Table of contents

Volume 11

Number 5, May 2018

Previous issue Next issue

Buy this issue in print

Semiconductors, dielectrics, and organic materials

051001

, , and

AlInN epitaxial films with film thicknesses up to approximately 300 nm were grown nearly lattice-matched to a c-plane GaN-on-sapphire template by metalorganic chemical vapor deposition. The AlInN films showed relative good crystal qualities and flat surfaces, despite the existence of surface pits connected to dislocations in the underlying GaN film. The refractive index derived in this study agreed well with a previously reported result obtained over the whole visible wavelength region. The extinction coefficient spectrum exhibited a clear absorption edge, and the bandgap energy for AlInN nearly lattice-matched to GaN was determined to be approximately 4.0 eV.

051002

, , , , , , and

Hexagonal boron nitride (h-BN) films directly grown on c-plane sapphire substrates by pulsed-mode metalorganic vapor phase epitaxy exhibit an interlayer for growth temperatures above 1200 °C. Cross-sectional transmission electron microscopy shows that this interlayer is amorphous, while the crystalline h-BN layer above has a distinct orientational relationship with the sapphire substrate. Electron energy loss spectroscopy shows the energy-loss peaks of B and N in both the amorphous interlayer and the overlying crystalline h-BN layer, while Al and O signals are also seen in the amorphous interlayer. Thus, the interlayer forms during h-BN growth through the decomposition of the sapphire at elevated temperatures.

051003
The following article is Open access

, , and

Thermoelectric properties of chromium nitride (CrN)-based films grown on c-plane sapphire by dc reactive magnetron sputtering were investigated. In this work, aluminum doping was introduced in CrN (degenerate n-type semiconductor) by co-deposition. Under the present deposition conditions, over-stoichiometry in nitrogen (CrN1+δ) rock-salt structure is obtained. A p-type conduction is observed with nitrogen-rich CrN combined with aluminum doping. The Cr0.96Al0.04N1.17 film exhibited a high Seebeck coefficient and a sufficient power factor at 300 °C. These results are a starting point for designing p-type/n-type thermoelectric materials based on chromium nitride films, which are cheap and routinely grown on the industrial scale.

051004

, , , , , , and

Scanning near-field optical microscopy was used to study the influence of the surface morphology on the properties of light emission and alloy composition in InGaN epitaxial layers grown on GaN substrates. A strong correlation between the maps of the photoluminescence (PL) peak energy and the gradient of the surface morphology was observed. This correlation demonstrates that the In incorporation strongly depends on the geometry of the monolayer step edges that form during growth in the step-flow mode. The spatial distribution of nonradiative recombination centers — evaluated from PL intensity maps — was found to strongly anticorrelate with the local content of In atoms in the InGaN alloy.

051201

, , , , , , and

A monolithic near-ultraviolet multicomponent system is implemented on a 0.8-mm-diameter suspended membrane by integrating a transmitter, waveguide, and receiver into a single chip. Two identical InGaN/Al0.10Ga0.90N multiple-quantum well (MQW) diodes are fabricated using the same process flow, which separately function as a transmitter and receiver. There is a spectral overlap between the emission and detection spectra of the MQW diodes. Therefore, the receiver can respond to changes in the emission of the transmitter. The multicomponent system is mechanically transferred from silicon, and the wire-bonded transmitter on glass experimentally demonstrates spatial light transmission at 200 Mbps using non-return-to-zero on–off keying modulation.

051202

, , , , , and

A GaSb epilayer is grown on a GaAs/Si(001) epitaxial substrate via metalorganic chemical vapor deposition. High-resolution transmission electron microscopy micrographs and high-resolution X-ray reciprocal space mapping indicate an entirely relaxed interfacial misfit (IMF) array GaSb epilayer. The valence-band offset and conduction-band offset of the Al2O3/GaSb/GaAs/Si structure are estimated to be 2.39 and 3.65 eV, respectively. The fabricated Al2O3/p-GaSb/GaAs/Si MOS capacitors exhibited good capacitance–voltage characteristics with a small accumulation frequency dispersion of approximately 1.05% per decade. These results imply that the GaSb epilayer grown on the GaAs/Si platform in the IMF mode can be used for future complementary metal–oxide semiconductor applications.

