Table of contents

Volume 259

Number 2, April 2022

Previous issue Next issue

30
The following article is Open access

To date, 241 individual molecular species, composed of 19 different elements, have been detected in the interstellar and circumstellar medium by astronomical observations. These molecules range in size from two atoms to 70 and have been detected across the electromagnetic spectrum from centimeter wavelengths to the ultraviolet. This census presents a summary of the first detection of each molecular species, including the observational facility, wavelength range, transitions, and enabling laboratory spectroscopic work, as well as listing tentative and disputed detections. Tables of molecules detected in interstellar ices, external galaxies, protoplanetary disks, and exoplanetary atmospheres are provided. A number of visual representations of these aggregate data are presented and briefly discussed in context.

31
The following article is Open access

, , , and

The head–tail (HT) morphology of radio galaxies is seen for a class of radio sources where the primary lobes are being bent in the intercluster weather due to strong interactions between the radio jets and their respective intracluster medium. A systematic search has been carried out for new HT radio galaxies from the Very Large Array Faint Images of the Radio Sky at Twenty-Centimeters survey database at 1400 MHz. Here, we present a catalog of 717 new HT sources, among which 287 are narrow-angle tail (NAT) sources whose opening angle between the two lobes is less than 90°, and 430 are wide-angle tail (WAT) whose the opening angle between the two lobes is greater than 90°. NAT radio sources are characterized by tails bent in a narrow "V"-like shape; the jet bending in the case of WAT radio galaxies are such that the WATs exhibit wide "C"-like morphologies. Optical counterparts are found for 359 HT sources. We report HT sources with luminosity ranges 1038L1.4 GHz ≤ 1045 erg s−1 and redshifts up to 2.01. The various physical properties of these HT sources are mentioned here. Some statistical studies have been done for this large number of newly discovered HT sources.

32
The following article is Open access

, , , and

Quasiperiodic oscillations (QPOs) are an important key to understand the dynamic behavior of astrophysical objects during transient events like gamma-ray bursts, solar flares, and magnetar flares. Searches for QPOs often use the periodogram of the time series and perform spectral density estimation using a Whittle likelihood function. However, the Whittle likelihood is only valid if the time series is stationary since the frequency bins are otherwise not statistically independent. We show that if time series are nonstationary, the significance of QPOs can be highly overestimated and estimates of the central frequencies and QPO widths can be overconstrained. The effect occurs if the QPO is only present for a fraction of the time series and the noise level is varying throughout the time series. This can occur, for example, if background noise from before or after the transient is included in the time series or if the low-frequency noise profile varies strongly over the time series. Thus, we highlight the importance of careful segment selection prior to the analysis. We confirm the presence of this bias in previously reported results from solar flare data and show that significance can be highly overstated. Finally, we provide some suggestions that help identify whether an analysis is affected by this bias.

33
The following article is Open access

, , , , , , , , , et al

We present the detection of 1617 new transiting-planet candidates, identified in the Transiting Exoplanet Survey Satellite (TESS) full-frame images observed during the Primary Mission (Sectors 1–26). These candidates were initially detected by the Quick-Look Pipeline (QLP), which extracts full-frame image lightcurves for, and searches all stars brighter than, TESS magnitude T = 13.5 mag in each sector. However, QLP heavily relies on manual inspection for the identification of planet candidates, limiting vetting efforts to planet-hosting stars brighter than T = 10.5 mag and leaving millions of potential transit signals unvetted. We describe an independent vetting pipeline applied to QLP transit search results, incorporating both automated vetting tests and manual inspection to identify promising planet candidates around these fainter stars. The new candidates discovered by this ongoing project will allow TESS to significantly improve the statistical power of demographic studies of giant, close-in exoplanets.

34
The following article is Open access

, , , , , , , , , et al

We present the catalog of InterPlanetary Network (IPN) localizations for 199 short-duration gamma-ray bursts (sGRBs) detected by the Konus-Wind (KW) experiment between 2011 January 1 and 2021 August 31, which extends the initial sample of IPN-localized KW sGRBs to 495 events. We present the most comprehensive IPN localization data on these events, including probability sky maps in Hierarchical Equal Area isoLatitude Pixelization format.

