Brought to you by:

Table of contents

Volume 234

2017

Previous issue Next issue

2017 International Conference on Advanced Technologies in Design, Mechanical and Aeronautical Engineering (ATDMAE 2017) 12–14 July 2017, Nanyang Technological University, Singapore

Accepted papers received: 01 September 2017
Published online: 08 September 2017

Preface

011001
The following article is Open access

Preface

ATDMAE 2017 was held in Nanyang Technological University (NTU), Singapore, during Jul. 12-14, 2017. ATDMAE 2017 was organized by Hong Kong Society of Mechanical Engineers, supported by other organizations. The conference provides a useful and wide platform both for display the latest research and for exchange of research results and thoughts in Advanced Mechanical and Aeronautical Engineering, Design Engineering and Product Innovation. The participants of the conference were from almost every part of the world, with background of either academia or industry, even well-known enterprise. The success and prosperity of the conference is reflected high level of the papers received.

The proceedings are a compilation of the accepted papers and represent an interesting outcome of the conference. This book cover 2 chapters: Advanced Mechanical and Aeronautical Engineering; Design Engineering and Product Innovation.

We would like to acknowledge all of those who supported ATDMAE 2017. Each individual and institutional help were very important for the success of this conference. Especially we would like to thank the organizing committee for their valuable advices in the organization and helpful peer review of the papers.

We sincerely hope that ATDMAE 2017 will be a forum for excellent discussions that will put forward new ideas and promote collaborative researches. We are sure that the proceedings will serve as an important research source of References and the knowledge, which will lead to not only scientific and engineering progress but also other new products and processes.

Prof. Yong Zhao, Nazarbayev University, Kazakhstan

Prof. Henri Christiaans, Ulsan National Institute of Science & Technology, Korea

011002
The following article is Open access

List of Committee Members are available in this PDF.

011003
The following article is Open access

All papers published in this volume of IOP Conference Series: Materials Science and Engineering have been peer reviewed through processes administered by the proceedings Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing.

Advanced Mechanical and Aeronautical Engineering

012001
The following article is Open access

, and

Airplane is considered to be the pinnacle of engineering as it has proven that it is possible for a manmade object to fly. Before its invention, flying was just a dream for mankind. In such an esteemed domain, landing is the most challenging part and it is where a large number of accidents occur, especially due to overrun. As the name suggests, overrun accidents occur due to insufficient runway length. In the present study, the concept of planar electromagnetic fields is incorporated to minimize the landing distance of an aircraft, thus preventing the overrun accidents. As a result, unexpected losses can be avoided. In addition to this, the stability of air traffic control can be perpetuated and the fuel consumed during loitering time can be diminished.

012002
The following article is Open access

and

Selective inhibition sintering (SIS) is a powder based additive manufacturing (AM) technique to produce functional parts with an inexpensive system compared with other AM processes. Mechanical properties of SIS fabricated parts are of high dependence on various process parameters importantly layer thickness, heat energy, heater feedrate, and printer feedrate. In this paper, examining the influence of these process parameters on evaluating mechanical properties such as tensile and flexural strength using Response Surface Methodology (RSM) is carried out. The test specimens are fabricated using high density polyethylene (HDPE) and mathematical models are developed to correlate the control factors to the respective experimental design response. Further, optimal SIS process parameters are determined using desirability approach to enhance the mechanical properties of HDPE specimens. Optimization studies reveal that, combination of high heat energy, low layer thickness, medium heater feedrate and printer feedrate yielded superior mechanical strength characteristics.

012003
The following article is Open access

, and

Perturbations or interruptions provided in the passage of heat exchanger generate the vortices downstream. The formation of these natural vortices, augment local heat transfer abruptly. The effect on convective heat transfer enhancement and friction characteristics by providing trapezoidal ribs inside a circular pipe is computationally investigated in detail. Different variations of height, width and pitch of the ribs are used to optimize the rate of heat transfer through the pipe. Liquid water is employed as the working fluid. Input parameters of Reynolds Number ranging from 5000-60000 with axial flow along the pipe and constant heat flux of 50 W/cm2 to the pipe surface is used. After validation with the existing literature, Realizable k-ε turbulent model with enhanced wall function is used in commercial CFD software ANSYS FLUENT. The outcome of the investigation shows that the ribs provided on the inside of the pipe surface enhance the turbulence in the flow and produce recirculation which disturb the thermal boundary layer behind the ribs and thus help in enhancing the rate of heat transfer through the pipe.

