Table of contents

Buy this issue in print

Addendum

043001
The following article is Open access

, , and

We report full-dimensionality quantum and classical calculations of the double ionization (DI) of laser-driven helium at 390 nm. Good agreement between the quantum and classical results is observed. We identify the relative importance of the two main non-sequential DI pathways: the direct—with an almost simultaneous ejection of both electrons—and the delayed. We find that the delayed pathway prevails at small intensities independently of total electron energy, but at high intensities the direct pathway predominates up to a certain upper limit in total energy, which increases with intensity. An explanation of this increase with intensity is provided.

043002
The following article is Open access

We study tensor norms over Banach spaces and their relation to quantum information theory, in particular their connection with two-prover games. We consider a version of the Hilbertian tensor norm γ2 and its dual γ2* that allow us to consider games with arbitrary output alphabet sizes. We establish direct-product theorems and prove a generalized Grothendieck inequality for these tensor norms. Furthermore, we investigate the connection between the Hilbertian tensor norm and the set of quantum probability distributions, and show two applications to quantum information theory: firstly, we give an alternative proof of the perfect parallel repetition theorem for entangled XOR games; and secondly, we prove a new upper bound on the ratio between the entangled and the classical value of two-prover games.

043003
The following article is Open access

, , and

Lattice models are central to the physics of ultracold atoms and condensed matter. Generally, lattice models contain time-independent hopping and interaction parameters that are derived from the Wannier functions of the noninteracting problem. Here, we present a new concept based on time-dependent Wannier functions and the variational principle that leads to optimal time-dependent lattice models. As an application, we use the Bose–Hubbard model with time-dependent Wannier functions to study an interaction quench scenario involving higher bands. We find a separation of time-scales in the dynamics. The results are compared with numerically exact results of the time-dependent many-body Schrödinger equation. We thereby show that—under some circumstances—the multi-band nonequilibrium dynamics of a quantum system can be obtained essentially at the cost of a single-band model.

043004
The following article is Open access

, and

Why does Zipf's law give a good description of data from seemingly completely unrelated phenomena? Here it is argued that the reason is that they can all be described as outcomes of a ubiquitous random group division: the elements can be citizens of a country and the groups family names, or the elements can be all the words making up a novel and the groups the unique words, or the elements could be inhabitants and the groups the cities in a country and so on. A random group formation (RGF) is presented from which a Bayesian estimate is obtained based on minimal information: it provides the best prediction for the number of groups with k elements, given the total number of elements, groups and the number of elements in the largest group. For each specification of these three values, the RGF predicts a unique group distribution N(k)∝exp(−bk)/kγ, where the power-law index γ is a unique function of the same three values. The universality of the result is made possible by the fact that no system-specific assumptions are made about the mechanism responsible for the group division. The direct relation between γ and the total number of elements, groups and the number of elements in the largest group is calculated. The predictive power of the RGF model is demonstrated by direct comparison with data from a variety of systems. It is shown that γ usually takes values in the interval 1⩽γ⩽2 and that the value for a given phenomenon depends in a systematic way on the total size of the dataset. The results are put in the context of earlier discussions on Zipf's and Gibrat's laws, N(k)∝k−2 and the connection between growth models and RGF is elucidated.

043005
The following article is Open access

Topological subsystem color codes add an important feature to the advantages of topological codes: error tracking only involves measuring two local operators in a two-dimensional setting. Unfortunately, currently known methods for computing with them are highly unpractical. We give a mechanism for implementing all Clifford gates by code deformation in a planar setting. In particular, we use twist braiding and express its effects in terms of certain colored Majorana operators.

043006
The following article is Open access

, , , , , , , , , et al

We report new results obtained from calibrations of superheated liquid droplet detectors used in dark matter searches with different radiation sources (n, α, γ). In particular, detectors were spiked with α-emitters located inside and outside the droplets. It is shown that the responses have different temperature thresholds, depending on whether α-particles or recoil nuclei create the signals. The measured temperature threshold for recoiling 210Pb nuclei from 214Po α-decays was found to be in agreement with test beam measurements using mono-energetic neutrons. A comparison of the threshold data with theoretical predictions shows deviations, especially at high temperatures. It is shown that signals produced simultaneously by recoil nuclei and α-particles have more acoustic energy than signals produced by one or the other separately. A model is presented that describes how the observed intensities of particle-induced acoustic signals can be related to the dynamics of bubble growth in superheated liquids. A growth scenario that is limited by the inertia of the surrounding liquid shows a trend that is supported by the data. An improved understanding of the bubble dynamics is an important first step in obtaining better discrimination between particle types interacting in detectors of this kind.

043007
The following article is Open access

, , , and

We report on the local probing and preparation of an ultracold Fermi gas on the length scale of one micrometer, i.e. of the order of the Fermi wavelength. The essential tool of our experimental setup is a pair of identical, high-resolution microscope objectives. One of the microscope objectives allows local imaging of the trapped Fermi gas of 6Li atoms with a maximum resolution of 660 nm, while the other enables the generation of arbitrary optical dipole potentials on the same length scale. Employing a two-dimensional (2D) acousto-optical deflector, we demonstrate the formation of several trapping geometries, including a tightly focused single optical dipole trap, a 4×4 site 2D optical lattice and an 8 site ring lattice configuration. Furthermore, we show the ability to load and detect a small number of atoms in these trapping potentials. A site separation down to one micrometer in combination with the low mass of 6Li results in tunneling rates that are sufficiently large for the implementation of Hubbard models with the designed geometries.

