Table of contents

Volume 798

Number 2, 2015 January 10

Previous issue Next issue

L27

, , , , , , and

Combining H i data from the Canadian Galactic Plane Survey and CO data from the Milky Way Imaging Scroll Painting project, we have identified a new segment of a spiral arm between Galactocentric radii of 15 and 19 kpc that apparently lies beyond the Outer Arm in the second Galactic quadrant. Over most of its length, the arm is 400–600 pc thick in z. The new arm appears to be the extension of the distant arm recently discovered by Dame & Thaddeus as well as the Scutum–Centaurus Arm into the outer second quadrant. Our current survey identified a total of 72 molecular clouds with masses on the order of 102–104M that probably lie in the new arm. When all of the available data from the CO molecular clouds are fit, the best-fitting spiral model gives a pitch angle of 9fdg3 ± 0fdg7.

L28

, , and

We use kinetic hybrid simulations (kinetic ions–fluid electrons) to characterize the fraction of ions that are accelerated to non-thermal energies at non-relativistic collisionless shocks. We investigate the properties of the shock discontinuity and show that shocks propagating almost along the background magnetic field (quasi-parallel shocks) reform quasi-periodically on ion cyclotron scales. Ions that impinge on the shock when the discontinuity is the steepest are specularly reflected. This is a necessary condition for being injected, but it is not sufficient. Also, by following the trajectories of reflected ions, we calculate the minimum energy needed for injection into diffusive shock acceleration, as a function of the shock inclination. We construct a minimal model that accounts for the ion reflection from quasi-periodic shock barrier, for the fraction of injected ions, and for the ion spectrum throughout the transition from thermal to non-thermal energies. This model captures the physics relevant for ion injection at non-relativistic astrophysical shocks with arbitrary strengths and magnetic inclinations, and represents a crucial ingredient for understanding the diffusive shock acceleration of cosmic rays.

L29

and

We study the relation between the 300–700 Hz upper kHz quasi-periodic oscillation (QPO) and the 401 Hz coherent pulsations across all outbursts of the accreting millisecond X-ray pulsar SAX J1808.4–3658 observed with the Rossi X-ray Timing Explorer. We find that the pulse amplitude systematically changes by a factor of ∼2 when the upper kHz QPO frequency passes through 401 Hz: it halves when the QPO moves to above the spin frequency and doubles again on the way back. This establishes for the first time the existence of a direct effect of kHz QPOs on the millisecond pulsations and provides a new clue to the origin of the upper kHz QPO. We discuss several scenarios and conclude that while more complex explanations can not formally be excluded, our result strongly suggests that the QPO is produced by azimuthal motion at the inner edge of the accretion disk, most likely orbital motion. Depending on whether this azimuthal motion is faster or slower than the spin, the plasma then interacts differently with the neutron-star magnetic field. The most straightforward interpretation involves magnetospheric centrifugal inhibition of the accretion flow that sets in when the upper kHz QPO becomes slower than the spin.

L30

, , , and

We report finding kiloparsec-scale radio emissions aligned with parsec-scale jet structures in the narrow-line Seyfert 1 (NLS1) galaxy Mrk 1239 using the Very Large Array and the Very Long Baseline Array. Thus, this radio-quiet NLS1 has a jet-producing central engine driven by essentially the same mechanism as that of other radio-loud active galactic nuclei (AGNs). Most of the radio luminosity is concentrated within 100 parsecs and overall radio morphology looks edge-darkened; the estimated jet kinetic power is comparable to Fanaroff–Riley Type I radio galaxies. The conversion from accretion to jet power appears to be highly inefficient in this highly accreting low-mass black hole system compared with that in a low-luminosity AGN with similar radio power driven by a sub-Eddington, high-mass black hole. Thus, Mrk 1239 is a crucial probe to the unexplored parameter spaces of central engines for a jet formation.