012004
The following article is Open access

, , , and

Total temperature measurement in high speed and high temperature exhaust of air breathing engines like scramjet, ramjet and turbojets with afterburner is a challenging problem. The temperature of such hot gases is approximately 2000-2200 K. Conventional technique of temperature measurement by thermocouple suffers oxidation, doesn't withstand aerodynamic load, and lacks robustness. Unconventional technique like optical method is expensive. These limitations have withheld the temperature measurement in high speed high temperature exhaust streams. Present work describes the design and development of a water cooled gas dynamic probe for total temperature measurement of high speed and high temperature gases. The probe consists of two choked nozzles in series. The hot flow is cooled after passing through the first nozzle, in a small settling chamber, using a heat exchanger. The flow from settling chamber is accelerated to Mach 1 in second nozzle. Using gas dynamic relations and measured parameters, the incoming flow total temperature is obtained. The probe has been calibrated for probe constant at total temperature range of 1200 to 1700 K at inlet Mach number 2. Probe constant varies proportional to the square of incoming flow total temperature. First restriction with C-D nozzle gave higher probe constant value than convergent nozzle.

012005
The following article is Open access

and

With the entry of miniaturization in electronics and ultra-small light-weight materials, energy efficient propulsion techniques for space travel can soon be possible. We need to go for such high speeds so that the generation's time long interstellar missions can be done in incredibly short time. Also renewable energy like sunlight, nuclear energy can be used for propulsion instead of fuel. These propulsion techniques are being worked on currently. The recently proposed photon propulsion concepts are reviewed, that utilize momentum of photons generated by sunlight or onboard photon generators, such as blackbody radiation or lasers, powered by nuclear or solar power. With the understanding of nuclear photonic propulsion, in this paper, a rough estimate of nuclear fuel required to achieve the escape velocity of Earth is done. An overview of the IKAROS space mission for interplanetary travel by JAXA, that was successful in demonstrating that photonic propulsion works and also generated additional solar power on board, is provided; which can be used as a case study. An extension of this idea for interstellar travel, termed as 'Star Shot', aims to send a nanocraft to an exoplanet in the nearest star system, which could be potentially habitable. A brief overview of the idea is presented.

012006
The following article is Open access

, , , and

The aerodynamic effects of wing deformation for hover flight are numerically investigated by a two-dimensional finite-volume (FV) Arbitrary Langrangian Eulerian (ALE) Navier-Stokes solver. Two deformation models are employed to study these effects in this paper, which are a full deformation model and a partial deformation one. Attentions are paid to the generation and development of leading edge vortex (LEV) and trailing edge vortex (TEV) which may illustrate the differences of lift force generation mechanisms from those of rigid wings. Moreover, lift coefficient Cl, drag coefficient Cd, and figure of merit, as well as energy consumption in hovering motion for different deformation foil models, are also studied. The results show that the deformed amplitude, 0.1*chord, among the cases simulated is an optimized camber amplitude for full deformation. The results obtained from the partial deformation foil model show that both Cl and Cd decrease with the increase of camber amplitude. It is found that the effect of deformation in the partial deformation model does not enhance lift force due to unfavorable camber. But TEV is significantly changed by the local AOA due to the deformation of the foil. Introduction.

