Table of contents

Volume 1217

2022

Previous issue Next issue

Material and Energy Engineering for Sustainable Advancement (MEESA 2021) 29th-30th September 2021, Kota Kinabalu, Sabah, Malaysia

Accepted papers received: 16 December 2021
Published online: 06 January 2022

Preface

011001
The following article is Open access

The Material & Energy Engineering for Sustainable Advancement 2021 (MEESA 2021) conference was organized by the Mechanical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah.The conference was held virtually on the 29thand 30thof September 2021. The 1stMEESA conference was organized to enculturate research and collaborative involvement between researchers in the engineering materials and energy field. Researchers and postgraduate students from multidisciplinary research backgrounds gathered to share new findings and ultimately building a better network for long term collaboration opportunities. The silver lining in organizing this online conference is the participation of international researchers, offering a more diverse network to be built between participants. Twenty-one papers have been presented in MEESA 2021, of which a total of 17 papers was selected for this publication. Four keynote speakers, who are experts in their respective fields were invited.The keynote speakers were Dr. Habibah binti Ghazali (Universiti Teknologi Malaysia), Dr. Ong Hwai Chyuan (University of Technology Sydney), Ir. Dr. Mohd Azlan bin Ismail (Universiti Malaysia Sabah) and Ir. Ts. Dr. Melvin Gan Jet Hong (Universiti Malaysia Sabah).Although this year's conference was held virtually, we strongly believe that this conference does not reduce the purpose or benefit to the scientific world,in particular,and the general public to share current issues and the latest findings in the field of materials and energy for our environment. All manuscripts published in this proceeding have been vetted through a rigorous review to meet the requirement of high-quality papers.Lastly, we would like to thank the MEESA 2021 Advisor:Dean of Faculty of Engineering, Assoc. Prof. Ts. Dr. Ismail bin Saad, session chairpersons, and members of the Scientific and Technical Committees for their support and undivided commitment to make the conference possible. The committee would also wish to acknowledge all the keynote speakers, reviewers and all participants for their time and effort in making this conference a success.

Warmest Regards,

List of Organizing Committee are available in this pdf.

011002
The following article is Open access

All papers published in this volume of IOP Conference Series: Materials Science and Engineering have been peer reviewed through processes administered by the Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing.

• Type of peer review: Single-blind

The single-blind peer-review method was used for the peer-review process.

• Conference submission management system: The papers are emailed to the Secretariat and managed internally.

• Number of submissions received: 21

• Number of submissions sent for review: 21

• Number of submissions accepted: 17

• Acceptance Rate (Number of Submissions Accepted/Number of Submissions Received × 100): 81%

• Average number of reviews per paper: 2

• Total number of reviewers involved: 26

• Any additional info on review process:

List of Secretariat stage, Scientific Committee stage, Adjudicator are available in this pdf.

Material & Energy Engineering for Sustainable Advancement

012001
The following article is Open access

, and

Desalination is a process of eliminating salt and other minerals from seawater which turns it to a safe usable water. This study showed the generation of clean water from seawater using carbon-coated solar absorber in two different solar still body colours which are transparent and black solar still, under direct solar exposure at approximately 1.2 kW/m2. The efficiency of carbon-coated solar absorber in the transparent and black solar still was computed, while the clean water collected was examined for its pH and salinity. Carbon-coated solar absorber in black solar still exhibit the highest efficiency at around 35.71%, where the pH and salinity of the collected clean water was substantially reduced to usable water at 6.55 and 62 ppm, respectively.