35
The following article is Open access

, , , , , , , , , et al

This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 survey that publicly releases infrared spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the subsurvey Time Domain Spectroscopic Survey data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey subsurvey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated value-added catalogs. This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper, Local Volume Mapper, and Black Hole Mapper surveys.

36
The following article is Open access

and

The interstellar medium has a highly filamentary and hierarchical structure that may play a significant role in star formation. A systematical study of the large-scale filaments toward their physical parameters, distribution, structures, and kinematics will inform us about which types of filaments have the potential to form stars, how the material feeds protostars through filaments, and the connection between star formation and Galactic spiral arms. Unlike the traditional by-eye searches, we use a customized minimum spanning tree algorithm to identify filaments by linking Galactic clumps from the APEX Telescope Large Area Survey of the Galaxy catalog. In the inner Galactic plane (∣l∣ < 60°), we identify 163 large-scale filaments with physical properties derived, including the dense-gas mass fraction, and we compare them with an updated spiral arm model in position–position–velocity space. The dense-gas mass fraction is found not to differ significantly in various Galactic positions or in different spiral arms. We also find that most filaments are interarm filaments after adding a distance constraint, and filaments in arms differ a little with those not in arms. One surprising result is that clumps on and off filaments have no significant distinction in their mass at the same size.

37
The following article is Open access

, , , , , , , , and

We present the Infrared Database of Extragalactic Observables from Spitzer (IDEOS), a homogeneous, publicly available, database of 77 fitted mid-infrared observables in the 5.4–36 μm range, comprising measurements for 3335 galaxies observed in the low-resolution staring mode of the Infrared Spectrometer on board the Spitzer Space Telescope. Among the included observables are polycyclic aromatic hydrocarbon fluxes and their equivalent widths, the strength of the 9.8 μm silicate feature, emission-line fluxes, solid-state features, rest-frame continuum fluxes, synthetic photometry, and a mid-infrared spectral classification. The IDEOS spectra were selected from the Cornell Atlas of Spitzer-IRS Sources. To our surprise, we have detected at a >95% confidence level crystalline silicates in the spectra of 786 IDEOS galaxies. The detections range from single-band detections to detections of all fitted crystalline bands (16, 19, 23, 28, and 33 μm). We find the strength of the crystalline silicate bands to correlate with the amorphous silicate strength and the change from an emission to an absorption feature to occur at higher obscuration as the wavelength of the crystalline silicate band is longer. These observed characteristics are consistent with an origin for the amorphous and crystalline silicate features in a centrally heated dust geometry, either an edge-on disk or a cocoon. We find the 23 and 33 μm crystalline silicate bands to be well suited to classify the obscuration level of galactic nuclei, even in the presence of strong circumnuclear star formation. Based on our detection statistics, we conclude that crystalline silicates are a common component of the interstellar medium of galactic nuclei.

38
The following article is Open access

, , , , , , , , and

We derive a catalog of early-type emission-line stars including 30,023 spectra of 25,867 stars from LAMOST Data Release 7, in which 4189 have Simbad records. The spectra are classified into three morphological types (10 subtypes) based on Hα emission-line profiles. Some spectra contaminated by nebula emission lines such as from H ii regions are flagged in the catalog. We also provide a specific catalog of 20 stars with stellar winds or accretion flows by calculating the terminal and peak velocities based on P-Cygni or inverse P-Cygni profiles. More important, with two color–color diagrams, (H-Ks, J-H) and (Ks-W1, H-Ks), of a collection of known Herbig Ae/Be stars (HAeBes) and classical Ae/Be stars (CAeBes), we propose an updated criterion to separate HAeBes from CAeBes. By the criterion, we select 118 HAeBe candidates and 2636 CAeBe candidates from the sample. We confirm 71 of the 118 HAeBes based on the data from LAMOST (optical spectra) and WISE (photometry and images), 62 of which are newly identified. The 71 identified HAeBes are compiled into a specific catalog, and their SEDs and MIR images are also presented. The distances of 76% confirmed HAeBes are further than 1 kpc, which enlarges the number of known HAeBes in further distance. Most of the 71 HAeBes are located in the Galactic disk while 6 of them have ∣Zgal∣ > 400 pc. Four HAeBes show the forbidden emission lines of [Fe ii] and [O i], in which J051425.20+411310.7 is a newly discovered B[e]. In addition, four HAeBes having Spitzer IRS spectra all show PAH features.