012007
The following article is Open access

, , and

This paper is focussed on numerical investigation of flow around a stationary circular cylinder (diameter, D) with selectively applied surface roughness (roughness strips with thickness 'k') in the presence of a wake splitter plate (length, L). The plate leading edge is at a distance of 'G' from the cylinder base. For this study, the commercial software ANSYS Fluent is used. Fluid considered is water. Study was conducted the following cases (a) plain cylinder (b) cylinder with surface roughness (without splitter plate) (c) Cylinder with splitter plate (without surface roughness) and (d) cylinder with both roughness and splitter plate employed. The study Reynolds number (based on D) is 17,000 and k/δ = 1.25 (in all cases). Results indicate that, for cylinder with splitter plate (no roughness), lift coefficient gradually drops till G/D=1.5 further to which it sharply increases. Whereas, drag coefficient and Strouhal number undergoes slight reduction till G/D=1.0 and thereafter, gradually increase. Circumferential location of strip (α) does not influence the aerodynamic parameters significantly. With roughness alone, drag is magnified by about 1.5 times and lift, by about 2.7 times that of the respective values of the smooth cylinder. With splitter plate, for roughness applied at all 'α' values, drag and lift undergoes substantial reduction with the lowest value attained at G/D=1.0.

012008
The following article is Open access

, , , and

Structure health monitoring is one of the most important aspects in an industry, as structures should work safely during their service life. Cracks are the most common damage that initiates a breakdown phase and hence timely and accurate detection of these cracks is imperative. In this article, a vibration based non-destructive technique is presented to detect one or multiple edge cracks in beam like structures. This model is based on variation in mode shapes and natural frequencies that provide accuracy in results as well as ease in practical applications. The crack location is identified using mode shapes of damaged beam wherein an appropriate signal processing technique is implemented by using which the noise in the signal can be reduced. Along with this, the crack severity is also determined using a strain energy based mathematical model. The model presented in this study is capable of detecting an arbitrary number of cracks in cantilever or simply supported configuration. The results obtained using the proposed method is also validated by considering few case studies.

012009
The following article is Open access

, and

In this paper, an efficient two-layer microwave absorber at X-band is designed, optimized and implemented using the available materials with frequency dependent complex permittivity and complex permeability values as material database. The present work is focused on the design of a two-layer microwave absorber with good microwave absorption properties combined with broadband features at X-band. The optimization of various parameters such as materials, their sequence and thickness for obtaining better microwave absorption characteristics at X-band has been realized using Genetic Algorithm (GA). The optimized results were used to design a two-layer microwave absorber and experimentally tested using Attenuation Testing Device (ATD). Further verification of the experimentally obtained absorption results were simulated in High Frequency Structure Simulator (HFSS). The ATD result show that the maximum Reflection Loss (RL) for two-layer microwave absorber was -21.98 dB with 2.77 GHz bandwidth (corresponding to -10 dB) at 11.06 GHz for a total coating thickness of 1.5 mm.

012010
The following article is Open access

, and

In the special road quality assessment method, there is a method using a wheel force sensor, the essence of this method is collecting the load spectrum of the car to reflect the quality of road. According to the definition of stochastic process, it is easy to find that the load spectrum is a stochastic process. However, the analysis method and application range of different random processes are very different, especially in engineering practice, which will directly affect the design and development of the experiment. Therefore, determining the type of a random process has important practical significance. Based on the analysis of the digital characteristics of road load spectrum, this paper determines that the road load spectrum in this experiment belongs to a stationary stochastic process, paving the way for the follow-up modeling and feature extraction of the special road.

012011
The following article is Open access

, , , and

The structure of the base flow of a hypersonic reentry vehicle and the resulting base pressure and heat transfer have been studied by numerical study. The compressible Navier-Stokes equations are solved by the finite-volume method. SST k-ω turbulence model is used, and comparisons are made with flight test. Attention was focused on assessing the effects of angle of attack and Mach number. It was found that angle of attack can significantly alter the wake flow structure and reentry vehicle base pressure and heating distributions. The results of the simulation may provide a theoretical basis for the design of the thermal protection system of hypersonic reentry vehicles.