043008
The following article is Open access

, and

We study the instability of a superfluid flow through a constriction in three spatial dimensions. We consider a Bose–Einstein condensate at zero temperature in two different geometries: a straight waveguide and a torus. The constriction consists of a broad, repulsive penetrable barrier. In the hydrodynamic regime, we find that the flow becomes unstable as soon as the velocity at the classical (Thomas–Fermi) surface equals the sound speed inside the constriction. At this critical point, vortex rings enter the bulk region of the cloud. The nucleation and dynamics scenario is strongly affected by the presence of asymmetries in the velocity and density of the background condensate flow.

043009
The following article is Open access

, and

We report on the key role of the acoustical impedance ratio between the solid and the host fluid in the transmission properties of slit arrays. Numerical calculations predict huge sound screening effects up to 60 dB for low impedance ratio values. The screening band appears over a broad frequency region and is very robust against dissipative losses of the material as well as against the sound incident angle. This counterintuitive result is discussed in terms of the hydrodynamic short circuit, where the fluid and the solid at the radiating interface vibrate out of phase, resulting in a huge sound blocking effect.

043010
The following article is Open access

and

We simulate the control of the spin states in a two-electron double quantum dot when an external detuning potential is used to pass the system through an anticrossing. The hyperfine coupling of the electron spins with the surrounding nuclei causes not only anticrossing of the spin states but also decoherence of the spin states. We calculate numerically the singlet–triplet decoherence for different detuning values and find good agreement with the experimental measurement results for a similar setup. We predict an interference effect due to the coupling of the T0 and T+ states.

043011
The following article is Open access

, , , , , and

Astrophysical jets are ubiquitous throughout the universe. They can be observed to emerge from protostellar objects, stellar x-ray binaries and supermassive black holes located at the center of active galaxies, and they are believed to originate from a central object that is surrounded by a magnetized accretion disc. With the motivations to understand whether hypersonic Newtonian jets produce any similarity to the morphologies observed in jets from young stellar objects (YSOs) and whether numerical codes, based on Godunov-type schemes, capture the basic physics of shocked flows, we have conceived a laboratory experiment and performed three-dimensional (3D) numerical simulations that reproduce the mid-to-long-term evolution of hypersonic jets. Here we show that these jets propagate, maintaining their collimation over long distances, in units of the jet initial radius. The jets studied are quasi-isentropic, are both lighter and heavier than the ambient and meet the two main scaling parameter requirements for proto-stellar jets: the ejection Mach number and the ambient/jet density ratio.

043012
The following article is Open access

, , , , , and

Based on direct numerical simulations of forced turbulence, shear turbulence, decaying turbulence, a turbulent channel flow as well as a Kolmogorov flow with Taylor-based Reynolds numbers Reλ between 69 and 295, the normalized probability density function of the length distribution of dissipation elements, the conditional mean scalar difference ⟨Δkl⟩ at the extreme points as well as the scaling of the two-point velocity difference along gradient trajectories ⟨Δun⟩ are studied. Using the field of the instantaneous turbulent kinetic energy k as a scalar, we find good agreement between the model equation for as proposed by Wang and Peters (2008 J. Fluid Mech.608 113–38) and the results obtained in the different direct numerical simulation cases. This confirms the independence of the model solution from both the Reynolds number and the type of turbulent flow, so that it can be considered universally valid. In addition, we show a 2/3 scaling for the mean conditional scalar difference. In the second part of the paper, we examine the scaling of the conditional two-point velocity difference along gradient trajectories. In particular, we compare the linear s/τ scaling, where τ denotes an integral time scale and s the separation arclength along a gradient trajectory in the inertial range as derived by Wang (2009 Phys. Rev. E 79 046325) with the s·a scaling, where a denotes the asymptotic value of the conditional mean strain rate of large dissipation elements.

043013
The following article is Open access

and

An ArF excimer laser beam at a wavelength of 193 nm has been characterized by a quantitative determination of the Wigner distribution function. The setup, comprising a spherical lens, a rotating cylindrical lens and a moveable ultraviolet-sensitive CCD detector, enabled the mapping of the entire four-dimensional phase space within less than 20 min. Experiments yielded complete information about second-order moment-based parameters, spatial coherence, wavefront, beam profiles, as well as beam propagation and local distributions of radiant intensities.

043014
The following article is Open access

, , and

Paramagnetic colloidal particles move in the potential energy landscape of a magnetically modulated bubble lattice of a magnetic garnet film. The modulation causes the energy minima to alternate between positions above the centres of the bubbles and interstitial positions. The particles deterministically follow the time-dependent positions of the energy minima until the minima become unstable in one or several directions and allow the particles to hop to a new minimum. We control the time delay between instabilities of the minima in alternative directions by the angle of the external magnetic field with the crystallographic directions of the bubble lattice. When the time delay is large, the particles deterministically hop to the next minimum along the direction that becomes unstable first. When the time delay is short, diffusion of the particle in the marginal potential randomizes the choice of the hopping directions or the choice of the transport network. Gradual changes of the external field direction from 0° to 30° lead to a continuous crossover from a deterministic to a fully stochastic path of the colloids.