051203

, , , and

We investigated the thermoelectric properties of high-quality p-type Cu2ZnSnS4 single crystals. This material showed two advantages: low thermal conductivity because of lattice scattering caused by the easily formed Cu/Zn disordered structure, and high conductivity because of high doping from changes to the composition. All samples showed a thermal conductivity of 3.0 W m−1 K−1 at 300 K, and the Cu-poor sample showed a conductivity of 7.5 S/cm at 300 K because of the high density of shallow-acceptor Cu vacancies. The figure of merit of the Cu-poor Cu2ZnSnS4 reached 0.2 at 400 K, which is 1.4–45 times higher than those of related compounds.

051601

, , , , and

It is imperative and highly desirable to buffer the stress in flexible electronic devices. In this study, we designed and fabricated lamellate poly(dimethylsiloxane) (PDMS) samples with gradient elastic moduli, motivated by the protection of the pomelo pulp by its skin, followed by the measurements of their elastic moduli. We demonstrated that the electrical and fatigue performances of a Ag-nanowire thin film device on the PDMS substrate with a gradient elastic modulus are significantly better than those of a device on a substrate with a monolayer PDMS. This study provides a robust scheme to effectively protect flexible electronic devices.

Photonics, quantum electronics, optics, and spectroscopy

052001

, , and

A transparent metamaterial absorber with simultaneously high optical transparency and broadband microwave absorption is presented in this paper. Consisting of a two-layer soda-lime glass substrate and three-layer patch-shaped indium tin oxide (ITO) films, the proposed absorber has advantages of broadband absorption with an absorptivity higher than 85% in the range from 6.1 to 22.1 GHz, good polarization insensitiveness, a high transparency, a low profile, and wide-incident-angle stability. A prototype of the proposed absorber is fabricated and experimentally measured to demonstrate its excellent performance. The measured results agree well with the theoretical design and numerical simulations.

052002

, , , , and

A tunable, multi-channel plasmonic perfect absorber based on graphene is proposed. Simulated results reveal that the resonant wavelength can be effectively tuned in many ways (by changing the Fermi energy of graphene, radius of Si, or air gap between the Si and the graphene film). Furthermore, the multi-channel perfect absorber is obtained by changing the period of the system. Specifically, a high absorption is obtained by using a multilayer Bragg mirror in place of the metallic plate. We believe that such an absorber may have potential applications for multi-channel photodetectors, frequency selection, and electromagnetic-wave energy storage.

052101

, , , , and

Ultraviolet (UV)-transparent indium tin oxide (ITO) grown by metal–organic chemical vapor deposition (MOCVD) is used as the current-spreading layer for 368 nm AlGaN-based light-emitting diodes (LEDs). By performing in situ contact treatment on the LED/ITO interface, the morphology, resistivity, and contact resistance of electrodes become controllable. Resistivity of 2.64 × 10−4 Ω cm and transmittance at 368 nm of 95.9% are realized for an ITO thin film grown with Sn-purge in situ treatment. Therefore, the high-power operating voltage decreases from 3.94 V (without treatment) to 3.83 V (with treatment). The improved performance is attributed to the lowering of the tunneling barrier at the LED/ITO interface.

052301

, , , , , , , and

We report high-quality dual-junction GaAs solar cells grown using solid-source molecular beam epitaxy and their application to smart stacked III–V//Si quadruple-junction solar cells with a two-terminal configuration for the first time. A high open-circuit voltage of 2.94 eV was obtained in an InGaP/GaAs/GaAs triple-junction top cell that was stacked to a Si bottom cell. The short-circuit current density of a smart stacked InGaP/GaAs/GaAs//Si solar cell was in good agreement with that estimated from external quantum efficiency measurements. An efficiency of 18.5% with a high open-circuit voltage of 3.3 V was obtained in InGaP/GaAs/GaAs//Si two-terminal solar cells.