L31

, , , , and

The Near-Earth Object Wide-field Infrared Survey Explorer mission observed comet C/2013 A1 (Siding Spring) three times at 3.4 μm and 4.6 μm as the comet approached Mars in 2014. The comet is an extremely interesting target since its close approach to Mars in late 2014 will be observed by various spacecraft in situ. The observations were taken in 2014 January, July, and September when the comet was at heliocentric distances of 3.82 AU, 1.88 AU, and 1.48 AU. The level of activity increased significantly between the January and July visits but then decreased by the time of the observations in September, approximately four weeks prior to its close approach to Mars. In this work, we calculate Afρ values and CO/CO2 production rates.

L32

and

The compact multi-transiting systems discovered by Kepler challenge traditional planet formation theories. These fall into two broad classes: (1) formation further out followed by migration and (2) formation in situ from a disk of gas and planetesimals. In the former, an abundance of resonant chains is expected, which the Kepler data do not support. In the latter, required disk mass surface densities may be too high. A recently proposed mechanism hypothesizes that planets form in situ at the pressure trap associated with the dead-zone inner boundary (DZIB) where radially drifting "pebbles" accumulate. This scenario predicts planet masses (Mp) are set by the gap-opening process that then leads to DZIB retreat, followed by sequential, inside-out planet formation (IOPF). For typical disk accretion rates, IOPF predictions for Mp, Mp versus orbital radius r, and planet–planet separations are consistent with observed systems. Here we investigate the IOPF prediction for how the masses, Mp, 1, of the innermost ("Vulcan") planets vary with r. We show that for fiducial parameters, Mp, 1 ≃ 5.0(r/0.1 AU) M, independent of the disk's accretion rate at time of planet formation. Then, using Monte Carlo sampling of a population of these innermost planets, we test this predicted scaling against observed planet properties, allowing for intrinsic dispersions in planetary densities and Kepler's observational biases. These effects lead to a slightly shallower relation Mp, 1r0.9 ± 0.2, which is consistent with Mp, 1r0.7 ± 0.2 of the observed Vulcans. The normalization of the relation constrains the gap-opening process, favoring relatively low viscosities in the inner dead zone.

L33

, , , , , and

We present the results of continuum and 12CO(3–2) and CH3OH(7–6) line observations of IRAS 16547−4247 made with the Atacama Large Millimeter/submillimeter Array (ALMA) at an angular resolution of ∼0farcs5. The 12CO(3–2) emission shows two high-velocity outflows whose driving sources are located within the dust continuum peak. The alignment of these outflows does not coincide with that of the wide-angle, large-scale, bipolar outflow detected with the Atacama Pathfinder Experiment in previous studies. The CH3OH(7–6) line emission traces an hourglass structure associated with the cavity walls created by the outflow lobes. Taking into account our results together with the position of the H2O and class I CH3OH maser clusters, we discuss two possible scenarios that can explain the hourglass structure observed in IRAS 16547−4247: (1) precession of a biconical jet, (2) multiple, or at least two, driving sources powering intersecting outflows. Combining the available evidence, namely, the presence of two cross-aligned bipolar outflows and two different H2O maser groups, we suggest that IRAS 16547−4247 represents an early formation phase of a protocluster.

L34

, , , , , , , , , et al

We report a new observation of the Jupiter family comet 209P/LINEAR during its 2014 return. The comet is recognized as a dust source of a new meteor shower, the May Camelopardalids. 209P/LINEAR was apparently inactive at a heliocentric distance rh = 1.6 AU and showed weak activity at rh ⩽ 1.4 AU. We found an active region of <0.001% of the entire nuclear surface during the comet's dormant phase. An edge-on image suggests that particles up to 1 cm in size (with an uncertainty of factor 3–5) were ejected following a differential power-law size distribution with index q = −3.25 ± 0.10. We derived a mass-loss rate of 2–10 kg s−1 during the active phase and a total mass of ≈5 × 107 kg during the 2014 return. The ejection terminal velocity of millimeter- to centimeter-sized particles was 1–4 m s−1, which is comparable to the escape velocity from the nucleus (1.4 m s−1). These results imply that such large meteoric particles marginally escaped from the highly dormant comet nucleus via the gas drag force only within a few months of the perihelion passage.