043015
The following article is Open access

and

The coherent time evolution of electrons in double quantum dots (DQDs) induced by fast bias-voltage switches is studied theoretically. As it was shown experimentally, such driven DQDs are potential devices for controlled manipulation of charge qubits. By numerically solving a quantum master equation, we obtain the energy- and time-resolved electron transfer through the device that resembles the measured data. The observed oscillations are found to depend on the level offset of the two dots during the manipulation and, most surprisingly, also the initialization stage. By means of an analytical expression, obtained from a large-bias model, we can understand the prominent features of these oscillations seen in both the experimental data and the numerical results. These findings strengthen the common interpretation in terms of a coherent transfer of electrons between the dots.

043016
The following article is Open access

and

This paper has two tightly intertwined aims: (i) to introduce an intuitive and universal graphical calculus for multi-qubit systems, the ZX-calculus, which greatly simplifies derivations in the area of quantum computation and information. (ii) To axiomatize complementarity of quantum observables within a general framework for physical theories in terms of dagger symmetric monoidal categories. We also axiomatize phase shifts within this framework. Using the well-studied canonical correspondence between graphical calculi and dagger symmetric monoidal categories, our results provide a purely graphical formalisation of complementarity for quantum observables. Each individual observable, represented by a commutative special dagger Frobenius algebra, gives rise to an Abelian group of phase shifts, which we call the phase group. We also identify a strong form of complementarity, satisfied by the Z- and X-spin observables, which yields a scaled variant of a bialgebra.

043017
The following article is Open access

, , , and

Using low-energy electron microscopy movies, we have measured the dewetting dynamics of single-crystal Si(001) thin films on SiO2 substrates. During annealing (T>700 °C), voids open in the Si, exposing the oxide. The voids grow, evolving Si fingers that subsequently break apart into self-organized three-dimensional (3D) Si nanocrystals. A kinetic Monte Carlo model incorporating surface and interfacial free energies reproduces all the salient features of the morphological evolution. The dewetting dynamics is described using an analytic surface-diffusion-based model. We demonstrate quantitatively that Si dewetting from SiO2 is mediated by surface-diffusion driven by surface free-energy minimization.

043018
The following article is Open access

, , and

The nonlinear thermal behavior of laser-heated gold nanoparticles in aqueous suspension is determined by time-resolved optical spectroscopy and x-ray scattering. The nanoparticles can be excited transiently to high lattice temperatures owing to their large absorption cross-section and slow heat dissipation to the surrounding. A consequence is the observation of lattice expansion, changed optical transmission, vapor bubble formation or particle melting. The heat transfer equations are solved for two limiting cases of heat pulses shorter and longer than the characteristic cooling time. The results of pulsed excitation with femtosecond and nanosecond lasers are explained by the theoretical prediction, and the bubble formation is interpreted by a spinodal decomposition at the particle–liquid interface. It is shown that both the laser spectroscopy and x-ray scattering results agree qualitatively and quantitatively, underlining the validity of the comprehensive model.

043019
The following article is Open access

, and

This work theoretically addresses the trapping of an ionized atom with a single valence electron by means of lasers, analyzing qualitatively and quantitatively the consequences of the net charge of the particle. In our model, the coupling between the ion and the electromagnetic field includes the charge monopole and the internal dipole, within a multipolar expansion of the interaction Hamiltonian. Specifically, we perform a Power–Zienau–Woolley transformation, taking into account the motion of the center of mass. The net charge produces a correction in the atomic dipole that is of order me/M, with me the electron mass and M the total mass of the ion. With respect to neutral atoms, there is also an extra coupling to the laser field that can be approximated by that of the monopole located at the position of the center of mass. These additional effects, however, are shown to be very small compared to the dominant dipolar trapping term.

043020
The following article is Open access

, , and

Hysteresis in the field effect of bilayer graphene is observed at a low temperature. We attribute this effect to charge traps in the substrate. When the sweep rate of the back-gate voltage is increased to higher values, the hysteresis becomes more pronounced. By measuring the hysteresis in the field effect, the lifetime of the charge traps is estimated as 16.9 min. It is shown that the influence of charge traps on graphene is strongly affected by a magnetic field. Above 5 T the hysteresis remains constant.

043021
The following article is Open access

, , , and

We have performed angle-resolved photoemission spectroscopy of layered cobalt oxide NaxCoO2 for a wide doping range (0.35⩽x⩽0.85) with synchrotron radiation, and determined the doping dependence of the Fermi surface and band structure. The two-dimensional (2D) cylindrical a1g Fermi surface at x=0.35 gradually increases the dimensionality upon Na doping and eventually transforms into a 3D-like Fermi surface at x=0.77, indicating the strong inter-layer coupling between adjacent CoO2 layers in the highly doped region. We found that the characteristic shape of the top of the a1g band is closely related to the various anomalies of physical properties in NaxCoO2.

043022
The following article is Open access

, , , , , and

The synthesis of isolated attosecond pulses (IAPs) in the extreme ultraviolet (XUV) spectral region has opened up the shortest time scales for time-resolved studies. It relies on the generation of high-order harmonics (HHG) from high-power few-cycle infrared (IR) laser pulses. Here we explore experimentally a new and simple route to IAP generation directly from 35 fs IR pulses that undergo filamentation in argon. Spectral broadening, self-shortening of the IR pulse and HHG are realized in a single stage, reducing the cost and experimental effort for easier spreading of attosecond sources. We observe continuous XUV spectra supporting IAPs, emerging directly from the filament via a truncating pinhole to vacuum. The extremely short absorption length of the XUV radiation makes it a highly local probe for studying the elusive filamentation dynamics and in particular provides an experimental diagnostic of short-lived spikes in laser intensity. The excellent agreement with numerical simulations suggests the formation of a single-cycle pulse in the filament.

