observed in black hole X-ray binaries (BHBs), which often exhibit significant X-ray variations. Extensive research has explored the long-term evolution of the properties of QPOs in BHBs. In contrast, such evolution in active galactic nuclei (AGNs) has remained largely unexplored due to limited observational data. By using the 10 new XMM-Newton observations for the narrow-line Seyfert 1 galaxy RE J1034 + 396 from publicly available data, we analyze the characteristics of its X-ray QPOs and examine their long-term evolution. The hard-band (1–4 keV) QPOs are found in all 10 observations and the frequency of these QPOs evolves ranging at (2.47–2.83) × 10−4 Hz. Furthermore, QPO signals in the soft (0.3–1 keV) and hard bands exhibit strong coherence, although, at times, the variations in the soft band lead those in the hard band (the hard-lag mode), while at other times, it is the reverse (the soft-lag mode). The observations presented here serendipitously captured two ongoing lag reversals between these two modes within about two weeks, which are first seen in RE J1034 + 396 and also among all AGNs. A transition in QPO frequency also takes place within a two-week timeframe, two weeks prior to its corresponding lag reversal, indicating a possible coherence between the transitions of QPO frequency and lag mode with delay. The diagram of time lag versus QPO frequency clearly evidences this interconnected evolution with hysteresis, which is, for the first time, observed among AGNs.

L33
The following article is Open access

, , , and

Coupling of black hole mass to the cosmic expansion has been suggested as a possible path to understanding the dark energy content of the Universe. We test this hypothesis by comparing the supermassive black hole (SMBH) mass density at z = 0 to the total mass accreted in active galactic nuclei (AGN) since z = 6, to constrain how much of the SMBH mass density can arise from cosmologically coupled growth, as opposed to growth by accretion. Using an estimate of the local SMBH mass density of ≈1.0 × 106M Mpc−1, a radiative accretion efficiency, η, in the range 0.05 < η < 0.3, and the observed AGN luminosity density at z ≈ 4, we constrain the value of the coupling constant between the scale size of the Universe and the black hole mass, k, to lie in the range 0 < k ≲ 2, below the value of k = 3 needed for black holes to be the source term for dark energy. Initial estimates of the gravitational-wave background (GWB) using pulsar timing arrays, however, favor a higher SMBH mass density at z = 0. We show that if we adopt such a mass density at z = 0 of ≈7.4 × 106M Mpc−1, this makes k = 3 viable even for low radiative efficiencies, and may exclude nonzero cosmological coupling. We conclude that, although current estimates of the SMBH mass density based on the black hole mass–bulge mass relation probably exclude k = 3, the possibility remains open that, if the GWB is due to SMBH mergers, k > 2 is preferred.

L34
The following article is Open access

, , , , and

Recent observations of high-energy neutrinos by IceCube and gamma rays by the Fermi Large Area Telescope (LAT) and the MAGIC telescope have suggested that neutrinos are produced in gamma-ray opaque environments in the vicinity of supermassive black holes. In this work, we present 20 MeV–1 TeV spectra of three Seyfert galaxies whose nuclei are predicted to be active in neutrinos, NGC 4151, NGC 4945, and the Circinus galaxy, using 14.4 yr of Fermi LAT data. In particular, we find evidence of sub-GeV excess emission that can be attributed to gamma rays from NGC 4945, as was also seen in NGC 1068. These spectral features are consistent with predictions of the magnetically powered corona model, and we argue that NGC 4945 is among the brightest neutrino active galaxies detectable for KM3Net and Baikal-GVD. On the other hand, in contrast to other reported results, we do not detect gamma rays from NGC 4151, which constrains neutrino emission from the accretion shock model. Future neutrino detectors such as IceCube-Gen2 and MeV gamma-ray telescopes such as AMEGO-X will be crucial for discriminating among the theoretical models.