L35

, , and

We show that oppositely directed fluxes of energy and magnetic helicity coexist in the inertial range in fully developed magnetohydrodynamic (MHD) turbulence with small-scale sources of magnetic helicity. Using a helical shell model of MHD turbulence, we study the high Reynolds number MHD turbulence for helicity injection at a scale that is much smaller than the scale of energy injection. In a short range of scales larger than the forcing scale of magnetic helicity, a bottleneck-like effect appears, which results in a local reduction of the spectral slope. The slope changes in a domain with a high level of relative magnetic helicity, which determines that part of the magnetic energy is related to the helical modes at a given scale. If the relative helicity approaches unity, the spectral slope tends to −3/2. We show that this energy pileup is caused by an inverse cascade of magnetic energy associated with the magnetic helicity. This negative energy flux is the contribution of the pure magnetic-to-magnetic energy transfer, which vanishes in the non-helical limit. In the context of astrophysical dynamos, our results indicate that a large-scale dynamo can be affected by the magnetic helicity generated at small scales. The kinetic helicity, in particular, is not involved in the process at all. An interesting finding is that an inverse cascade of magnetic energy can be provided by a small-scale source of magnetic helicity fluctuations without a mean injection of magnetic helicity.

L36

and

Short gamma-ray bursts (SGRBs) are among the most luminous explosions in the universe and their origin still remains uncertain. Observational evidence favors the association with binary neutron star or neutron star–black hole (NS–BH) binary mergers. Leading models relate SGRBs to a relativistic jet launched by the BH-torus system resulting from the merger. However, recent observations have revealed a large fraction of SGRB events accompanied by X-ray afterglows with durations ∼102–105 s, suggesting continuous energy injection from a long-lived central engine, which is incompatible with the short (≲ 1 s) accretion timescale of a BH-torus system. The formation of a supramassive NS, resisting the collapse on much longer spin-down timescales, can explain these afterglow durations, but leaves serious doubts on whether a relativistic jet can be launched at the merger. Here we present a novel scenario accommodating both aspects, where the SGRB is produced after the collapse of a supramassive NS. Early differential rotation and subsequent spin-down emission generate an optically thick environment around the NS consisting of a photon-pair nebula and an outer shell of baryon-loaded ejecta. While the jet easily drills through this environment, spin-down radiation diffuses outward on much longer timescales and accumulates a delay that allows the SGRB to be observed before (part of) the long-lasting X-ray signal. By analyzing diffusion timescales for a wide range of physical parameters, we find delays that can generally reach ∼105 s, compatible with observations. The success of this fundamental test makes this "time-reversal" scenario an attractive alternative to current SGRB models.

L37

, , , , , , , and

We present pre-explosion and post-explosion Hubble Space Telescope images of the Type Iax supernova (SN Iax) 2014dt in M61. After astrometrically aligning these images, we do not detect any stellar sources at the position of the SN in the pre-explosion images to relatively deep limits (3σ limits of MF438W > −5.0 mag and MF814W > −5.9 mag). These limits are similar to the luminosity of SN 2012Z's progenitor system (MF435W = −5.43 ± 0.15 and MF814W = −5.24 ± 0.16 mag), the only probable detected progenitor system in pre-explosion images of a SN Iax, and indeed, of any white-dwarf supernova. SN 2014dt is consistent with having a C/O white-dwarf primary/helium-star companion progenitor system, as was suggested for SN 2012Z, although perhaps with a slightly smaller or hotter donor. The data are also consistent with SN 2014dt having a low-mass red giant or main-sequence star companion. The data rule out main-sequence stars with Minit ≳ 16 M and most evolved stars with Minit ≳ 8 M as being the progenitor of SN 2014dt. Hot Wolf–Rayet stars are also allowed, but the lack of nearby bright sources makes this scenario unlikely. Because of its proximity (D = 12 Mpc), SN 2014dt is ideal for long-term monitoring, where images in ∼2 yr may detect the companion star or the luminous bound remnant of the progenitor white dwarf.