012012
The following article is Open access

, , , and

Two-loop acceleration yaw-autopilot with a PI compensator and the engineering approximation of sideslip angle rate feedback for autopilot inner-loop are put forward accounted for BTT coordinated turn control of reentry gliding vehicle. The effect of turning acceleration to body-frame yaw channel is analyzed deeply, two-loop acceleration yaw-autopilot with a PI compensator is advanced to ensure system rapidity and stability based on minimum output by turning acceleration. The convergence essence of sideslip angle rate feedback is presented, furthermore, the engineering implementation composed by yaw angle rate and feedforward compensator is presented. Finally, the simulation results show that the autopilot design can make sideslip angle to be zero fast, improve the performance of coordinated turn. The design has certain robustness and application value.

012013
The following article is Open access

, , , and

The loading of mobile heat source and boundary conditions setting are difficult problems in the analysis of thermal characteristics of machine tools. Taking the machine tool feed system as an example, a novel method for loading of mobile heat source was proposed by establishing a function which was constructed by the heat source and time. The convective heat transfer coefficient is the key parameter of boundary conditions, and it varies with the temperature. In this paper, a model of "variable convection heat transfer coefficient" was proposed, and the setting of boundary conditions of thermal analysis was closer to the real situation. Finally, comparing results of above method and experimental data, the accuracy and validity of this method was proved, meanwhile, the simulation calculation and simulation time was reducing greatly.

012014
The following article is Open access

According to the two kinds of working state of a battery pack, we designed a balancing strategy based on SOC, and expounds the working principle of balanced control strategy: the battery is charging, the battery charged state of the highest monomer battery is balanced discharge, strong single battery charging current decreases, while the other single cell in the same group is not affected; the battery is in a discharge or static state, single cell battery is the weakest balanced charge, while the other single cell in the same group are not affected. In this paper, we design a kind of lithium ion battery charging and discharging equalizer based on Buck chopper circuit and Boost-Buck chopper circuit. The equalizer is balanced charging and discharging experiments of series four lithium iron phosphate battery, the experimental results show that this equalizer has not only improved the degree not equilibrium between single cells, and improve the battery charge and discharge capacity.

012015
The following article is Open access

, and

The formation of vortex structures in a screen cylinder wake was investigated in a wind tunnel at a Reynolds number of 7000. The screen cylinder was made of a stainless steel wire mesh with an open area ratio of 67%. The results showed that the screen cylinder wake could be classified into two distinct regions. The first region was characterised by the development of the shear layer vortices which resulted from Kelvin-Helmholtz instability. At about x/d = 2 0 (where d is the diameter of the cylinder) the shear layer vortices started to interact with each other across the centreline, and evolved downstream to form the alternately arranged 'large-scale' coherent structures. These structures were most pronounced at x/d = 40. The vortex formation region was therefore extended significantly downstream compared with that of the solid cylinder wake. The second region involved a gradual decay of the fully-formed large-scale structures, evidenced by the weak vorticity exchange across the wake centreline.

012016
The following article is Open access

, , , and

Airplanes regularly operate switching between various flight modes such as take-off, climb, cruise, descend and landing. During these flight conditions the free-stream approaching the wings undergo fundamental changes. In transonic flow conditions, typically in the military or aerospace applications, existence of nonlinear and unsteady effects of the airflow stream significantly alters the performance of an airfoil. This paper presents the influence of free-stream turbulence intensity on transonic flow over an airfoil in the presence of a weak shock wave. In particular, NACA 0012 airfoil performance at Ma = 0.7 is considered in terms of drag, lift, turbulence kinetic energy, and turbulence eddy dissipation parameters under the influence of varying angle of attacks and free-stream turbulence. The finite volume method in a commercial CFD package ANSYS-CFX is used to perform the numerical analysis of the flow. Mesh refinement using a mesh-adaption technique based on velocity gradient is presented for more accurate prediction of shocks and boundary layers. A Shear Stress Transport (SST) turbulence model is validated against experimental data available in the literature. Numerical simulations were performed, with free stream turbulence intensity ranging from low (1%), medium (5%) to high (10%) levels. Results revealed that drag and lift coefficients are approximately the same at every aforementioned value of turbulence intensity. However, turbulence kinetic energy and eddy dissipation contours vary as turbulence intensity changes, but their changes are disproportionally small, compared with values adopted for free-stream turbulence.