39
The following article is Open access

, , , , , and

The formation of the interstellar complex organic molecules (iCOMs) is a hot topic in astrochemistry. One of the main paradigms trying to reproduce the observations postulates that iCOMs are formed on the ice mantles covering the interstellar dust grains as a result of radical–radical coupling reactions. We investigate iCOM formation on the icy surfaces by means of computational quantum mechanical methods. In particular, we study the coupling and direct hydrogen abstraction reactions involving the CH3 + X systems (X = NH2, CH3, HCO, CH3O, CH2OH) and HCO + Y (Y = HCO, CH3O, CH2OH), plus the CH2OH + CH2OH and CH3O + CH3O systems. We computed the activation energy barriers of these reactions, as well as the binding energies of all the studied radicals, by means of density functional theory calculations on two ice water models, made of 33 and 18 water molecules. Then, we estimated the efficiency of each reaction using the reaction activation, desorption, and diffusion energies and derived kinetics with the Eyring equations. We find that radical–radical chemistry on surfaces is not as straightforward as usually assumed. In some cases, direct H-abstraction reactions can compete with radical–radical couplings, while in others they may contain large activation energies. Specifically, we found that (i) ethane, methylamine, and ethylene glycol are the only possible products of the relevant radical–radical reactions; (ii) glyoxal, methyl formate, glycolaldehyde, formamide, dimethyl ether, and ethanol formation is likely in competition with the respective H-abstraction products; and (iii) acetaldehyde and dimethyl peroxide do not seem to be likely grain-surface products.

40
The following article is Open access

, , , , , , , , , et al

Photometric monitoring by the Transiting Exoplanet Survey Satellite (TESS) has discovered not only periodic signals by transiting exoplanets but also episodic or quasiperiodic dimming around young stellar objects. The dimming mechanisms of these objects, the so-called "dippers," are thought to be related to either the accretion property or the structure of protoplanetary disks especially in regions close to the host star. Recently, we have created a catalog of dippers from one year of TESS full-frame image data. In this paper, we report on the spectral features of four newly found dippers in that catalog and show that they potentially shed light on the dimming mechanisms. We found that all of the targets exhibit the Hα emission line, which is an indicator of ongoing accretion. Based on their line profiles and/or their variability, we characterized the properties of the disks of each source, which can support dimming mechanisms via a dusty disk wind or an accretion-driven inner-disk warp. Also, we found an interesting dipper (TIC 317873721), a "close-in binary dipper," showing a complex variability of the line profile and a large radial velocity variation. Because the dimming intervals are similar to the orbital period of the binary, we suggest that the dips are caused by dust in the accretion warp from a circumbinary disk onto stars. Such a close-in (<0.1 au) binary dipper has been rarely reported thus far; further investigation will reveal new aspects of disk evolution and planetary formation.

41
The following article is Open access

, , , , , , , and

We present a near-complete catalog of the metal-rich population of thermally pulsing asymptotic giant branch (AGB) stars in the northwest quadrant of M31. This metal-rich sample complements the equally complete metal-poor Magellanic Cloud AGB catalogs produced by the SAGE program. Our catalog includes Hubble Space Telescope (HST) wide-band photometry from the Panchromatic Hubble Andromeda Treasury survey, HST medium-band photometry used to chemically classify a subset of the sample, and Spitzer mid- and far-IR photometry that we have used to isolate dust-producing AGB stars. We have detected 346,623 AGB stars; these include 4802 AGB candidates producing considerable dust, and 1356 AGB candidates that lie within clusters with measured ages, and in some cases metallicities. Using the Spitzer data and chemical classifications made with the medium-band data, we have identified both carbon- and oxygen-rich AGB candidates producing significant dust. We have applied color–mass-loss relations based on dusty-AGB stars from the LMC to estimate the dust injection by AGB stars in the PHAT footprint. Applying our color relations to a subset of the chemically classified stars producing the bulk of the dust, we find that ∼97.8% of the dust is oxygen-rich. Using several scenarios for the dust lifetime, we have estimated the contribution of AGB stars to the global dust budget of M31 to be 0.9%–35.5%, which is in line with previous estimates in the Magellanic Clouds. Follow-up observations of the M31 AGB candidates with the JWST will allow us to further constrain stellar and chemical evolutionary models, and the feedback and dust production of metal-rich evolved stars.