012002
The following article is Open access

, and

Patient specific plastic cast for broken limbs has been developed recently in pharmaceutical field through three-dimensional (3D) printing method. However, the production of a 3D printed cast through normal 3D printing method is time consuming compared to conventional plaster casting. In this study, a design of ventilated structured thermoformable 3D-printed polylactic acid (PLA) cast was produced as an alternative for the 3D printed cast production method. This design was initially printed in a flat shape and then transformed into a cast which can be fitted to the user's arm by using heat and external force. Finite Element Analysis (FEA) method was used to assess the mechanical properties of the proposed cast. In this analysis, thethermoformable design was exerted with a distributed force of 400 N, which is larger than the loading conditions encountered by human in their daily life. The mechanical properties of the thermoformable PLA cast such as local displacement under a specific load, maximum load, and stress were evaluated. Results were compared with the mechanical properties of Plaster of Paris cast. The results obtained from the FEA indicates that at the same layer thickness, the thermoformable 3D-printed PLA cast is stronger than the Plaster of Paris cast.

012003
The following article is Open access

, , , , , and

This study investigated the effect of thermal treated eggshells powder on the mechanical properties of recycled high-density polyethylene (r-HDPE) composite. Thermal treated eggshellspowder, which was labelled as carbonised eggshells powder (CESP), was prepared at a low pyrolysis temperature of 400°C for one hour. The mechanical performance of the polymer composite reinforced with CESP was compared with the untreated dried raw eggshells powder (ESP) reinforced polymer composite. Each composite sample was prepared with a weight ratio of r-HDPE/filler varied at 90/10, 80/20, and 70/30. The polymer composite was prepared through a melt blending method in an internal mixture at 175° at 32 RPM mixing rate. The composite samples were tested flexural analysis, while structure and morphology were characterised using Fourier Infrared Transformer (FTIR) and Scanning Electron Microscope (SEM). Based on the finding, the interfacial adhesion of the composite between filler and matrix has improved with ESP and CESP, respectively. The composite with CESP filler at 70/30 shows the optimum flexural strength and modulus of 32.21 MPa and 2.06 GPa, respectively. Overall, the introduction of CESP offers a better performance in improving the mechanical properties of the composite as compared to ESP.

012004
The following article is Open access

, and

This study is focused on exploring intrinsic self-healing polymer material development, where the inclusion of thermoplastic additives into thermoset polymer material as healing agents. Intrinsic self-healing thermoset-thermoplastic development is involving the material formulation of thermoset liquid resin (Poly Bisphenol A-co-epichlorohydrin) and thermoplastic (polycaprolactone). The material formulation ratio is up to 30% polycaprolactone with respect to thermoset weight. The mixture is heated and stirred to saturate at 80°C before the hardener is added. The mixture is cured and further finishing as Charpy impact test specimen. The specimen is fractured and absorbed impact energy property characterised through the Charpy impact test. The heat treatment is then performed to trigger the self-healing reaction in the polymer. The self-healing efficiency of the thermoset thermoplastic is investigated based on the absorbed impact energy before and after the heat treatment. The 20% or higher thermoplastic concentration in the polymer caused the polymer to possess high self-healing efficiency and faster healing time as compared to the low thermoplastic concentration polymer. However, the high concentration polymer has a disadvantage on the overall structural strength instead. On the contrary, 10% to 15% thermoplastic composition will result in lower and slower self-healing performance but higher initial structural strength.

012005
The following article is Open access

, , and

Microstructure and microtexture of rapidly solidified undercooled Ni-Cu alloys were investigated. The characteristic undercooling of Ni80Cu20 alloy was determined as 45K, 90K and 160K. Dendrite deformation due to rapid solidification led to strong deformation microtexture. Due to recrystallization upon annealing after recalescence, many subgrains were formed in the microstructure. Further, annealing the quenched alloy at 900°, new microtextures and subgrains were formed, which was due to recrystallization and dislocation network rearrangement. The results of comparative experiment proved the recrystallization mechanism of the microstructure refinement in the non-equilibrium solidification structure of the undercooled binary alloy