043023
The following article is Open access

We find the non-retarded van der Waals force between two identical oscillators, in initially uncorrelated mixed states appropriate for a common temperature T and mean energy , constrained to move at constant relative velocity on parallel trajectories a fixed finite distance apart. It is shown that the probability distributions of their final states, although correlated, are also thermal; they are appropriate for a slightly higher temperature TT, with proportional to . Negative friction, i.e. negative , could occur only under conditions where the underlying constraints no longer make physical sense. A crude multi-oscillator multi-collision toy model explores how the temperature might rise with time in a sequence of dynamically similar collisions. An appendix considers conflicting solutions proposed for the same problem.

043024
The following article is Open access

, and

We describe an optomechanical system in which the mean phonon number of a single mechanical mode conditionally displaces the amplitude of the optical field. Using homodyne detection of the output field, we establish the conditions under which phonon number quantum jumps can be inferred from the measurement record: both the cavity damping rate and the measurement rate of the phonon number must be much greater than the thermalization rate of the mechanical mode. We present simulations of the conditional dynamics of the measured system using the stochastic master equation. In the good-measurement limit, the conditional evolution of the mean phonon number shows quantum jumps as phonons enter and exit the mechanical resonator via the bath.

043025
The following article is Open access

, , , and

Imaging the magnetic fields around a non-magnetic impurity can provide a clear benchmark for quantifying the degree of magnetic frustration. Focusing on the strongly frustrated J1J2 model and the spatially anisotropic J1aJ1bJ2 model, very distinct low-energy behavior reflects different levels of magnetic frustration. In the J1J2 model, bound magnons appear trapped near the impurity in the ground state and strongly reduce the ordered moments for sites proximal to the impurity. In contrast, local moments in the J1aJ1bJ2 model are enhanced on the impurity neighboring sites. These theoretical predictions can be probed by experiments such as nuclear magnetic resonance and scanning tunneling microscopy, and the results can help us to elucidate the role of frustration in antiferromagnets and help narrow the possible models for understanding magnetism in iron pnictides.

043026
The following article is Open access

, , , , , , , , , et al

We measured the high-resolution Cu L3 edge resonant inelastic x-ray scattering (RIXS) of undoped cuprates La2CuO4, Sr2CuO2Cl2, CaCuO2 and NdBa2Cu3O6. The dominant spectral features were assigned to dd excitations and we extensively studied their polarization and scattering geometry dependence. In a pure ionic picture, we calculated the theoretical cross sections for those excitations and used these to fit the experimental data with excellent agreement. By doing so, we were able to determine the energy and symmetry of Cu-3d states for the four systems with unprecedented accuracy and confidence. The values of the effective parameters could be obtained for the single-ion crystal field model but not for a simple two-dimensional cluster model. The firm experimental assessment of dd excitation energies carries important consequences for the physics of high-Tc superconductors. On the one hand, we found that the minimum energy of orbital excitation is always ⩾1.4 eV, i.e. well above the mid-infrared spectral range, which leaves to magnetic excitations (up to 300 meV) a major role in Cooper pairing in cuprates. On the other hand, it has become possible to study quantitatively the effective influence of dd excitations on the superconducting gap in cuprates.

043027
The following article is Open access

, , and

Superselection rules (SSRs) constrain the allowed states and operations in quantum theory. They limit preparations and measurements and hence impact our ability to observe non-locality, in particular the violation of Bell inequalities. We show that a reference frame compatible with a particle number SSR does not allow observers to violate a Bell inequality if and only if it is prepared using only local operations and classical communication. In particular, jointly prepared separable reference frames are sufficient for obtaining violations of a Bell inequality. We study the size and non-local properties of such reference frames using superselection-induced variance. These results suggest the need for experimental Bell tests in the presence of superselection.

043028
The following article is Open access

, , and

Quantum lithography promises, in principle, unlimited feature resolution, independent of wavelength. However, in the literature, at least two different theoretical descriptions of quantum lithography exist. They differ in the extent to which they predict that the photons retain spatial correlation from generation to absorption, and although both predict the same feature size, they vastly differ in predicting how efficiently a quantum lithographic pattern can be exposed. Until recently, essentially all quantum lithography experiments have been performed in such a way that it is difficult to distinguish between the two theoretical explanations. However, last year an experiment was performed that gives different outcomes for the two theories. We comment on the experiment and show that the model that fits the data unfortunately indicates that the trade-off between resolution and efficiency in quantum lithography is very unfavourable.

043029
The following article is Open access

, , , and

We investigate the operation of pyramidal magneto-optical traps (MOTs) microfabricated in silicon. Measurements of the loading and loss rates give insights into the role of the nearby surface in the MOT dynamics. Studies of the fluorescence versus laser frequency and intensity allow us to develop a simple theory of operation. The number of 85Rb atoms trapped in the pyramid is approximately L6, where L≲6 is the size of the pyramid opening in mm. This follows quite naturally from the relation between capture velocity and size and differs from the L3.6 often used for describing larger MOTs. Our results represent substantial progress towards fully integrated atomic physics experiments and devices.