052302

, , , and

In this letter, we report on the fabrication and characterization of colored and semitransparent silver nanoparticle layers. A spin coating of silver nanoink is used to deposit silver nanoparticle layers onto substrates. The transmittance and color of the silver nanoparticle layers are significantly dependent on the spin speed and nanoink concentration, owing to variations in the size and distribution of the nanoparticles. Both color variation and efficiency improvement are achieved with the application of silver nanoparticles to semitransparent Si thin-film solar cells, which is associated with the excitation of the dipole or quadruple plasmon modes of the silver nanoparticles.

052501

, , , , , , and

We report micron-sized particle trapping and manipulation using a hollow beam of tunable size, which was generated by cross-phase modulation via the thermal nonlinear optical effect in an ethanol medium. The results demonstrated that the particle can be trapped stably in air for hours and manipulated in millimeter range with micrometer-level accuracy by modulating the size of the hollow beam. The merits of flexibility in tuning the beam size and simplicity in operation give this method great potential for the in situ study of individual particles in air.

052701

, , , , and

We report direct generation of a high-power, large-energy dissipative soliton resonance (DSR) in a 2 µm Tm-doped double-clad fiber laser. A compact σ-shaped cavity is formed by a fiber Bragg grating and a 10/90 fiber loop mirror (FLM). The 10/90 FLM is not only used as an output mirror, but also acts as a nonlinear optical loop mirror for initiating mode locking. The mode-locked laser can deliver high-power, nanosecond DSR pulses at 2005.9 nm. We further perform a comparison study of the effect of the FLM's loop length on the mode-locking threshold, peak power, pulse energy, and optical spectrum of the DSR pulses. We achieve a maximum average output power as high as 1.4 W, a maximum pulse energy of 353 nJ, and a maximum peak power of 84 W. This is, to the best of our knowledge, the highest power for 2 µm DSR pulses obtained in a mode-locked fiber laser.

052702
The following article is Open access

, , , , , and

Few-mode vertical-cavity surface-emitting lasers that can be controlled to emit certain modes and polarization states simply by changing the biased contacts are proposed and fabricated. By directly etching trenches in the p-doped distributed Bragg reflector, the upper mesa is separated into several submesas above the oxide layer. Individual contacts are then deposited. Each contact is used to control certain transverse modes with different polarization directions emitted from the corresponding submesa. These new devices can be seen as a prototype of compact laser sources in mode division multiplexing communications systems.

052703

, , , , , and

We realize hierarchical laser-induced periodic surface structures (LIPSSs) on the surface of a ZnO thin film in a single step by the irradiation of femtosecond laser pulses. The structures are characterized by the high-spatial-frequency LIPSSs (HSFLs) formed on the abnormal bumped low-spatial-frequency LIPSSs (LSFLs). Localized electric-field enhancement based on the initially formed LSFLs is proposed as a potential mechanism for the formation of HSFLs. The simulation results through the finite-difference time-domain method show good agreement with experiments. Furthermore, the crucial role of the LSFLs in the formation of HSFLs is validated by an elaborate experimental design with preprocessed HSFLs.

Spintronics, superconductivity, and strongly correlated materials

053001

, , , , and

We investigated the spin-torque diode effect in a magnetic tunnel junction with FeB free layer. Vortex-core expulsion was observed near the boundary between vortex and uniform states. A high diode voltage of 24 mV was obtained with alternative input power of 0.3 µW, corresponding to huge diode sensitivity of 80,000 mV/mW. In the expulsion region, a broad peak in the high frequency region was observed, which is attributed to the weak excitation of uniform magnetization by thermal noise. The high diode sensitivity is of great importance for device applications such as telecommunications, radar detectors, and high-speed magnetic-field sensors.