42
The following article is Open access

, , , , , , , , , et al

A Full Solar Cycle of Interstellar Boundary Explorer (IBEX) Observations

The IBEX-Lo instrument on board the Interstellar Boundary Explorer (IBEX) mission samples interstellar neutral (ISN) helium atoms penetrating the heliosphere from the very local interstellar medium (VLISM). In this study, we analyze the IBEX-Lo ISN helium observations covering a complete solar cycle, from 2009 through 2020 using a comprehensive uncertainty analysis including statistical and systematic sources. We employ the Warsaw Test Particle Model to simulate ISN helium fluxes at IBEX, which are subsequently compared with the observed count rate in the three lowest energy steps of IBEX-Lo. The χ2 analysis shows that the ISN helium flows from ecliptic $\left(\lambda ,\beta \right)=(255\buildrel{\circ}\over{.} 59\pm 0\buildrel{\circ}\over{.} 23,5\buildrel{\circ}\over{.} 14\pm 0\buildrel{\circ}\over{.} 08)$, with speed vHP = 25.86 ± 0.21 km s−1 and temperature THP = 7450 ±140 K at the heliopause. Accounting for gravitational attraction and elastic collisions, the ISN helium speed and temperature in the pristine VLISM far from the heliopause are vVLISM = 25.9 km s−1 and TVLISM = 6150 K, respectively. The time evolution of the ISN helium fluxes at 1 au over 12 yr suggests significant changes in the IBEX-Lo detection efficiency, higher ionization rates of ISN helium atoms in the heliosphere than assumed in the model, or an additional unaccounted for signal source in the analyzed observations. Nevertheless, we do not find any indication of the evolution of the derived parameters of ISN helium over the period analyzed. Finally, we argue that the continued operation of IBEX-Lo to overlap with the Interstellar Mapping and Acceleration Probe will be pivotal in tracking possible physical changes in the VLISM.

43
The following article is Open access

, , , , , , , , , et al

Virgo is the nearest galaxy cluster; it is thus ideal for studies of galaxy evolution in dense environments in the local universe. It is embedded in a complex filamentary network of galaxies and groups, which represents the skeleton of the large-scale Laniakea supercluster. Here we assemble a comprehensive catalog of galaxies extending up to ∼12 virial radii in projection from Virgo to revisit the cosmic-web structure around it. This work is the foundation of a series of papers that will investigate the multiwavelength properties of galaxies in the cosmic web around Virgo. We match spectroscopically confirmed sources from several databases and surveys including HyperLeda, NASA Sloan Atlas, NASA/IPAC Extragalactic Database, and ALFALFA. The sample consists of ∼7000 galaxies. By exploiting a tomographic approach, we identify 13 filaments, spanning several megaparsecs in length. Long >17 h–1 Mpc filaments, tend to be thin (<1 h–1 Mpc in radius) and with a low-density contrast (<5), while shorter filaments show a larger scatter in their structural properties. Overall, we find that filaments are a transitioning environment between the field and cluster in terms of local densities, galaxy morphologies, and fraction of barred galaxies. Denser filaments have a higher fraction of early-type galaxies, suggesting that the morphology–density relation is already in place in the filaments, before galaxies fall into the cluster itself. We release the full catalog of galaxies around Virgo and their associated properties.

44
The following article is Open access

, , , , , , , and

Experimental radiative lifetimes for 34 odd-parity levels belonging to 4d35p and 4d25s5s configurations of Nb ii were measured by the time-resolved laser-induced fluorescence method. The results range from 2.2 to 11.5 ns, and 30 of them were reported for the first time, as far as we know. The theoretical radiative lifetimes for these levels were also calculated by the pseudorelativistic Hartree–Fock method including core-polarization contributions (HFR+CPOL) and the fully relativistic multiconfiguration Dirac–Hartree–Fock method, and branching fractions for these levels were also calculated by HFR+CPOL. By combining the experimental lifetimes and the calculated branching fraction values, the semiempirical transition probabilities and oscillator strengths for 389 Nb ii lines were obtained.