012017
The following article is Open access

, , , and

Therapeutic pet robots designed to help humans with various medical conditions could play a vital role in physiological, psychological and social-interaction interventions for children with autism spectrum disorder (ASD). In this paper, we report our findings from a robot-assisted therapeutic study conducted over seven weeks to investigate the changes in stress levels of children with ASD. For this study, we used the parrot-inspired therapeutic robot, KiliRo, we developed and investigated urinary and salivary samples of participating children to report changes in stress levels before and after interacting with the robot. This is a pioneering human-robot interaction study to investigate the effects of robot-assisted therapy using salivary samples. The results show that the bio-inspired robot-assisted therapy can significantly help reduce the stress levels of children with ASD.

Design Engineering and Product Innovation

012018
The following article is Open access

, and

This paper demonstrates the applicability of a novel meshless method in solving problems related to aeronautical engineering, the constraint-natural element method is used to optimize a wing rib where it present several shape of cut-outs deals with the results findings we select the optimum design, we focus on the description and analysis of the constraint-natural element method and its application for simulating mechanical problems, the constraint natural element method is the alternative method for the finite element method where the shape functions is constructed on an extension of Voronoi diagram dual of Delaunay tessellation for non-convex domains.

012019
The following article is Open access

, , , and

The bionic research of shape is an important aspect of the research on bionic robot, and its implementation cannot be separated from the shape modeling and numerical simulation of the bionic object, which is tedious and time-consuming. In order to improve the efficiency of shape bionic design, the feet of animals living in soft soil and swamp environment are taken as bionic objects, and characteristic skeleton curve, section curve, joint rotation variable, position and other parameters are used to describe the shape and position information of bionic object's sole, toes and flipper. The geometry modeling of the bionic object is established by using the parameterization of characteristic curves and variables. Based on this, the integration framework of parametric modeling and finite element modeling, dynamic analysis and post-processing of sinking process in soil is proposed in this paper. The examples of bionic ostrich foot and bionic duck foot are also given. The parametric modeling and integration technique can achieve rapid improved design based on bionic object, and it can also greatly improve the efficiency and quality of robot foot bionic design, and has important practical significance to improve the level of bionic design of robot foot's shape and structure.

012020
The following article is Open access

and

From the heritage of form gene point of view, this thesis has analyzed the gene make-up, cultural inheritance and aesthetic features in the evolution and development of forms of brand automobiles and proposed the bionic design concept and methods in the automobile styling design. And this innovative method must be based on the form gene, and the consistency and combination of form element must be maintained during the design. Taking the design of Maserati as an example, the thesis will show you the design method and philosophy in the aspects of form gene expression and bionic design innovation for the future automobile styling.

012021
The following article is Open access

, , , and

To satisfy high performance requirements for some structures, it is desirable for structure to be designed smaller, thinner and lighter in automobile and aerospace industries, etc. One prominent example is the application of topography stiffened structures. The stiffness of a structure can be increased obviously by stiffeners under a given amount of material. This paper gives an approach to optimize the structural topography design of thin-walled structures automatically based on isogeometric analysis. Optimization model, sensitivity analysis and optimization process for structural topography design are described and studied in details. The objective function is minimum compliance of structure, and the y-value(vertical coordinate value) of control points as design variables. Then structural topography is formed with changing the y-value of control points in design domain according to the specific algorithm. Several examples illustrate that the proposed method works well.

012022
The following article is Open access

, and

The development of public parks into green city facilities in Surabaya has triggered the need of outdoor furniture designs that can resist the tropical wet and dry weather conditions while also having a certain mobility to support flexible park arrangement. However, present furniture designs made of concrete material are generally heavy and immovable. Flexible designs are needed for various activities that can take place at the same time such as sitting and playing, and to support changes in arrangement to keep the green open spaces attractive from time to time. This research develops the idea of a modular outdoor furniture design using cellular lightweight concrete (CLC) as the main material as a result from observing its resistance towards weather change and its relative light weight. It starts with analysis of problems, formulation of design concept, creation of design alternatives, selection of design, calculation of mouldings, adaptation of design to the mouldings and production of a scaled mock-up using CLC. Findings of this research reveal that the modular design along with the CLC material used not only support the flexibility of change in function and arrangement but also make these furniture resistant to the hot and humid weather of Surabaya.