053002
The following article is Open access

, , , , , , , and

We report a systematic experimental study on the refraction and reflection of magnetostatic spin-waves at a thickness step between two Permalloy films of different thickness. The transmitted spin-waves for the transition from a thick film to a thin film have a higher wave vector compared to the incoming waves. Consequently, such systems may find use as passive wavelength transformers in magnonic networks. We investigate the spin-wave transmission behavior by studying the influence of the external magnetic field, incident angle, and thickness ratio of the films using time-resolved scanning Kerr microscopy and micro-focused Brillouin light scattering.

053003

, , , and

We demonstrate arbitrary helicity control of circularly polarized light (CPL) emitted at room temperature from the cleaved side facet of a lateral-type spin-polarized light-emitting diode (spin-LED) with two ferromagnetic electrodes in an antiparallel magnetization configuration. Driving alternate currents through the two electrodes results in polarization switching of CPL with frequencies up to 100 kHz. Furthermore, tuning the current density ratio in the two electrodes enables manipulation of the degree of circular polarization. These results demonstrate arbitrary electrical control of polarization with high speed, which is required for the practical use of lateral-type spin-LEDs as monolithic CPL light sources.

053004

, , , , and

We propose a new scheme to achieve an effective spin/valley filter in silicene with extended line defect on the basis of spin–valley coupling due to the intrinsic spin-orbit coupling (SOC). The transmission coefficient of the spin/valley states is seriously affected by the SOC. When a perpendicular magnetic field is applied on one side of the line defect, one valley state will experience backscattering, but the other valley will not; this leads to high valley polarization in all transmission directions. Moreover, the spin/valley polarization can be enhanced to 96% with the aid of a perpendicular electric field.

053005

, , and

Spotlights 2018

We have demonstrated that the local magnetization in a Co microwire can be switched by an application of a gate voltage without using any external magnetic fields. The electric-field-induced reversible ferromagnetic phase transition was used to realize this. An internal stray field from a ferromagnetic gate electrode assisted the local domain reversal in the Co wire. This new concept of electrical domain switching may be useful for dramatically reducing the power consumption of writing information in a magnetic racetrack memory, in which a shift of a magnetic domain by electric current is utilized.

053006
The following article is Open access

, , , , and

Using four-terminal nonlocal magnetoresistance measurements in lateral spin-valve devices with Si0.1Ge0.9, we study pure spin current transport in a degenerate SiGe alloy (n ∼ 5.0 × 1018 cm−3). Clear nonlocal spin-valve signals and Hanle effect curves, indicating generation, transport, and detection of pure spin currents, are observed. The spin diffusion length and spin lifetime of the Si0.1Ge0.9 layer at low temperatures are reliably estimated to be ∼0.5 µm and ∼0.2 ns, respectively. This study demonstrates the possibility of exploring physics and developing spintronic applications using SiGe alloys.

053007

, , , , , , , , , et al

We experimentally demonstrate a giant voltage-controlled magnetic anisotropy (VCMA) coefficient in a crystallographically strained CoFe layer (∼15 monolayers in thickness) in a MgO/CoFe/Ir system. We observed a strong applied voltage dependence of saturation field and an asymmetric concave behavior with giant VCMA coefficients of −758 and 1043 fJ V−1 m−1. The result of structural analysis reveals epitaxial growth in MgO/CoFe/Ir layers and the orientation relationship MgO(001)[110] ∥ CoFe(001)[100] ∥ Ir(001)[110]. The CoFe layer has a bcc structure and a tetragonal distortion due to the lattice mismatch; therefore, the CoFe layer has a large perpendicular magnetic anisotropy.