45
The following article is Open access

, , , , , , , , , et al

In fulfilling the aims of the planetary and asteroseismic research missions, such as that of the NASA Transiting Exoplanet Survey Satellite (TESS) space telescope, accurate stellar atmospheric parameters and a detailed chemical composition are required as inputs. We have observed high-resolution spectra for all 848 bright (V < 8 mag) stars that are cooler than F5 spectral class in the area up to 12 deg surrounding the northern TESS continuous viewing zone and uniformly determined the main atmospheric parameters, ages, orbital parameters, velocity components, and precise abundances of up to 24 chemical species (C(C2), N(CN), [O i], Na i, Mg i, Al i, Si i, Si ii, Ca i, Ca ii, Sc i, Sc ii, Ti i, Ti ii, V i, Cr i, Cr ii, Mn i, Fe i, Fe ii, Co i, Ni i, Cu i, and Zn i) for 740 slowly rotating stars. The analysis of 25 planet-hosting stars in our sample drove us to the following conclusions: the dwarf stars hosting high-mass planets are more metal rich than those with low-mass planets. We find slightly negative C/O and Mg/Si slopes toward the stars with high-mass planets. All the low-mass planet hosts in our sample show positive Δ[El/Fe] versus condensation temperature slopes, in particular, the star with the largest number of various planets. The high-mass planet hosts have a diversity of slopes, but in more metal-rich, older, and cooler stars, the positive elemental abundance slopes are more common.

46
The following article is Open access

, , , , , , , , , et al

The Hard X-ray Modulation Telescope (Insight-HXMT) is China's first X-ray astronomy satellite. It was launched on 2017 June 15. The anticoincidence CsI detectors of the High Energy X-ray telescope (HE) on board Insight-HXMT could serve as an all-sky gamma-ray monitor in about 0.2–3 MeV. In its first four years of operation, Insight-HXMT has detected 322 gamma-ray bursts (GRBs) by the offline search pipeline, including blind search and targeted search. For the GOLDEN sample of Insight-HXMT GRBs, joint analyses were performed with other GRB missions, including the Fermi Gamma-ray Burst Monitor (Fermi/GBM), the Swift Burst Alert Telescope (Swift/BAT), and the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM). The analyses showed that Insight-HXMT can provide a better constraint on the GRB spectrum at a higher-energy band. The properties of Insight-HXMT GRBs are reported in detail, including their trigger time, duration, spectral parameters, peak fluxes of different timescales, and fluence. This catalog is an official product of the Insight-HXMT GRB team.

47
The following article is Open access

and

This paper reports computational results on hydrogen Lyman β, γ, and Balmer β spectral lines in the presence of parallel magnetic and electric fields. A two-dimensional B-spline approach is adopted in the current calculations. This approach was originally developed to treat high-lying states but was found to be also effective for low-lying states. Wavelengths and oscillator strengths are presented for a total of 31 transitions in magnetic and electric fields with field strengths ranging, respectively, from 23.5 to 2350 MG and from 0 to 108 V m−1. These spectral data are compared to available results from other theoretical methods, and good agreement is clearly visible. Our calculations show that in the scope of field strengths we are concerned with, Lyman β and γ spectral lines lie in the ultraviolet region, while the Balmer β lines lie in the ultraviolet and visible-light regions. Furthermore, Zeeman spectral lines related to atomic states in the n = 4 manifold may be blue- or redshifted by a strong electric field, dependent on the transitions as well as on magnetic field strengths. Atomic spectral data of the 31 transitions listed are applicable for modeling discrete spectra of magnetic white dwarfs when a strong electric field exists in the hydrogen-dominated atmospheres of these celestial objects.