L35
The following article is Open access

, , , , , , , , , et al

Only a handful of massive starless core candidates have been discovered so far, but none of them have been fully confirmed. Within the MM1 clump in the filamentary infrared dark cloud G34.43+0.24 that was covered by the Atacama Large Millimeter/submillimeter Array (ALMA) ATOMS survey at Band 3 (∼2'', 6000 au) and the ALMA-QUARKS survey at Band 6 (∼0farcs3, 900 au), two prestellar core candidates MM1-C and E1 with masses of 71 and 20 M and radii of 2100–4400 au were discovered. The two cores show no obvious sign of star formation activities. In particular, MM1-C is a very promising massive prestellar core candidate with a total gas mass of 71 M. Within MM1-C, we detected two extremely dense substructures, C1 and C2, as characterized by their high densities of ${n}_{{{\rm{H}}}_{2}}\sim {10}^{8\mbox{--}9}\,{\mathrm{cm}}^{-3}$. Moreover, evidence of further fragmentation in C2 was also revealed. We have detected the primordial fragmentation in the earliest stage of massive star formation, and we speculate that MM1-C would be the birthplace of a massive multiple system. However, we cannot fully rule out the possibility that the massive prestellar core MM1-C will just form a cluster of low-mass stars if it undergoes further fragmentation.

L36
The following article is Open access

and

We use 3D k-means clustering to characterize galaxy substructure in the A2146 cluster of galaxies (z = 0.2343). This method objectively characterizes the cluster's substructure using projected position and velocity data for 67 galaxies within a 2.305 Mpc circular region centered on the cluster's optical center. The optimal number of substructures is found to be four. Four distinct substructures with rms velocity typical of galaxy groups or low-mass subclusters, when compared to cosmological simulations of galaxy cluster formation, suggest that A2146 is in the early stages of formation. We utilize this disequilibrium, which is so prevalent in galaxy clusters at all redshifts, to construct a radial mass distribution. Substructures are bound but not virialized. This method is in contrast to previous kinematical analyses, which have assumed virialization, and ignored the ubiquitous clumping of galaxies. The best-fitting radial mass profile is much less centrally concentrated than the well-known Navarro–Frenk–White profile, indicating that the dark-matter-dominated mass distribution is flatter pre-equilibrium, becoming more centrally peaked in equilibrium through the merging of the substructure.

L37
The following article is Open access

, , , , , , , , , et al

A wealth of observations have long suggested that the vast majority of isolated classical dwarf galaxies (M* = 107–109M) are currently star forming. However, recent observations of the large abundance of "ultra-diffuse galaxies" beyond the reach of previous large spectroscopic surveys suggest that our understanding of the dwarf galaxy population may be incomplete. Here we report the serendipitous discovery of an isolated quiescent dwarf galaxy in the nearby Universe, which was imaged as part of the JWST PEARLS Guaranteed Time Observation program. Remarkably, individual red-giant branch stars are visible in this near-IR imaging, suggesting a distance of 30 ± 4 Mpc, and a wealth of archival photometry point to an sSFR of 2 × 10−11 yr−1 and star formation rate of 4 × 10−4M yr−1. Spectra obtained with the Lowell Discovery Telescope find a recessional velocity consistent with the Hubble Flow and >1500 km s−1 separated from the nearest massive galaxy in Sloan Digital Sky Survey suggesting that this galaxy was either quenched from internal mechanisms or had a very high-velocity (≳1000 km s−1) interaction with a nearby massive galaxy in the past. This analysis highlights the possibility that many nearby quiescent dwarf galaxies are waiting to be discovered and that JWST has the potential to resolve them.