L38

and

A new model for quasar-hosting dark matter halos, meeting two physical conditions, is put forth. First, significant interactions are taken into consideration to trigger quasar activities. Second, satellites in very massive halos at low redshift are removed from consideration due to their deficiency in cold gas. We analyze the Millennium Simulation to find halos that meet these two conditions and simultaneously match two-point auto-correlation functions of quasars and cross-correlation functions between quasars and galaxies at z = 0.5–3.2. The masses of the quasar hosts found decrease with decreasing redshift, with the mass thresholds being [(2–5) × 1012, (2–5) × 1011, (1–3) × 1011] M for median luminosities of ∼[1046, 1046, 1045] erg s−1 at z = (3.2, 1.4, 0.53), respectively, an order of magnitude lower than those inferred based on halo occupation distribution modeling. In this model, quasar hosts are primarily massive central halos at z ⩾ 2–3 but increasingly dominated by lower mass satellite halos experiencing major interactions toward lower redshift. However, below z = 1, satellite halos in groups more massive than ∼2 × 1013M do not host quasars. Whether for central or satellite halos, imposing the condition of significant interactions substantially boosts the clustering strength compared to the total population with the same mass cut. The inferred lifetimes of quasars at z = 0.5–3.2 of 3–30 Myr are in agreement with observations. Quasars at z ∼ 2 would be hosted by halos of mass ∼5 × 1011M in this model, compared to ∼3 × 1012M previously thought, which would help reconcile with the observed, otherwise puzzling high covering fractions for Lyman limit systems around quasars.

L39

, , , and

We present the discovery of an extended ring of ultraviolet (UV) emission surrounding the asymptotic giant branch (AGB) star U Hya in archival observations performed by the Galaxy Evolution Explorer. This is the third discovery of extended UV emission from a carbon AGB star and the first from an AGB star with a detached shell. From imaging and photometric analysis of the FUV and NUV images, we determined that the UV ring has a radius of ∼110'', thus indicating that the emitting material is likely associated with the detached shell seen in the infrared. We find that scattering of the central point source of NUV and FUV emission by the dust shell is negligible. Moreover, we find that scattering of the interstellar radiation field by the dust shell can contribute at most ∼10% of the FUV flux. Morphological and photometric evidence suggests that shocks caused by the star's motion through space and, possibly, shock-excited H2 molecules are the most likely origins of the UV flux. In contrast to previous examples of extended UV emission from AGB stars, the extended UV emission from U Hya does not show a bow-shock-like structure, which is consistent with a lower space velocity and lower interstellar medium density. This suggests the detached dust shell is the source of the UV-emitting material and can be used to better understand the formation of detached shells.

L40

We investigate the particle accelerator that arises in a rotating neutron-star magnetosphere. Simultaneously solving the Poisson equation for the electro-static potential, the Boltzmann equations for relativistic electrons and positrons, and the radiative transfer equation, we demonstrate that the electric field is substantially screened along the magnetic field lines by pairs that are created and separated within the accelerator. As a result, the magnetic-field-aligned electric field is localized in higher altitudes near the light cylinder and efficiently accelerates the positrons created in the lower altitudes outward but does not accelerate the electrons inward. The resulting photon flux becomes predominantly outward, leading to typical double-peak light curves, which are commonly observed from many high-energy pulsars.

L41

, , , , , , , , , et al

The open cluster NGC 6791 is among the oldest, most massive, and metal-rich open clusters in the Galaxy. High-resolution H-band spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) of 11 red giants in NGC 6791 are analyzed for their chemical abundances of iron, oxygen, and sodium. The abundances of these three elements are found to be homogeneous (with abundance dispersions at the level of ∼0.05–0.07 dex) in these cluster red giants, which span much of the red-giant branch (Teff ∼ 3500–4600 K), and include two red clump giants. From the infrared spectra, this cluster is confirmed to be among the most metal-rich clusters in the Galaxy (〈[Fe/H]〉 = 0.34 ± 0.06) and is found to have a roughly solar value of [O/Fe] and slightly enhanced [Na/Fe]. Our non-LTE calculations for the studied Na i lines in the APOGEE spectral region (16373.86 Å and 16388.85 Å) indicate only small departures from LTE (⩽0.04 dex) for the parameter range and metallicity of the studied stars. The previously reported double population of cluster members with different Na abundances is not found among the studied sample.