053008

, , and

Ferromagnetic resonance (FMR) is one of the most popular techniques to characterize dynamic properties of ferromagnetic materials. Among various FMR measurement techniques, the homodyne FMR detection has been frequently used to characterize thin-film ferromagnetic multilayers owing to its high sensitivity. However, a drawback of this technique was considered to be the requirement for a structural inversion asymmetry, which makes it unsuitable to characterize a single layer of ferromagnet. In this study, we demonstrate a homodyne FMR detection of the Kittel's mode FMR dynamics of a single layer of FeNi by creating a non-uniform radio-frequency excitation current.

053101

, , , , , and

Spotlights 2018

Diamond anvil cells using boron-doped metallic diamond electrodes covered with undoped diamond insulating layers have been developed for electrical transport measurements under high pressure. These designed diamonds were grown on a bottom diamond anvil via a nanofabrication process combining microwave plasma-assisted chemical vapor deposition and electron beam lithography. The resistance measurements of a high-quality FeSe superconducting single crystal under high pressure were successfully demonstrated by just putting the sample and gasket on the bottom diamond anvil directly. The superconducting transition temperature of the FeSe single crystal was increased to up to 43 K by applying uniaxial-like pressure.

053102
The following article is Open access

, and

We synthesized new REO0.5F0.5BiS2 (RE: rare earth) superconductors with high-entropy-alloy-type (HEA-type) REO blocking layers. The lattice constant a systematically changed in the HEA-type samples with the RE concentration and the RE ionic radius. A sharp superconducting transition was observed in the resistivity measurements for all the HEA-type samples, and the transition temperature of the HEA-type samples was higher than that of typical REO0.5F0.5BiS2. The sharp superconducting transition and the enhanced superconducting properties of the HEA-type samples may indicate the effectiveness of the HEA states of the REO blocking layers in the REO0.5F0.5BiS2 system.

053201

, , , , , , , and

Thin layers of Bi2Sr2CaCu2O8+δ (Bi2212) were fabricated using the mechanical exfoliation technique. Good electrical contacts to the thin Bi2212 films with low contact resistance were realized by depositing Ag and Au electrodes onto the Bi2212 films and annealing them with an oxygen flow at 350 °C for 30 min. We observed cross-section images of the Bi2212 thin film device using a transmission electron microscope to characterize the diffusion of Ag and Au atoms into the Bi2212 thin film.

Device physics

054001

, , and

Atomic defects in monolayer WSe2 tunneling FETs (TFETs) are studied through systematic ab initio calculations aiming at performance predictions and enhancements. The effects of various defect positions and different passivation atoms are characterized in WSe2 TFETs by rigorous ab initio quantum transport simulations. It is suggested that the Se vacancy (VSe) defect located in the gate-controlled channel region tends to increase the OFF current (Ioff), whereas it can be well suppressed by oxygen passivation. It is demonstrated that chlorine (Cl) passivation at the source-side tunneling region can largely suppress Ioff, leading to an impressively improved on–off ratio (Ion/Ioff) compared with that without any defect. However, it is also observed that randomly positioned atomic defects tend to induce significant fluctuation of the TFET output. Further discussions are made with focus on the performance-variability trade-off for robust circuit design.

054101

, , and

The photocurrent characteristics of metal–AlGaN/GaN Schottky-on-heterojunction diodes were investigated. When the photon energy of incident light was larger than the bandgap of GaN but smaller than that of AlGaN, the alternating-current (ac) photocurrent measured using lock-in techniques increased with the chopper frequency. Analyzing the generation and flow processes of photocarriers revealed that the photocurrent induced by GaN interband excitation featured a transient behavior, and its direction reversed when the light excitation was removed. The abnormal dependence of the measured ac photocurrent magnitude on the chopper frequency was explained considering the detection principles of a lock-in amplifier.