012008
The following article is Open access

and

A knowledge of the material constituents and fabrication process is generally required for easing the composite material properties study and characterization. This paper presents the methodology of aramid reinforced polymer composite material preliminary assessment and fabrication. The demonstration is carried out through the development of mechanical properties characterization specimen. The composite material specimen is fabricated by utilizing the open mould with hand lay-up method, where three types of laminates include of unidirectional, orthotropic, quasi-isotropic cross plies are demonstrated. A template is applied for preparing specific fibre orientation 45°angle. Plies are lay accordingly with guided by a square guide for minimizing the off-orientation angle defect. Preliminary assessment is included of verification of unidirectional aramid fabric quality, cured specimen physical defect, internal defect through micrography analysis and material volume fraction prediction. Average specimen fibre volume fraction of 0.64 is predicted by determined the fibre filament geometry detail through micrography analysis. There are several fabrication defects had been identified. The defect identification findings shall be referred for further improvement of material preparation and fabrication method.

012009
The following article is Open access

, and

Feasibility study was conducted in exploring the fabrication and characterization of resin-based functionally graded material (FGM) incorporated with carbonized waste rice husk. The waste rice husks were converted into carbon materials through heat treatment under the presence of inert gas at 500°C for 2 hours. Then, they were incorporated into resin to form FGM by centrifugal method to achieve desired gradation. Sample B3 with 5 wt.% of carbonized rice husk (CRH) incorporated into polyester resin (including hardener and ethanol) was centrifugated at 4000 rpm for 30 minutes to form FGM. The fabricated samples were cut into three parts, namely upper, middle, and bottom layer to further characterize the properties at various gradation levels. The density of sample B3 increased gradually, 4.10%, 6.54%, and 6.93% when compared to bulk resin, from upper to bottom layer, respectively. The hardness of sample B3 increased gradually, 27.38%, 42.57%, and 47.08% in contrast to bulk resin, from upper to bottom layer, respectively. FGM proposed in this study can be further manipulated based on the centrifugal force and time, ratio of solvents/hardener, and weight percentage of CRH that indicate they can be exploited for specific of numerous appropriate applications.

012010
The following article is Open access

, , , , and

The purpose of this paper is to review the early development of electro-carburisation technology and the research findings related to the electro-carburisation process. In general, conventional liquid carburisation of steel using a molten cyanide bath is carried out to improve the performance of mild steel, however this process produces toxic cyanide waste. Thus, other alternatives for liquid carburisation are necessary. Electro-carburisation process using carbonate-base molten salt, under a CO2 environment was developed as one of the alternatives to liquid carburising. Metal to be treated is exposed to the carbon-rich liquid in the molten cyanide bath and electro-carburisation. However, the metal is simply immersed inside the cyanide bath during conventional liquid carburising, while connected to the cathode in the electro-carburisation. The electro-carburisation involves a diffusion of carbon atoms into the surface of the metal which enhance the surface hardness of the metal. The effects of electrolysis parameters to the surface hardness and case hardening of treated metal have been reported in several journals. This article summarises the research findings. Apart from that, the quenching process and heat treatment post quenching also plays an important role in the quality of the carburised metal, therefore also reviewed in this article.

012011
The following article is Open access

, , , , , and

A unidirectional carbon fibre reinforced polymer (CFRP) laminate is a composite material made up of strong parallel carbon fibres incorporated in a polymer matrix such as epoxy to provide high stiffness and strength in the fibre direction of the laminate. Unfortunately, the interlaminar or intralaminar plane of this material has a low resistance to damages as the fracture toughness of a unidirectional CFRP laminate is related to the energy dissipation during the orthogonal cutting. The aim of this study is on cutting a unidirectional CFRP along the longitudinal or transverse directions, characterizing orthogonal cutting forces and the related fracture energy. Orthogonal cutting is performed using braised carbide tools for a range of cutting depth of 10-100 ³m with a rake angle of 30° to quantify the cutting forces and to observe the fracture mechanisms. The fibre orientations have a significant impact on surface bouncing-back. For some fibre orientations, the energy balance model is applicable, deducting the reasonable value of fracture toughness due to high normal force (Ft). Fibre subsurface damage and cutting forces during cutting are found to be strongly influenced by the cutting depth. The input energy of cutting is released in form of new surface energy, fibre breakage, high bending energy, and chip fracture energy.