L42

, , , , , , , , , et al

SDSS J001641-000925 is the first red dwarf contact binary star with an orbital period of 0.19856 days that is one of the shortest known periods among M-dwarf binary systems. The orbital period was detected to be decreasing rapidly at a rate of $\dot{P}\sim {8}\,{\rm s}\,{\rm yr}^{-1}$. This indicated that SDSS J001641-000925 was undergoing coalescence via a dynamical mass transfer or loss and thus this red dwarf contact binary is dynamically unstable. To understand the properties of the period change, we monitored the binary system photometrically from 2011 September 2 to 2014 October 1 by using several telescopes in the world and 25 eclipse times were determined. It is discovered that the rapid decrease of the orbital period is not true. This is contrary to the prediction that the system is merging driven by rapid mass transfer or loss. Our preliminary analysis suggests that the observed minus calculated (OC) diagram shows a cyclic oscillation with an amplitude of 0.00255 days and a period of 5.7 yr. The cyclic variation can be explained by the light travel time effect via the presence of a cool stellar companion with a mass of M3sin i' ∼ 0.14 M. The orbital separation between the third body and the central binary is about 2.8 AU. These results reveal that the rarity of red dwarf contact binaries could not be explained by rapidly dynamical destruction and the presence of the third body helps to form the red dwarf contact binary.

L43

, , , , , , , , , et al

HD 19467 B is presently the only directly imaged T dwarf companion known to induce a measurable Doppler acceleration around a solar-type star. We present spectroscopy measurements of this important benchmark object taken with the Project 1640 integral field unit at Palomar Observatory. Our high-contrast R ≈ 30 observations obtained simultaneously across the JH bands confirm the cold nature of the companion as reported from the discovery article and determine its spectral type for the first time. Fitting the measured spectral energy distribution to SpeX/IRTF T dwarf standards and synthetic spectra from BT-Settl atmospheric models, we find that HD 19467 B is a T5.5 ± 1 dwarf with effective temperature $T_{\rm eff}=978^{+20}_{-43}$ K. Our observations reveal significant methane absorption affirming its substellar nature. HD 19467 B shows promise to become the first T dwarf that simultaneously reveals its mass, age, and metallicity independent from the spectrum of light that it emits.

L44

, , and

Detailed observations of gaps in protoplanetary disks have revealed structures that drive current research on circumstellar disks. One such feature is the two intensity nulls seen along the outer disk of the HD 142527 system, which are particularly well traced in polarized differential imaging. Here we propose that these are shadows cast by the inner disk. The inner and outer disk are thick, in terms of the unit-opacity surface in the H band, so that the shape and orientation of the shadows inform on the three-dimensional structure of the system. Radiative transfer predictions on a parametric disk model allow us to conclude that the relative inclination between the inner and outer disks is 70° ± 5°. This finding taps the potential of high-contrast imaging of circumstellar disks, and bears consequences on the gas dynamics of gapped disks, as well as on the physical conditions in the shadowed regions.

L45

, , , , , and

We report the discovery of 47 low surface brightness objects in deep images of a 3° × 3° field centered on the Coma cluster, obtained with the Dragonfly Telephoto Array. The objects have central surface brightness μ(g, 0) ranging from 24–26 mag arcsec−2 and effective radii reff = 3''–10'', as measured from archival Canada–France–Hawaii Telescope images. From their spatial distribution we infer that most or all of the objects are galaxies in the Coma cluster. This relatively large distance is surprising as it implies that the galaxies are very large: with reff = 1.5–4.6 kpc their sizes are similar to those of L* galaxies even though their median stellar mass is only ∼6 × 107M. The galaxies are relatively red and round, with 〈gi〉 = 0.8 and 〈b/a〉 = 0.74. One of the 47 galaxies is fortuitously covered by a deep Hubble Space Telescope Advanced Camera for Surveys (ACS) observation. The ACS imaging shows a large spheroidal object with a central surface brightness μ475 = 25.8 mag arcsec−2, a Sérsic index n = 0.6, and an effective radius of 7'', corresponding to 3.4 kpc at the distance of Coma. The galaxy is not resolved into stars, consistent with expectations for a Coma cluster object. We speculate that these "ultra-diffuse galaxies" may have lost their gas supply at early times, possibly resulting in very high dark matter fractions.