054102

, , and

We investigated the impact of rounded electrode corners on the breakdown characteristics of AlGaN/GaN high-electron mobility transistors. For standard reference devices, catastrophic breakdown occurred predominantly near the sharp electrode corners. By introducing a rounded-electrode architecture, premature breakdown at the corners was mitigated. Moreover, the rate of breakdown voltage (VBR) degradation with an increasing gate width (WG) was significantly lower for devices with rounded corners. When WG was increased from 100 µm to 10 mm, the VBR of the reference device dropped drastically, from 1,200 to 300 V, whereas that of the rounded-electrode device only decreased to a respectable value of 730 V.

Nanoscale science and technology

055201

and

The search for single-molecule magnets with large magnetic anisotropy energy (MAE) is essential for the development of molecular spintronics devices for use at room temperature. Through systematic first-principles calculations, we found that an Os–Os or Ir–Ir dimer embedded in the (5,5'-Br2-salophen) molecule gives rise to a large MAE of 41.6 or 51.4 meV, respectively, which is large enough to hold the spin orientation at room temperature. Analysis of the electronic structures reveals that the top Os and Ir atoms play the most important part in the total spin moments and large MAEs of the molecules.

055202

and

The structural variation in tungsten nanocontacts (NCs) during a pulsed-voltage application was observed in situ by high-resolution transmission electron microscopy. The direction of electromigration in the NCs changed from the well-known direction to the opposite direction at a critical voltage of 0.9 V. Upon applying a higher pulsed voltage of 2.5 V, the NC structure changed to amorphous, with an average conductance density decreased to 82% of that of the crystalline NCs. We demonstrated that the external shape and texture of tungsten NCs can be controlled with an atomic precision through electromigration and amorphization by a pulsed-voltage application.

Crystal growth, surfaces, interfaces, thin films, and bulk materials

055801

, and

Ca2RuO4−y ceramics exhibit a large volumetric negative thermal expansions (NTE), although the crystallographic volume contraction on heating is much smaller than the NTE. Therefore, we examine the differences in the mechanisms underlying the volumetric thermal expansion for ruthenate ceramics and crystals in the context of the elasticity. We identify the possible microstructure of ruthenate ceramics composed of crystal grains and cavities using structural topology optimization. We conclude that the measured large volumetric NTE of ruthenate ceramics is certainly possible via anisotropic crystallographic thermal expansion through an elastic mechanism.

Plasmas, applied atomic and molecular physics, and applied nuclear physics

056201

, and

We propose a fast semi-analytical method to predict ion energy distribution functions and sheath electric field in multi-frequency capacitively coupled plasmas, which are difficult to measure in commercial plasma reactors. In the intermediate frequency regime, the ion density within the sheath is strongly modulated by the low-frequency sheath electric field, making the time-independent ion density assumption employed in conventional models invalid. Our results are in a good agreement with experimental measurements and computer simulations. The application of this method will facilitate the understanding of ion–material interaction mechanisms and development of new-generation plasma etching devices.

Cross-disciplinary areas

057301

and

We theoretically study the angle-selective refractions of an impedance-matched acoustic gradient-index metasurface, which is integrated with a rigid bar array of a deep subwavelength period. An interesting refraction order appears under the all-angle incidence despite the existence of a critical angle, and notably, the odevity of the phase-discretization level apparently selects the transmitted diffraction orders. We utilize the strategy of multilayered media design to realize a three-channel acoustic refractor, which shows good promise for constructing multifunctional diffractive acoustic elements for acoustic communication.

057302

and

We investigate the nontrivial topology of the band structure of Lamb waves in a thin phononic crystal plate. When inversion symmetry is broken, a valley pseudospin degree of freedom is formed around K and K' valleys for the A0 Lamb mode, which is decoupled from the S0 and SH0 modes in the low-frequency regime. Chiral edge states are explicitly demonstrated, which are immune to defects and exhibit unidirectional transport behaviors when intervalley scattering is weak. The quantum valley Hall effect is thus simulated in a simple way in the context of Lamb waves.