012012
The following article is Open access

and

The usage of incorporating natural fibre in composite material has seen some potential to be used as a future building construction material due to its recyclability, lightweight and high-reliability feature. However, the issue of implementing natural fibre as building construction material in composites material concerns the structural integrity of the material. As the characteristics of the natural fibre honeycomb composite have been discovered more in terms of properties which ranges from its physical and chemical structural composition to the quasi-static impact collapse of the material, the absorption energy of the material in different cell geometry is unknown. Therefore, the purpose of this study involves the testing of the natural fibre honeycomb (NFH) composite made from cement fibre (face sheet) and corn starch (core) with regards to its crushing behaviour when subjected to flatwise compression load according to ASTM D-3410 standard to analyse the performance of energy absorption of NFH composite with different thicknesses of the hexagonal core and cell wall thickness to determine the Specific Energy Absorption of the material. The result obtained shows that the increasing thicknesses of the core and cell wall improves the ability of the composite to absorb more energy and the specific energy absorption is higher when both factors are increased.

012013
The following article is Open access

, , and

Different fuel properties and chemical kinetics of two different fuels would make it challenging to predict the combustion parameters of a binary fuel. Understanding the effect of blending methane and hydrogen gas is the main focus of this paper. Utilizing a horizontal tube combustion rig, methane-hydrogen fuel blends were created using blending laws from past literature, over a range of equivalence ratios from 0.6 – 1.2 were studied, while keeping one combustion parameter constant, the theoretical laminar burning velocity. The selected theoretical laminar burning velocity for all the mixtures tested were kept constant at 0.6 ms−1. Different factors affected the flame propagation across the tube, including acoustic pressure oscillations, heat loss from the rig, and obvious difference in hydrogen percentage in the fuel blends. The average experimental laminar burning velocity of all the flames was 0.368 ms−1, compared to the expected value of 0.6 ms−1. In an attempt to keep the theoretical laminar burning velocity constant for different mixtures, it was discovered that this did not promise the same flame propagation behaviour for the tested mixtures. Further experimentation and analysis are required in order to better understand the underlying interaction of the fuel blends.

012014
The following article is Open access

, and

Hydropower is a renewable technology to store the amount of electricity which is the least expensive. Gravitational Water Vortex Power Plant is an ultra-low head micro hydropower system working ranging from 0.7 m to 2m without having the needs of a large reservoir and installation area. Several researches have been conducted on its basin configuration, orifice diameter, blade configuration, the geometry of the basin shape but not onto the addition of the diffuser at the inlet channel. The function of the diffuser is to direct the water into the basin allowing the water vortex to travel towards the tangential direction where this phenomenon will increase the rate of speed flow through the turbine. The simulation results showed that the addition of the diffuser has significantly increased the tangential velocity and the kinetic energy of the vortices. The increase in the velocity of the flow increased the height of the vortex which also led to the increase in the strength of the vortex and affects the vortex uniformity.

012015
The following article is Open access

, and

A significant number of cooling technologies have been developed to maintain the PV module temperature within subscribed limits. This paper represents the simulation study of active cooling forced air convection with fins attached to the back of the solar panel using CFD SimScale software. It has been first carefully validated against experimental and numerical results available in the literature. The number of fins and the shape of perforated and dimpled in each fin were varied to compare cooling performance. Three types of fins were adapted into this simulation: traditional fins, circular, and triangle perforated/dimpled fins. The effect of solar irradiation and velocity inlet was also reviewed by applying the nominal operating condition from the experimental works. Results indicated that fin channels are a very effective cooling technique, which significantly reduces the average temperature of the PV cell, especially when increasing the number of fins from 20 to 26 fins. Also, the results show that the dimpled triangle fin had the highest average temperature drop with a percentage difference of 6% compared with the solar panel cooling with traditional fins.