L38
The following article is Open access

, , , , , , , , , et al

The NASA New Horizons Venetia Burney Student Dust Counter (SDC) measures dust particle impacts along the spacecraft's flight path for grains with mass ≥10−12 g, mapping out their spatial density distribution. We present the latest SDC dust density, size distribution, and flux measurements through 55 au and compare them to numerical model predictions. Kuiper Belt objects (KBOs) are thought to be the dominant source of interplanetary dust particles in the outer solar system due to both collisions between KBOs and their continual bombardment by interstellar dust particles. Continued measurements through 55 au show higher than model-predicted dust fluxes as New Horizons approaches the putative outer edge of the Kuiper Belt (KB). We discuss potential explanations for the growing deviation: radiation pressure stretches the dust distribution to further heliocentric distances than its parent body distribution; icy dust grains undergo photosputtering that rapidly increases their response to radiation pressure forces and pushes them further away from the Sun; and the distribution of KBOs may extend much further than existing observations suggest. Ongoing SDC measurements at even larger heliocentric distances will continue to constrain the contributions of dust production in the KB. Continued SDC measurements remain crucial for understanding the Kuiper Belt and the interpretation of dust disks around other stars.

L39
The following article is Open access

, , , , and

Insights from JWST observations suggest that active galactic nuclei feedback evolved from a short-lived, high-redshift phase in which radiatively cooled turbulence and/or momentum-conserving outflows stimulated vigorous early star formation ("positive" feedback), to late, energy-conserving outflows that depleted halo gas reservoirs and quenched star formation. The transition between these two regimes occurred at z ∼ 6, independently of galaxy mass, for simple assumptions about the outflows and star formation process. Observational predictions provide circumstantial evidence for the prevalence of massive black holes at the highest redshifts hitherto observed, and we discuss their origins.

L40
The following article is Open access

, , , , , , and

A kinematic misalignment of the stellar and gas components is a phenomenon observed in a significant fraction of galaxies. However, the underlying physical mechanisms are not well understood. A commonly proposed scenario for the formation of a misaligned component requires any preexisting gas disk to be removed, via flybys or ejective feedback from an active galactic nucleus. In this Letter, we study the evolution of a Milky Way mass galaxy in the FIREbox cosmological volume that displays a thin, counterrotating gas disk with respect to its stellar component at low redshift. In contrast to scenarios involving gas ejection, we find that preexisting gas is mainly removed via the conversion into stars in a central starburst, triggered by a merging satellite galaxy. The newly accreted, counterrotating gas eventually settles into a kinematically misaligned disk. About 4% (8 out of 182) of FIREbox galaxies with stellar masses larger than 5 × 109M at z = 0 exhibit gas–star kinematic misalignment. In all cases, we identify central starburst-driven depletion as the main reason for the removal of the preexisting corotating gas component, with no need for feedback from, e.g., a central active black hole. However, during the starburst, the gas is funneled toward the central regions, likely enhancing black hole activity. By comparing the fraction of misaligned discs between FIREbox and other simulations and observations, we conclude that this channel might have a non-negligible role in inducing kinematic misalignment in galaxies.

L41
The following article is Open access

, , , , , , , , , et al

Stars that formed with an initial mass of over 50 M are very rare today, but they are thought to be more common in the early Universe. The fates of those early, metal-poor, massive stars are highly uncertain. Most are expected to directly collapse to black holes, while some may explode as a result of rotationally powered engines or the pair-creation instability. We present the chemical abundances of J0931+0038, a nearby low-mass star identified in early follow-up of the SDSS-V Milky Way Mapper, which preserves the signature of unusual nucleosynthesis from a massive star in the early Universe. J0931+0038 has a relatively high metallicity ([Fe/H] = −1.76 ± 0.13) but an extreme odd–even abundance pattern, with some of the lowest known abundance ratios of [N/Fe], [Na/Fe], [K/Fe], [Sc/Fe], and [Ba/Fe]. The implication is that a majority of its metals originated in a single extremely metal-poor nucleosynthetic source. An extensive search through nucleosynthesis predictions finds a clear preference for progenitors with initial mass >50 M, making J0931+0038 one of the first observational constraints on nucleosynthesis in this mass range. However, the full abundance pattern is not matched by any models in the literature. J0931+0038 thus presents a challenge for the next generation of nucleosynthesis models and motivates the study of high-mass progenitor stars impacted by convection, rotation, jets, and/or binary companions. Though rare, more examples of unusual early nucleosynthesis in metal-poor stars should be found in upcoming large spectroscopic surveys.