043030
The following article is Open access

, , , , and

We present theoretical and experimental results on the generation and detection of pulsed, relative-intensity squeezed light in a hot 87Rb vapor. The intensity noise correlations between a pulsed probe beam and its conjugate, generated through nearly degenerate four-wave mixing in a double-lambda system, are studied numerically and measured experimentally via time-resolved balanced detection. We predict and observe approximately − 1 dB of time-resolved relative-intensity squeezing with 50 ns pulses at 1 MHz repetition rate. (− 1.34 dB corrected for loss).

043031
The following article is Open access

, , , , , and

Anomalous diffusion of Brownian particles in inhomogeneous viscosity landscapes is predicted by means of scaling arguments, which are substantiated through numerical simulations. Analytical solutions of the related Fokker–Planck equation in limiting cases confirm our results. In the case of an ensemble of particles starting at a spatial minimum (maximum) of the viscous damping, we find subdiffusive (superdiffusive) motion. Superdiffusion also occurs in the case of a monotonically varying viscosity profile. We suggest different systems for related experimental investigations.

043032
The following article is Open access

, , , , and

In reality, migration of an individual usually correlates with the individual's financial or social status. Here, we consider the situation where migration of a player depends on the player's payoff to an evolutionary prisoner's dilemma game. When the mobility of a player is positively correlated with the player's normalized payoff, Pi, where the mobility of player i is defined as μi=Piα, we found that cooperation could be promoted strongly in the case of a high density of players because of the introduction of this kind of migration. Moreover, the system could reach a state of complete cooperation in a large region on the given parameter space. Interestingly, enhancement of cooperation shows a non-monotonic behavior with an increase in α. We also found that the positive effects of this kind of migration on cooperation are robust in the face of changes to the network structure and the strategy-updating rule. In addition, we consider another situation where the mobility of a player is anti-correlated with the player's normalized payoff, and we observe that cooperation enhancement still exists.

043033
The following article is Open access

, , , and

We investigate the influence of different electric moments on the shift and dephasing of molecules in a matter wave interferometer. Firstly, we provide a quantitative comparison of two molecules that are non-polar yet polarizable in their thermal ground state and that differ in their stiffness and response to thermal excitations. While C25H20 is rather rigid, its larger derivative C49H16F52 is additionally equipped with floppy side chains and vibrationally activated dipole moment variations. Secondly, we elucidate the role of a permanent electric dipole momentby contrasting the quantum interference pattern of a (nearly) non-polar and a polar porphyrin derivative. We find that a high molecular polarizability and even sizeable dipole moment fluctuations are still well compatible with high-contrast quantum interference fringes. The presence of permanent electric dipole moments, however, can lead to a dephasing and rapid degradation of the quantum fringe pattern already at moderate electric fields. This finding is of high relevance for coherence experiments with large organic molecules, which are generally equipped with strong electric moments.

043034
The following article is Open access

We study the phenomenon of self-organized criticality (SOC) as a transport problem for electrically charged particles. A model for SOC based on the idea of a dynamic polarization response with random walks of the charge carriers gives critical exponents consistent with the results of numerical simulations of the traditional 'sandpile' SOC models, and stability properties, associated with the scaling of the control parameter versus distance to criticality. Relaxations of a supercritical system to SOC are stretched-exponential similar to the typically observed properties of non-Debye relaxation in disordered amorphous dielectrics. Overdriving the system near self-organized criticality is shown to have a destabilizing effect on the SOC state. This instability of the critical state constitutes a fascinating nonlinear system in which SOC and nonlocal properties can appear on an equal footing. The instability cycle is qualitatively similar to the internal kink ('fishbone') mode in a magnetically confined toroidal plasma where beams of energetic particles are injected at high power, and has serious implications for the functioning of complex systems. Theoretical analyses, presented here, are the basis for addressing the various patterns of self-organized critical behavior in connection with the strength of the driving. The results of this work also suggest a type of mixed behavior in which the typical multi-scale features due to SOC can coexist along with the global or coherent features as a consequence of the instability present. An example of this coexistence is speculated for the solar wind–magnetosphere interaction.

045001
The following article is Open access

and

An unusual two- to threefold decrease in the luminescence intensity of nitrogen-vacancy centers in 30 nm diamonds under increasing pulsed-laser irradiation (up to the level of 0.1 J cm−2) has been measured. The effect showed little dependence on the pulse repetition rate below 1 MHz and was accompanied by insignificant changes in the emission spectrum. The primary cause of the effect was attributed to the heat generated by the laser pulse and the consequent increase of the crystal temperature, which was estimated in the range of 300–400 °C.

045002
The following article is Open access

, , and

While the motions of macroscopic objects must ultimately be governed by quantum mechanics, the distinctive features of quantum mechanics can be hidden or washed out by thermal excitations and coupling to the environment. We propose a system consisting of a graphene nanomechanical oscillator (NMO) coupled with a single spin through a uniform external magnetic field, which could become the building block for a wide range of quantum nanomechanical devices. The choice of graphene as the NMO material is critical for minimizing the moment of inertia of the oscillator. The spin originates from a nitrogen-vacancy (NV) center in a diamond nanocrystal that is positioned on the NMO. This coupling results in quantum non-demolition (QND) measurements of the oscillator and spin states, enabling a bridge between the quantum and classical worlds for a simple readout of the NV center spin and observation of the discrete states of the NMO.