48
The following article is Open access

, , , , , , , , , et al

A Full Solar Cycle of Interstellar Boundary Explorer (IBEX) Observations

Measurements of starlight polarized by aligned interstellar dust grains are used to probe the relation between the orientation of the ambient interstellar magnetic field (ISMF) and the ISMF traced by the ribbons of energetic neutral atoms discovered by the Interstellar Boundary Explorer spacecraft. We utilize polarization data, many acquired specifically for this study, to trace the configuration of the ISMF within 40 pc. A statistical analysis yields a best-fit ISMF orientation, Bmagpol, aligned with Galactic coordinates = 42°, b = 49°. Further analysis shows the ISMF is more orderly for "downfield" stars located over 90° from Bmagpol. The data subset of downfield stars yields an orientation for the nearby ISMF at ecliptic coordinates λ, β ≈ 219° ± 15°, 43° ± 9° (Galactic coordinates l, b ≈ 40°, 56°, ±17°). This best-fit ISMF orientation from polarization data is close to the field direction obtained from ribbon models. This agreement suggests that the ISMF shaping the heliosphere belongs to an extended ordered magnetic field. Extended filamentary structures are found throughout the sky. A previously discovered filament traversing the heliosphere nose region, "Filament A," extends over 300° of the sky, and crosses the upwind direction of interstellar dust flowing into the heliosphere. Filament A overlaps the locations of the Voyager kilohertz emissions, three quasar intraday variables, cosmic microwave background (CMB) components, and the inflow direction of interstellar grains sampled by Ulysses and Galileo. These features are likely located in the upstream outer heliosheath where ISMF drapes over the heliosphere, suggesting Filament A coincides with a dusty magnetized plasma. A filament 55° long is aligned with a possible shock interface between local interstellar clouds. A dark spot in the CMB is seen within 5° of the filament and within 10° of the downfield ISMF direction. Two large magnetic arcs are centered on the directions of the heliotail. The overlap between CMB components and the aligned dust grains forming Filament A indicates the configuration of dust entrained in the ISMF interacting with the heliosphere provides a measurable foreground to the CMB.

49
The following article is Open access

, , and

We have investigated the optical spectral behavior of a large sample of Fermi blazars (40 flat-spectrum radio quasars (FSRQs) and 13 BL Lacertae objects (BL Lacs)), and found two new universal optical spectral behaviors. In the low state the optical spectrum gradually becomes softer (steeper) or harder (flatter), but more and more slowly as the brightness increases, and then tends to stabilize in the high state. These are briefly named the redder-stable-when-brighter (RSWB) and bluer-stable-when-brighter (BSWB) behaviors, respectively. Thirty-four FSRQs and 7 BL Lacs exhibit clear RSWB behavior, and 2 FSRQs and 5 BL Lacs show distinct BSWB behavior, which means that FSRQs favor more RSWB than BSWB behavior, while BL Lacs have no clear preference between both behaviors. We have put forward a unified nonlinear formula to quantitatively characterize the optical spectral behaviors of FSRQs and BL Lacs, which can fit both kinds of behaviors very well. We argue that the RSWB and BSWB behaviors originate from the same mechanism, and that they are the universal optical spectral behaviors for blazars. The frequently observed redder-when-brighter and bluer-when-brighter trends can be considered to be the approximations of the RSWB and BSWB behaviors, respectively. The rarely observed stable-when-brighter trend can also be viewed as an approximation or a special case of the RSWB or BSWB behaviors. We have developed a model with two constant-spectral-index components, which cannot only explain the two kinds of optical spectral behaviors well, but also successfully interpret the differential behaviors between FSRQs and BL Lacs.

50
The following article is Open access

, , and

Pulsating stars in eclipsing binaries are very important for understanding the structure of stellar interiors through asteroseismology because their absolute parameters such as their masses and radii can be determined with high precision based on photometric and spectroscopic data. The high-precision and continuous time-series photometric data of the Transiting Exoplanet Survey Satellite (TESS) provides an unprecedented opportunity to search for and study these kinds of variable stars in the whole sky. About 1626 Algol-type (EA-type) eclipsing-binary systems were observed by TESS in the 1–45 sectors with 2 minutes short cadence. By analyzing these TESS data, we found 57 new pulsating stars in EA-type binary stars. The preliminary results show that these binary systems have orbital periods in the range from 0.4 to 27 days, while the periods of pulsating components are in the range from 0.02 to 5 days. It is detected that 43 targets follow the correlation between the pulsation and orbital periods of Algol-type oscillating eclipsing binaries (oEA stars), which may indicate that they are typical oEA stars. The other 14 targets may be other types of variable stars in eclipsing-binary systems. These objects are a very interesting source to investigate binary structures and evolution as well as to understand the influences of tidal forces and mass transfer on stellar pulsations.