L42
The following article is Open access

, , , , , , , , , et al

We present the first polarimetric analysis of quasiperiodic oscillations (QPOs) in a black hole binary utilizing IXPE data. Our study focuses on Swift J1727.8–1613, which experienced a massive outburst that was observed by various telescopes across different wavelengths. The IXPE observation we studied was conducted during the hard-intermediate state. The polarization degree (PD) and polarization angle (PA) were measured at 4.28% ± 0.20% and 1fdg9 ± 1fdg4, respectively. Remarkably, significant QPO signals were detected during this observation, with a QPO frequency of approximately 1.34 Hz and a fractional rms amplitude of about 12.3%. Furthermore, we conducted a phase-resolved analysis of the QPO using the Hilbert–Huang transform technique. The photon index showed a strong modulation with respect to the QPO phase. In contrast, the PD and PA exhibit no modulations in relation to the QPO phase, which is inconsistent with the expectation of the Lense–Thirring precession of the inner flow. Further theoretical studies are needed to conform with the observational results.

L43
The following article is Open access

, , , , , , , , , et al

For decades, supernova remnants (SNRs) have been considered the prime sources of Galactic cosmic rays (CRs). But whether SNRs can accelerate CR protons to PeV energies and thus dominate CR flux up to the knee is currently under intensive theoretical and phenomenological debate. The direct test of the ability of SNRs to operate as CR PeVatrons can be provided by ultrahigh-energy (UHE; Eγ ≥ 100 TeV) γ-rays. In this context, the historical SNR Cassiopeia A (Cas A) is considered one of the most promising targets for UHE observations. This paper presents the observation of Cas A and its vicinity by the LHAASO KM2A detector. The exceptional sensitivity of LHAASO KM2A in the UHE band, combined with the young age of Cas A, enabled us to derive stringent model-independent limits on the energy budget of UHE protons and nuclei accelerated by Cas A at any epoch after the explosion. The results challenge the prevailing paradigm that Cas A–type SNRs are major suppliers of PeV CRs in the Milky Way.

L44
The following article is Open access

, , , , , , , , and

We present the mid-infrared (5–12 μm) phase curve of GJ 367b observed by the Mid-Infrared Instrument on the James Webb Space Telescope (JWST). GJ 367b is a hot (Teq = 1370 K), extremely dense (10.2 ± 1.3 g cm−3) sub-Earth orbiting an M dwarf on a 0.32 day orbit. We measure an eclipse depth of 79 ± 4 ppm, a nightside planet-to-star flux ratio of 4 ± 8 ppm, and a relative phase amplitude of 0.97 ± 0.10, all fully consistent with a zero-albedo planet with no heat recirculation. Such a scenario is also consistent with the phase offset of 11°E ± 5° to within 2.2σ. The emission spectrum is likewise consistent with a blackbody with no heat redistribution and a low albedo of AB ≈ 0.1, with the exception of one anomalous wavelength bin that we attribute to unexplained systematics. The emission spectrum puts few constraints on the surface composition but rules out a CO2 atmosphere ≳1 bar, an outgassed atmosphere ≳10 mbar (under heavily reducing conditions), or an outgassed atmosphere ≳0.01 mbar (under heavily oxidizing conditions). The lack of day–night heat recirculation implies that 1 bar atmospheres are ruled out for a wide range of compositions, while 0.1 bar atmospheres are consistent with the data. Taken together with the fact that most of the dayside should be molten, our JWST observations suggest that the planet must have lost the vast majority of its initial inventory of volatiles.

L45
The following article is Open access

, , , and

We report the observations of two self-lensing pulses from KIC 12254688 in Transiting Exoplanet Survey Satellite (TESS) light curves. This system, containing an F2V star and white-dwarf companion, was among the first self-lensing binary systems discovered by the Kepler Space Telescope over the past decade. Each observed pulse occurs when the white dwarf transits in front of its companion star, gravitationally lensing the star's surface, thus making it appear brighter to a distant observer. These two pulses are the very first self-lensing events discovered in TESS observations. We describe the methods by which the data were acquired and detrended, as well as the best-fit binary parameters deduced from our self-lensing+radial velocity model. We highlight the difficulties of finding new self-lensing systems with TESS, and we discuss the types of self-lensing systems that TESS may be more likely to discover in the future.