012016
The following article is Open access

, , and

This experimental study aimed to determine the effect of airflow velocity on the performance of a direct evaporative cooling system. Rectangular-shaped honeycomb cooling pads with a length of 34 cm, a width of 25 cm, and a thickness of 3.5 cm are used as cooling media. The main parameters of the study are low air velocity (2.3 ms−1), medium (3.2 ms−1), and high velocity (3.7 ms−1). The data collected include dry bulb temperature, wet bulb temperature, output air temperature, input and output air velocity, input and output humidity, and solar radiation. These data are used to determine saturation efficiency, cooling capacity, temperature decreases, and feasibility index. The experimental results are presented in the form of tables and graphs and analysed based on existing theories. The results showed that the evaporative cooling system could produce output temperatures up to 27.5°C with input 31.4°C at low airspeed, 27.97°C with input 31.47oC at medium speed, and 27.7°C with input 31.30°C at high air speed. It was concluded that a low airflow rate would add to the cooling efficiency, and the higher the airflow rate, the lower the cooling efficiency. The results showed that evaporative cooling is achievable with a feasibility index of 19.89 ≤ F*≤ 20.67. The results also affirmed that cooling capability is higher where the feasibility indexes are comparatively low.

012017
The following article is Open access

, and

In this study, microcapsules as potential candidates for self-healing agents were prepared by in situ polymerisation, taking place in oil-in-water emulsion. Poly(melamine-formaldehyde) is employed as shell material and diglycidyl ether of bisphenol A as polymerisable core materials and Pentaerythritol Tetrakis(3-Mercaptopropionate) as its hardener. The geometry, shell features, size distributions, core content, and the reactivity of the microcapsules were studied by scanning electron microscopy (SEM), optical microscopy (OM), Soxhlet extraction method and differential scanning calorimetry (DSC). Microcapsules with different sizes and distributions were obtained by adjusting the stirring speeds during the preparation stage. From the results, it was established that the spherical microcapsules fabricated using this technique, resulted in satisfactory size and shell structure with shell thickness of less than 2 μm. The microcapsules possess high core content at about 90 wt.% for each size range of microcapsules and it was also observed that the viscosity of the core content decreased at an elevated temperature. The results obtained in this work indicate that these microcapsules possess the characteristics that can be potentially used for self-healing applications.

012006
The following article is Open access

, , and

In the Pan Borneo Highway (PBH) project, the occurrence of clay soils is likely to increase construction costs, due to its low shear strength and high compressibility characteristics. In recent years, the use of non-traditional stabilizers e.g., Biomass Silica (SH-85) compound is becoming more prevalent. This study aims to determine the soil plasticity behaviour and to ascertain the Standard Proctor Compaction characteristics of clay soil by mixing it with varying dosages of SH-85. After soil classification was carried out, the Initial Lime Consumption Test was performed to estimate the suitable SH-85 dosage. The compound was mixed with the soil at concentrations of 3, 6, 9 and 15% (by soil sample weight). Moreover, Atterberg Limits test was also carried out to determine the change in soil plasticity. Subsequently, the compaction tests were performed to obtain the Maximum Dry Density (MDD) and Optimum Moisture Content (OMC) on the natural and stabilized soil. The trend of test results show that the OMC increases with increasing SH-85 dosages, while reducing the overall MDD values. The optimal quantity of SH-85 to achieve good compactibility was discovered to be 9%, producing a stabilized mix with a strength gain of +366% compared to the natural soil.

012007
The following article is Open access

, , , and

Plastic pollution has become a global concern due to poor plastic waste disposal management. As an alternative, independent recycling efforts are necessary. A Plastic shredder machine is a preliminary machine used to cut plastic waste into small pieces before turning it into useful products. The concept design of the shredder machine that is currently available is fairly similar. The shaft and blades are the critical components in the shredder machine that determines its performance. The geometry and orientation of the blades that were fitted into the single or double-shafts were found to directly affect the shredding performance. Therefore, this article aims to review the various geometry and orientations of the blades that give direct effect on the shredding performance, as well as identifying the research gaps related to the shredder machine for plastic waste materials