045003
The following article is Open access

and

Fracture oil and gas reservoirs exist in large numbers. The accurate logging evaluation of fracture reservoirs has puzzled petroleum geologists for a long time. Nuclear magnetic resonance (NMR) logging is an effective new technology for borehole measurement and formation evaluation. It has been widely applied in non-fracture reservoirs, and good results have been obtained. But its application in fracture reservoirs has rarely been reported in the literature. This paper studies systematically the impact of fracture parameters (width, number, angle, etc), the instrument parameter (antenna length) and the borehole condition (type of drilling fluid) on NMR logging by establishing the equation of the NMR logging response in fracture reservoirs. First, the relationship between the transverse relaxation time of fluid-saturated fracture and fracture aperture in the condition of different transverse surface relaxation rates was analyzed; then, the impact of the fracture aperture, dip angle, length of two kinds of antennas and mud type was calculated through forward modeling and inversion. The results show that the existence of fractures affects the NMR logging; the characteristics of the NMR logging response become more obvious with increasing fracture aperture and number of fractures. It is also found that T2 distribution from the fracture reservoir will be affected by echo spacing, type of drilling fluids and length of antennas. A long echo spacing is more sensitive to the type of drilling fluid. A short antenna is more effective for identifying fractures. In addition, the impact of fracture dip angle on NMR logging is affected by the antenna length.

045004
The following article is Open access

, , , , , , , and

The development of material-processing techniques that can be used to generate optical diamond nanostructures containing a single-color center is an important problem in quantum science and technology. In this work, we present the combination of ion implantation and top-down diamond nanofabrication in two scenarios: diamond nanopillars and diamond nanowires. The first device consists of a 'shallow' implant (∼20 nm) to generate nitrogen-vacancy (NV) color centers near the top surface of the diamond crystal prior to device fabrication. Individual NV centers are then mechanically isolated by etching a regular array of nanopillars in the diamond surface. Photon anti-bunching measurements indicate that a high yield (>10%) of the devices contain a single NV center. The second device demonstrates 'deep' (∼1 μm) implantation of individual NV centers into diamond nanowires as a post-processing step. The high single-photon flux of the nanowire geometry, combined with the low background fluorescence of the ultrapure diamond, allowed us to observe sustained photon anti-bunching even at high pump powers.

045005
The following article is Open access

, , , , and

We report the photoluminescence characteristics of a colour centre in diamond grown by plasma-assisted chemical vapour deposition. The colour centre emits with a sharp zero-phonon line at 2.330 eV (λ=532 nm) and a lifetime of 3.3 ns, thus offering potential for a high-speed single-photon source with green emission. It displays a vibronic emission spectrum with a Huang–Rhys parameter of 2.48 at 77 K. Hanbury–Brown and Twiss measurements reveal that the electronic level structure of the defect includes a metastable state that can be populated from the optically excited state.

045006
The following article is Open access

, , , and

Focus on Topological Quantum Computation

Collective states of interacting non-Abelian anyons have recently been studied mostly in the context of certain fractional quantum Hall states, such as the Moore–Read state proposed to describe the physics of the quantum Hall plateau at filling fraction ν=5/2. In this paper, we further expand this line of research and present non-unitary generalizations of interacting anyon models. In particular, we introduce the notion of Yang–Lee anyons, discuss their relation to the so-called 'Gaffnian' quantum Hall wave function and describe an elementary model for their interactions. A one-dimensional (1D) version of this model—a non-unitary generalization of the original golden chain model—can be fully understood in terms of an exact algebraic solution and numerical diagonalization. We discuss the gapless theories of these chain models for general su(2)k anyonic theories and their Galois conjugates. We further introduce and solve a 1D version of the Levin–Wen model for non-unitary Yang–Lee anyons.

045007
The following article is Open access

and

Focus on Strongly Correlated Quantum Fluids - from Ultracold Quantum Gases to QCD Plasmas

A selfconsistent calculation of heavy-quark (HQ) and quarkonium properties in the quark-gluon plasma (QGP) is conducted to quantify flavor transport and color screening in the medium. The main tool is a thermodynamic T-matrix approach to compute HQ and quarkonium spectral functions in both scattering and bound-state regimes. The T-matrix, in turn, is employed to calculate HQ selfenergies which are implemented into spectral functions beyond the quasiparticle approximation. Charmonium spectral functions are used to evaluate Eulcidean-time correlation functions, which are compared to results from thermal lattice QCD. The comparisons are performed in various hadronic channels, including zero-mode contributions consistently accounting for finite charm-quark width effects. The zero modes are closely related to the charm-quark number susceptibility, which is also compared to existing lattice 'data'. Both the susceptibility and the heavy-light quark T-matrix are applied to calculate the thermal charm-quark relaxation rate, or, equivalently, the charm diffusion constant in the QGP. Implications of our findings in the HQ sector for the viscosity-to-entropy-density ratio of the QGP are briefly discussed.