L46
The following article is Open access

, , and

Clette recently showed that F10.7 systematically approaches a quiet Sun daily value of 67 solar flux units (sfu) at solar minima as the number of spotless days on the Sun increases. Previously, a floor of ∼2.8 nT had been proposed for the solar wind (SW) magnetic field strength (B). F10.7, which closely tracks the Sun's unsigned photospheric magnetic flux, and SW B exhibit different relationships to their floors at 11 yr solar minima during the last ∼50 yr. While F10.7 approaches 67 sfu at each minimum, the corresponding SW B is offset above ∼2.8 nT by an amount approximately proportional to the solar polar field strength—which varied by a factor of ∼2.5 during this interval. This difference is substantiated by ∼130 yr of reconstructed F10.7 (via the range of the diurnal variation of the East-component (rY) of the geomagnetic field) and SW B (based on the interdiurnal variability geomagnetic activity index). For the last ∼60 yr, the contribution of the slow SW to SW B has exhibited a floor-like behavior at ∼2 nT, in contrast to the contributions of coronal mass ejections and high-speed streams that vary with the solar cycle. These observations, as well as recent SW studies based on Parker Solar Probe and Solar Dynamics Observatory data, suggest that (1) the Sun has a small-scale turbulent dynamo that is independent of the 11 yr sunspot cycle; and (2) the small-scale magnetic fields generated by this nonvarying turbulent dynamo maintain a constant open flux carried to the heliosphere by the Sun's floor-like slow SW.

L47
The following article is Open access

and

We present a thorough investigation of the long-standing sulfur anomaly enigma. Our analysis uses chemical abundances from the most extensive data set available for 126 planetary nebulae (PNs) with improved accuracy and reduced uncertainties from a 10° × 10° Galactic bulge region. By using argon as a superior PN metallicity indicator, the anomaly is significantly reduced and better constrained. For the first time in PNs we show sulfur α-element lockstep with both oxygen and argon. We dispel hypotheses that the anomaly originates from underestimation of higher sulfur ionization stages. Using a machine-learning approach, we show that earlier ionization correction factor schemes contributed significantly to the anomaly. We find a correlation between the sulfur anomaly and the age/mass of PN progenitors, with the anomaly either absent or significantly reduced in PNs with young progenitors. Despite inherent challenges and uncertainties, we link this to PN dust chemistry, noting those with carbon-dust chemistry show a more pronounced anomaly. By integrating these findings, we provide a plausible explanation for the residual, reduced sulfur anomaly and propose its potential as an indicator of relative galaxy age compositions based on PNs.

L48
The following article is Open access

, , , , and

Finding nearby neutron stars can probe the supernova and metal-enrichment histories near our solar system. Recently, Lin et al. reported an exciting neutron star candidate, Two Micron All Sky Survey J15274848+3536572 (hereafter J1527), with a small Gaia distance of 118 pc. They claim that J1527 harbors an unseen neutron star candidate with an unusually low mass of 0.98 ± 0.03 M. In this work, we use the Canada–France–Hawaii Telescope high-resolution spectrum to measure J1527's orbital inclination independently. Our spectral fitting suggests an orbital inclination of 63° ± 2°. Instead, by fitting a complex hybrid variability model consisting of the ellipsoidal-variation component and the starspot modulation to the observed light curve, Lin et al. obtain an orbital inclination of ${45.2}_{-0.20}^{+0.13}$ degrees. We speculate that the orbital inclination obtained by the light-curve fitting is underestimated since J1527's light curves are obviously not pure ellipsoidal variations. According to our new inclination (i ∼ 63°), the mass of the unseen compact object is reduced to 0.69 ± 0.02 M, which is as massive as a typical white dwarf.