Table of contents

Volume 25

Number 25, 27 June 2014

Previous issue Next issue

Buy this issue in print

Papers

Biology and medicine

255101

, , , , and

Doxorubicin (DOX), one of the most widely used anticancer drugs, is restricted in clinical application due to its severe side effects and inefficient cellular uptake. To overcome the drawbacks, herein, an endosomal pH-activated prodrug was designed and fabricated by conjugating DOX with chitosan via an acid-cleavable hydrazone bond. The resulting DOX conjugates can self-assemble into nano-sized particles, which were very stable and presented no burst release of DOX at a neutral pH condition. Notably, the nanoparticles exhibited excellent cell uptake properties and a remarkable drug accumulation in tumor cells. Once internalized into the cells, moreover, DOX can be fast released from the nanoparticles, and the release mechanism changed from the anomalous transport at pH 7.4 to the combination pattern of diffusion- and erosion-controlled release at pH 6.0 or 5.0. The prodrugs showed obvious cytotoxicity for HeLa cells with fairly low IC50 values, offering a new platform for targeted cancer therapy.

255102

, , , , , and

Incorporating ligands with nanoparticle-based carriers for specific delivery of therapeutic nucleic acids (such as antisense oligonucleotides and siRNA) to tumor sites is a promising approach in anti-cancer strategies. However, nanoparticle-based carriers remain insufficient in terms of the selectivity and transfection efficiency. In this paper, we designed a dual receptor–targeted QDs gene carrier QD-(AS-ODN+GE11+c(RGDfK)) which could increase the cellular uptake efficiency and further enhance the transfection efficiency. Here, the targeting ligands used were peptides GE11 and c(RGDfK) which could recognize epidermal growth factor receptors (EGFR) and integrin ανβ3 receptors, respectively. Quantitative flow cytometry and ICP/MS showed that the synergistic effect between EGFR and integrin ανβ3 increased the cellular uptake of QDs carriers. The effects of inhibition agents showed the endocytosis pathway of QD-(AS-ODN+GE11+c(RGDfK)) probe was mainly clathrin-mediated. Western blot confirmed that QD-(AS-ODN+GE11+c(RGDfK)) could further enhance gene silencing efficiency compared to QD-(AS-ODN+GE11) and QD-(AS-ODN+c(RGDfK)), suggesting this dual receptor–targeted gene carrier achieved desired transfection efficiency. In this gene delivery system, QDs could not only be used as a gene vehicle but also as fluorescence probe, allowing for localization and tracking during the delivery process. This transport model is very well referenced for non-viral gene carriers to enhance the targeting ability and transfection efficiency.

Electronics and photonics

255201

, , , , , , , , and

We report a systematic experimental and theoretical investigation of core–shell InGaN/GaN single wire light-emitting diodes (LEDs) using electron beam induced current (EBIC) microscopy. The wires were grown by catalyst-free MOVPE and processed into single wire LEDs using electron beam lithography on dispersed wires. The influence of the acceleration voltage and of the applied bias on the EBIC maps was investigated. We show that the EBIC maps provide information both on the minority carrier effects (i.e. on the local p–n junction collection efficiency) and on the majority carrier effects (i.e. the transport efficiency from the excited region toward the contacts). Because of a finite core and shell resistance a non-negligible current redistribution into the p–n junction takes place during the majority carrier transport. A theoretical model for transport in a core–shell wire is developed, allowing to explain the dependence of the EBIC profiles on the experimental parameters (the electron beam acceleration voltage and the bias applied on the device) and on the structural parameters of the wire (core and shell resistance, shunt resistance, etc). Comparison between simulated and experimental profiles provides valuable information concerning the structure inhomogeneities and gives insight into the wire electrical parameters.

255202

, , , , , , , , , et al

We report on the growth and microstructure analysis of high Cd content ZnCdO/ZnO multiple quantum wells (MQW) within a nanowire. Heterostructures consisting of ten wells with widths from 0.7 to 10 nm are demonstrated, and show photoluminescence emissions ranging from 3.03 to 1.97 eV. The wells with thicknesses ≦̸2 nm have high radiative efficiencies compared to the thickest ones, consistent with the presence of quantum confinement. However, a nanometric analysis of the Cd profile along the heterostructures shows the presence of Cd diffusion from the ZnCdO well to the ZnO barrier. This phenomenon modifies the band structure and the optical properties of the heterostructure, and is considered in order to correctly identify quantum effects in the ZnCdO/ZnO MQWs.

255203

, , , , and

Nonvolatile flash-memory capacitors containing graphene quantum dots (GQDs) of 6, 12, and 27 nm average sizes (d) between SiO2 layers for use as charge traps have been prepared by sequential processes: ion-beam sputtering deposition (IBSD) of 10 nm SiO2 on a p-type wafer, spin-coating of GQDs on the SiO2 layer, and IBSD of 20 nm SiO2 on the GQD layer. The presence of almost a single array of GQDs at a distance of ∼13 nm from the SiO2/Si wafer interface is confirmed by transmission electron microscopy and photoluminescence. The memory window estimated by capacitance–voltage curves is proportional to d for sweep voltages wider than  ± 3 V, and for d = 27 nm the GQD memories show a maximum memory window of 8 V at a sweep voltage of  ± 10 V. The program and erase speeds are largest at d = 12 and 27 nm, respectively, and the endurance and data-retention properties are the best at d = 27 nm. These memory behaviors can be attributed to combined effects of edge state and quantum confinement.