51
The following article is Open access

, , , , , and

We present a value-added catalog containing stellar parameters estimated from 7.10 million low-resolution spectra for 5.16 million unique stars with spectral signal-to-noise ratios (S/N) higher than 10 obtained by the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) Galactic spectroscopic surveys. The catalog presents values of stellar atmospheric parameters (effective temperature Teff, surface gravity log g, metallicity [Fe/H]/[M/H]), α-element to metal abundance ratio [α/M], carbon and nitrogen to iron abundance ratios [C/Fe] and [N/Fe], and 14 bands' absolute magnitudes deduced from LAMOST spectra using the neural network method. The spectrophotometric distances of those stars are also provided based on the distance modulus. For stars with a spectral S/N larger than 50, precisions of Teff, log g, [Fe/H], [M/H], [C/Fe], [N/Fe], and [α/M] are 85 K, 0.098 dex, 0.05 dex, 0.05 dex, 0.052 dex, 0.082 dex, and 0.027 dex, respectively. The errors of 14 band's absolute magnitudes are 0.16–0.22 mag for stars with a spectral S/N larger than 50. The spectrophotometric distance is accurate to 8.5% for stars with a spectral S/N larger than 50 and is more accurate than the geometrical distance for stars with a distance larger than 2.0 kpc. Our estimates of [Fe/H] are reliable down to [Fe/H] ∼−3.5 dex, significantly better than previous results. The catalog provides 26,868 unique very metal-poor star candidates ([Fe/H] ≤−2.0). The catalog would be a valuable dataset to study the structure and evolution of the galaxy, especially the solar neighborhood and the outer disk.

52
The following article is Open access

and

This work reports large-scale calculations of electron excitation effective collision strengths and transition rates for a wide range of Sc ii spectral lines for astrophysical analysis and modeling. The present results are important for reliable abundance determinations in various astrophysical objects, including metal-poor stars, H ii regions, and gaseous nebulae. Accurate descriptions of the target wave functions and adequate accounts of the various interactions between the target levels are of primary importance for calculations of collision and radiative parameters. The target wave functions have been determined by a combination of the multiconfiguration Hartree–Fock and B-spline box-based close-coupling methods, together with the nonorthogonal orbitals technique. The calculations of the collision strengths have been performed using the B-spline Breit–Pauli R-matrix method. The close-coupling expansion includes 145 fine-structure levels of Sc ii belonging to the terms of the 3p63d2, 3p63d4l (l = 0–3), 3p63d5l (l = 0–3), 3p63d6s, 3p64s2, 3p64s4l (l = 0–3), 3p64s5l (l = 0–1), and 3p64p2 configurations. The effective collision strengths are reported as a function of electron temperature in the range from 103 to 105 K. The collision and radiative rates are reported for all of the possible transitions between the 145 fine-structure levels. Striking discrepancies exist with the previous R-matrix calculations of the effective collision strengths for the majority of the transitions, indicating possible systematic errors in these calculations. Thus, there is a need for accurate calculations to reduce the uncertainties in the atomic data. The likely uncertainties in our effective collision strengths and radiative parameters have been assessed by means of comparisons with other collision calculations and available experimental radiative parameters.

53
The following article is Open access

, , , , , , , , , et al

The CNIa0.02 project aims to collect a complete, nearby sample of Type Ia supernovae (SNe Ia) light curves, and the SNe are volume-limited with host-galaxy redshifts zhost < 0.02. The main scientific goal is to infer the distributions of key properties (e.g., the luminosity function) of local SNe Ia in a complete and unbiased fashion in order to study SN explosion physics. We spectroscopically classify any SN candidate detected by the All-Sky Automated Survey for Supernovae (ASAS-SN) that reaches a peak brightness <16.5 mag. Since ASAS-SN scans the full sky and does not target specific galaxies, our target selection is effectively unbiased by host-galaxy properties. We perform multiband photometric observations starting from the time of discovery. In the first data release (DR1), we present the optical light curves obtained for 247 SNe from our project (including 148 SNe in the complete sample), and we derive parameters such as the peak fluxes, Δm15, and sBV.