012023
The following article is Open access

, , , and

The Dajia Mazu Touring Procession is a 9-day long religious event held annually. However, for the elderly participants, it is a big burden especially in regards to physical strength. The goal of designing backpack is to reduce the physiological stress of elderly during the procession. Firstly, physical parameters were measured to explore the dimension parameters by testing. The height of the chair is different from that of the kneeling pad; a smooth curve was chosen to coordinate the two as the main outline of the backpack. Secondly, material selections based on following limits were considered: (1) acceptable weight and size, (2) intermediate price and (3) a design that is fitting to the Dajia event. The material and structural strength were evaluated for wood, bamboo, stainless steel. Two design concept were proposed, wood is selected for construction and testing by users. The texture of the backpack is Rush grass, it was built successfully to cover the backpack's external surface to meet local culture features.

012024
The following article is Open access

The product design course for industrial design students was implemented in our university which spans 9 weeks. Throughout the creativity rules and field study, students achieve high standard on problem identification and concept generation. The prototype test with elderly in design projects is helpful to make students with deeper understand user demand, which in turn enhance the concept further. Traditional Chinese checkers are redesigned using special checkers with different height or shape and specific rules to increase user interest and game diversity. Game is more challenging due to location weighting on score calculation to planning its strategies. Redesign Chinese checkers game board include reconfigurable board and several shape checkers. Checkers has 3 parts: standing ring body, the base body, both support the side holding structure. The body shows slightly concave to facilitate the fingers hold. The upper portion of the body is provided with different shapes extension section which can be engaged with base body. Player move the checker to the opposite target area. When one of player moved all the checkers to the opposite target area; they shift to the scoring calculation stage. The participant may develop specific strategy to gain higher score by maximized weighted checkers into its target block regions.

012025
The following article is Open access

and

Design disciplines have been contributing to shaping the life of human beings, as well as fostering culture and heritage. Design disciplines and research have been rapidly transforming, and not only objects but also services are target of design. This paper reviews design disciplines towards enhanced affective design, which attributes to intuitive knowledge. It aims at rethinking the notion of design to propose a conceptual framework for integrating user experience into objects that strengthen the form and function based design with pleasing.

012026
The following article is Open access

, and

In the discus final site of throwing event series game of China's track and field sport in April, 2015, three dimensional camera analytical method which is an application of kinematical data project was used on female discus athletes' discus throwing technology. And analysis was made for the top four discus throwers' last exertion action, related kinematics parameter was thus obtained. Analysis results show that: first, Lu Xiaoxin behaves better in body twist tight effect when it is left foot on the ground and in capacity of beyond devices, followed by Su Xinyue and Tan Jian, with Feng Bin relatively weaker; second, our athletes' discus shots speed is to be upgraded compared with world excellent female discus athletes; third, discus is left slightly earlier, with Tan Jian throwing in a reasonable angle, Feng Bin, Lu Xiaoxin in a larger angle, and Sue Xinyue in a smaller angle. Feng bin has a higher height of release, followed by Lu Xiaoxin and Tan jian.

012027
The following article is Open access

and

The paper puts forward a design concept named Human-Machine-Integration which refers to the shape of the product designed according to the location and contact type when the product is used. It considers the double properties of function and aesthetics to product and makes the designer combine the formal principle with Human-Machine Engineering theory together to mould the product shape conforming to the easy-to-user principle with the consideration of form beauty at the same time. It regards the man - machine – environment as a whole body and has practical significance to the system design of the product. When a product is designed according to Human-Machine-Integration theory, contact parts form and contact area and the harmonious relationship between forms of contact parts and overall product should be considered. And the Convex-concave match of product part and body part should be complement with each other and tolerant match of product part is contacted with the human body part. At the same time, the purpose of form should be fully considered. Correspondence, Integrity, Systematicness and Independence are four characteristics of Human-Machine-Integration design.