Patterning and nanofabrication

255301

, , , , , , , and

The formation of nanowires (NWs) by reactive ion etching (RIE) of maskless GaN layers was investigated. The morphological, structural and optical characteristics of the NWs were studied and compared to those of the layer they evolve from. It is shown that the NWs are the result of a defect selective etching process. The evolution of density and length with etching time is discussed. Densely packed NWs with a length of more than 1 μm and a diameter of ∼60 nm were obtained by RIE of a ∼2.5 μm thick GaN layer. The NWs are predominantly free of threading dislocations and show an improvement of optical properties compared to their layer counterpart. The production of NWs via a top down process on non-masked group III-nitride layers is assessed to be very promising for photovoltaic applications.

255302

, , , and

We report on a novel solution etching method to fabricate vertically aligned aperiodic silicon nanowire (SiNW) arrays. We begin with a simple dewetting process to fabricate a monolayer of well-spaced metal particles in situ on a silicon wafer. The particles function as a sacrificial template to pattern a Ti/Au catalyst film into a metal mesh and the size of particles directly determines the diameter of SiNW. A conventional metal-assisted chemical etching process is then carried out with the obtained metal mesh as a catalyst to realize a vertically aligned SiNW array at a large scale and low cost.

Sensing and actuating

255501

, , , and

We present an easy, fast and reliable method for the preparation of magnetic force microscopy (MFM) probes based on single Co nanoparticles (NPs). Due to their dipolar character, these magnetic probes open up a new approach for quantitative and non-invasive MFM measurements on the nanometer length scale. To guarantee long-term stability of these tips under ambient conditions, an ultrathin protecting Au shell was grown around the Co NPs through photochemical deposition. Single magnetic particles were firmly attached to standard silicon AFM tips using bifunctional self-assembling molecules. Such probes were tested on longitudinal magnetic recording media and compared to the results as recorded with conventional thin-film MFM tips. Easy data interpretation of the magnetic nanoparticle probes in a point dipole model is shown. Our nanoparticle tips provide excellent endurance for MFM recording, enable non-invasive probing while maintaining a high sensitivity, resolution, and reproducibility.

Materials: synthesis or self-assembly

255601

, , , , , , and

A novel nanosphere based on carboxylated GO (GO-COOH) and hydroxypropyl-beta-CD (HP-β-CD) was synthesized to construct a complex of GO-COO-HP-β-CD. The complex formation process was studied using spectral characterization and transmission electron microscopy (TEM). X-ray diffraction and energy dispersive spectroscopy patterns show that HP-β-CD molecules either cover or intercalate into GO-COOH interlayers in the complex. Fourier transform infrared spectroscopy results indicate that GO-COOH and HP-β-CD are linked with covalent bonds formed via esterification. When employed as nanohybrid drug carriers for dexamethasone, the inclusion displays good dispersibility validated by dynamic light scattering (DLS). Cytotoxicity assays and hemolysis testing demonstrate that the nanospheres possess good biological compatibility. The loading capacity of dexamethasone is as high as 32.33%, with loading efficiency 64.66%.

Materials: properties, characterization or tools

255701

, , , , and

A novel method, thermo-catalytic decomposition of formaldehyde, is used to synthesize mesoporous ZnO crystals with enhanced photocatalytic activities. The mechanism of the mesoporous formation is investigated by synthesizing a series of samples at various systems and characterizing them with FT-IR, EDS, XRD, SEM, and TEM. The results show that formaldehyde can be adsorbed on the crystal planes of ZnO during the crystal growth and can then be catalytically decomposed into CO, CO2 and H2 during a sintering process. Because of the formation and the escape of these gases, which act as templates, the crystalline particles of ZnO are forced to rearrange consistently, and pores are formed in the internal crystal. Also, porous TiO2 crystals have been obtained via the same approach. Photocatalytic tests indicate that a porous ZnO crystal has higher activity than that of a nonporous one.

255702

, and

A numerical analysis of the polarization force between a sharp conducting probe and a dielectric film of finite lateral dimensions on a metallic substrate is presented with the double objective of (i) determining the conditions under which the film can be approximated by a laterally infinite film and (ii) proposing an analytical model valid in this limit. We show that, for a given dielectric film, the critical diameter above which the film can be modeled as laterally infinite depends not only on the probe geometry, as expected, but mainly on the film thickness. In particular, for films with intermediate to large thicknesses (>100 nm), the critical diameter is nearly independent from the probe geometry and essentially depends on the film thickness and dielectric constant following a relatively simple phenomenological expression. For films that can be considered as laterally infinite, we propose a generalized analytical model valid in the thin-ultrathin limit (<20–50 nm) that reproduces the numerical calculations and the experimental data. Present results provide a general framework under which accurate quantification of electrostatic force microscopy measurements on dielectric films on metallic substrates can be achieved.

255703

, , , , , and

We demonstrate that the Raman intensities of G and 2D bands of a suspended graphene can be enhanced using a gold tip with an apex size of 2.3 μm. The enhancement decays with the tip-graphene distance exponentially and remains detectable at a distance of 1.5 μm. Raman mappings show that the enhanced area is comparable to the apex size. Application of a bias voltage to the tip can attract the graphene so that Raman signals are intensified. The exponential enhancement-distance relationship enables the measurement of the graphene deformation, and the Young's modulus of graphene is estimated to be 1.48 TPa.