045008
The following article is Open access

, , , and

This paper discusses a recent proposal for the simulation of acoustic black holes with ions (Horstmann et al 2010 Phys. Rev. Lett.104 250403). Ions are rotating on a ring with an inhomogeneous but stationary velocity profile. Phonons cannot leave a region in which the ion velocity exceeds the group velocity of the phonons, because light cannot escape from a black hole. The system is described by a discrete field theory with a nonlinear dispersion relation. Hawking radiation is emitted by this acoustic black hole, generating entanglement between the inside and the outside of the black hole. We study schemes for detecting the Hawking effect in this setup.

045009
The following article is Open access

, and

Discretizations of continuum theories often do not preserve the gauge symmetry content. This occurs in particular for diffeomorphism symmetry in general relativity, which leads to severe difficulties in both canonical and covariant quantization approaches. We discuss here the method of perfect actions, which attempts to restore gauge symmetries by mirroring exactly continuum physics on a lattice via a coarse graining process. Analytical results can only be obtained via a perturbative approach, for which we consider the first step, namely the coarse graining of the linearized theory. The linearized gauge symmetries are exact also in the discretized theory; hence, we develop a formalism to deal with gauge systems. Finally, we provide a discretization of linearized gravity as well as a coarse graining map and show that with this choice the three-dimensional (3D) linearized gravity action is invariant under coarse graining.

045010
The following article is Open access

, , , and

Focus on Strongly Correlated Quantum Fluids - from Ultracold Quantum Gases to QCD Plasmas

We calculate the spin-drag relaxation rate for a two-component ultracold atomic Fermi gas with positive scattering length between the two-spin components. In one dimension, we find that it vanishes linearly with temperature. In three dimensions, the spin-drag relaxation rate vanishes quadratically with temperature for sufficiently weak interactions. This quadratic temperature dependence is present, up to logarithmic corrections, in the two-dimensional (2D) case as well. For stronger interaction, the system exhibits a Stoner ferromagnetic phase transition in two and three dimensions. We show that the spin-drag relaxation rate is enhanced by spin fluctuations as the temperature approaches the critical temperature of this transition from above.

045011
The following article is Open access

, , , and

Focus on Strongly Correlated Quantum Fluids - from Ultracold Quantum Gases to QCD Plasmas

Critical behavior developed near a quantum phase transition, interesting in its own right, offers exciting opportunities to explore the universality of strongly correlated systems near the ground state. Cold atoms in optical lattices, in particular, represent a paradigmatic system, for which the quantum phase transition between the superfluid and Mott insulator states can be externally induced by tuning the microscopic parameters. In this paper, we describe our approach to study quantum criticality of cesium atoms in a two-dimensional (2D) lattice based on in situ density measurements. Our research agenda involves testing critical scaling of thermodynamic observables and extracting transport properties in the quantum critical regime. We present and discuss experimental progress on both fronts. In particular, the thermodynamic measurement suggests that the equation of state near the critical point follows the predicted scaling law at low temperatures.

045012
The following article is Open access

, and

Focus on Topological Quantum Computation

In this paper, we study charged spin-1/2 particles in two dimensions, subjected to a perpendicular non-Abelian magnetic field. Specializing to a choice of vector potential that is spatially constant but non-Abelian, we investigate the Landau level spectrum in planar and spherical geometry, paying particular attention to the role of the total angular momentum . Then, we show that the adiabatic insertion of non-Abelian flux in a spin-polarized quantum Hall state leads to the formation of charged spin textures, which in the simplest cases can be identified with quantum Hall Skyrmions.

045013
The following article is Open access

, and

Focus on Topological Quantum Computation

We study charged spin textures (CSTs) over the Moore–Read quantum Hall state at filling factor 5/2. We develop an algebraic framework and show that the pairing condition that is inherent in the Moore–Read state naturally leads to a class of CST, labeled by winding numbers [wI, wII]. The fundamental CSTs, with labels [1, 0] and electric charge e/4, is identified with the polar core vortex known in the spin-1 Bose–Einstein condensates literature. The spin texture carried by the fusion product of fundamental CSTs is correlated with the fusion channel of underlying non-Abelian quasiholes.

045014
The following article is Open access

, , and

Focus on Topological Quantum Computation

A set of localized, non-Abelian anyons—such as vortices in a px+ipy superconductor or quasiholes in certain quantum Hall states—gives rise to a macroscopic degeneracy. Such a degeneracy is split in the presence of interactions between the anyons. Here, we show that in two spatial dimensions this splitting selects a unique collective state as ground state of the interacting many-body system. This collective state can be a novel gapped quantum liquid nucleated inside the original parent liquid (of which the anyons are excitations). This physics is of relevance for any quantum Hall plateau realizing a non-Abelian quantum Hall state when moving off the center of the plateau.

045015
The following article is Open access

, , , and

Color centers in diamond, as single photon emitters, are leading candidates for future quantum devices due to their room temperature operation and photostability. The recently discovered chromium-related centers are particularly attractive because they possess narrow bandwidth emission and a very short lifetime. In this paper, we investigate the fabrication methodologies for engineering these centers in monolithic diamond. We show that the emitters can be successfully fabricated by ion implantation of chromium in conjunction with oxygen or sulfur. Furthermore, our results indicate that the background nitrogen concentration is an important parameter, which governs the probability of success in generating these centers.

045016
The following article is Open access

, , , and

The magic-angle spinning (MAS) and pulsed-field gradient nuclear magnetic resonance (PFG NMR) techniques have been combined using a commercially available microimaging system providing a gradient in the magic-angle direction of up to ±2.6 T m− 1, together with a narrow bore MAS probe. By narrowing the spectral linewidths, detection of the single and mixed molecular species adsorbed in porous material and their respective mobilities becomes possible. Here, we report on protocols for MAS PFG NMR measurements, new methods for the indispensable sample alignment along the MAS rotational axis and gradient direction and first experimental results of diffusion studies on n-hexane and benzene adsorbed in the metal-organic framework MOF-5.

045017
The following article is Open access

and

Focus on Strongly Correlated Quantum Fluids - from Ultracold Quantum Gases to QCD Plasmas

We study the evolution and scaling of the entanglement entropy after two types of quenches for a 2+1 field theory, using a conjectured holographic technique for its computation. We study a thermal quench, dual to the addition of a shell of uncharged matter to four-dimensional anti-de Sitter (AdS4) spacetime, and study the subsequent formation of a Schwarzschild black hole. We also study an electromagnetic quench, dual to the addition of a shell of charged sources to AdS4, following the subsequent formation of an extremal dyonic black hole. In these backgrounds, we consider the entanglement entropy of two types of geometries, the infinite strip and the round disc, and find distinct behavior for each. Some of our findings naturally supply results analogous to observations made in the literature for lower dimensions, but we also uncover several new phenomena, such as (in some cases) a discontinuity in the time derivative of the entanglement entropy as it nears saturation, and for the electromagnetic quench, a logarithmic growth in the entanglement entropy with time for both the disc and strip, before settling to saturation. We briefly discuss the possible origin of the new phenomena in terms of the features of the conjectured dual field theory.

045018
The following article is Open access

and

Focus on Strongly Correlated Quantum Fluids - from Ultracold Quantum Gases to QCD Plasmas

The bulk viscosity of cold, dense three-flavor quark matter is studied as a function of temperature and the amplitude of density oscillations. The study is extended to the case of two different types of anharmonic oscillations of density. We point out several qualitative effects due to the anharmonicity, although quantitatively they appear to be relatively small. We found that, in most regions of the parameter space, except for very large amplitudes of density oscillations (i.e. 10% and above), nonlinear effects and anharmonicity have a small effect on the interplay of the nonleptonic and semileptonic processes in the bulk viscosity.

045019
The following article is Open access

, and

By means of lattice-based Monte Carlo simulations, we address the properties of two-component lipid membranes on the experimentally relevant spatial scales of the order of a micrometer and time intervals of the order of 1 s, using DMPC/DSPC lipid mixtures as a model system. Our large-scale simulations allowed us to obtain important results not reported previously in simulation studies of lipid membranes. We find that, for a certain range of lipid compositions, the phase transition from the fluid phase to the fluid–gel phase coexistence proceeds via near-critical fluctuations, whereas for other lipid compositions this phase transition has a quasi-abrupt character. In the presence of near-critical fluctuations, transient subdiffusion of lipid molecules is observed. These features of the system are stable with respect to perturbations in lipid interaction parameters used in our simulations. The line tension characterizing lipid domains in the fluid–gel coexistence region is found to be in the pN range. On approaching the critical point, the line tension, the inverse correlation length of fluid–gel spatial fluctuations and the corresponding inverse order parameter susceptibility of the membrane vanish. All these results are in agreement with recent experimental findings for model lipid membranes. Our analysis of the domain coarsening dynamics after an abrupt quench of the membrane to the fluid–gel coexistence region reveals that lateral diffusion of lipids plays an important role in the fluid–gel phase separation process.

045020
The following article is Open access

and

The deformation of thin spherical shells by applying an external pressure or by reducing the volume is studied by computer simulations and scaling arguments. The shape of the deformed shells depends on the deformation rate, the reduced volume V/V0 and the Föppl–von Kármán number γ. For slow deformations the shell attains its ground state, a shell with a single indentation, whereas for large deformation rates the shell appears crumpled with many indentations. The rim of the single indentation undergoes a shape transition from smooth to polygonal for γ≃7000(ΔV/V0)− 3/4. For the smooth rim the elastic energy scales like γ1/4 whereas for the polygonal indentation we find a much smaller exponent, even smaller than the exponent 1/6 that is predicted for stretching ridges. The relaxation of a shell with multiple indentations towards the ground state follows an Ostwald ripening type of pathway and depends on the compression rate and on the Föppl–von Kármán number. The number of indentations decreases as a power law with time t following Nindt− 0.375 for γ=8×103 and γ=8×104 whereas for γ=8×105 the relaxation time is longer than the simulation time.

045021
The following article is Open access

, , , , , , , , , et al

We demonstrate a method of imaging spatially varying magnetic fields using a thin layer of nitrogen-vacancy (NV) centers at the surface of a diamond chip. Fluorescence emitted by the two-dimensional NV ensemble is detected by a CCD array, from which a vector magnetic field pattern is reconstructed. As a demonstration, ac current is passed through wires placed on the diamond chip surface, and the resulting ac magnetic field patterns are imaged using an echo-based technique with sub-micron resolution over a 140 μm×140 μm field of view, giving single-pixel sensitivity . We discuss ongoing efforts to further improve the sensitivity, as well as potential bioimaging applications such as real-time imaging of activity in functional, cultured networks of neurons.