54
The following article is Open access

, , and

There is a complex inclination structure present in the trans-Neptunian object (TNO) orbital distribution in the main classical-belt region (between orbital semimajor axes of 39 and 48 au). The long-term gravitational effects of the giant planets make TNO orbits precess, but nonresonant objects maintain a nearly constant "free" inclination (Ifree) with respect to a local forced precession pole. Because of the likely cosmogonic importance of the distribution of this quantity, we tabulate free inclinations for all main-belt TNOs, each individually computed using barycentric orbital elements with respect to each object's local forcing pole. We show that the simplest method, based on the Laplace–Lagrange secular theory, is unable to give correct forcing poles for objects near the ν18 secular resonance, resulting in poorly conserved Ifree values in much of the main belt. We thus instead implemented an averaged Hamiltonian to obtain the expected nodal precession for each TNO, yielding significantly more accurate free inclinations for nonresonant objects. For the vast majority (96%) of classical-belt TNOs, these Ifree values are conserved to < 1° over 4 Gyr numerical simulations, demonstrating the advantage of using this well-conserved quantity in studies of the TNO population and its primordial inclination profile; our computed distributions only reinforce the idea of a very coplanar surviving "cold" primordial population, overlain by a large I-width implanted "hot" population.

55
The following article is Open access

, , , , , , , and

Measuring the redshift of active galactic nuclei (AGNs) requires the use of time-consuming and expensive spectroscopic analysis. However, obtaining redshift measurements of AGNs is crucial as it can enable AGN population studies, provide insight into the star formation rate, the luminosity function, and the density rate evolution. Hence, there is a requirement for alternative redshift measurement techniques. In this project, we aim to use the Fermi Gamma-ray Space Telescope's 4LAC Data Release 2 catalog to train a machine-learning (ML) model capable of predicting the redshift reliably. In addition, this project aims at improving and extending with the new 4LAC Catalog the predictive capabilities of the ML methodology published in Dainotti et al. Furthermore, we implement feature engineering to expand the parameter space and a bias correction technique to our final results. This study uses additional ML techniques inside the ensemble method, the SuperLearner, previously used in Dainotti et al. Additionally, we also test a novel ML model called Sorted L-One Penalized Estimation. Using these methods, we provide a catalog of estimated redshift values for those AGNs that do not have a spectroscopic redshift measurement. These estimates can serve as a redshift reference for the community to verify as updated Fermi catalogs are released with more redshift measurements.

56
The following article is Open access

, , , and

We present observations of the carbon-rich protoplanetary nebula CRL 2688 made with the Institut de Radioastronomie Millimétrique 30 m telescope in the 3 and 2 mm bands. In total, 196 transition lines belonging to 38 molecular species and isotopologues are detected, among which, to the best of our knowledge, 153 transition lines and 13 species are the first reported for this object. Additionally, in order to contribute to future research, we have collected observational data on the molecular lines of CRL 2688 from the literature and compiled them into a single unified catalog. We find that the molecular abundance of CRL 2688 cannot be explained by the standard model of a circumstellar envelope. The implications of metal-bearing molecules on circumstellar chemistry are discussed.

57
The following article is Open access

and

We propose a novel algorithm for the temporal integration of the resistive magnetohydrodynamics (MHD) equations. The approach is based on exponential Rosenbrock schemes in combination with Leja interpolation. It naturally preserves Gauss's law for magnetism and is unencumbered by the stability constraints observed for explicit methods. Remarkable progress has been achieved in designing exponential integrators and computing the required matrix functions efficiently. However, employing them in MHD simulations of realistic physical scenarios requires a matrix-free implementation. We show how an efficient algorithm based on Leja interpolation that only uses the right-hand side of the differential equation (i.e., matrix free) can be constructed. We further demonstrate that it outperforms Krylov-based exponential integrators as well as explicit and implicit methods using test models of magnetic reconnection and the Kelvin–Helmholtz instability. Furthermore, an adaptive step-size strategy that gives excellent and predictable performance, particularly in the lenient- to intermediate-tolerance regime that is often of importance in practical applications, is employed.

58
The following article is Open access

, , , , , , , , , et al

Rubin LSST Survey Strategy Optimization

The generation-defining Vera C. Rubin Observatory will make state-of-the-art measurements of both the static and transient universe through its Legacy Survey for Space and Time (LSST). With such capabilities, it is immensely challenging to optimize the LSST observing strategy across the survey's wide range of science drivers. Many aspects of the LSST observing strategy relevant to the LSST Dark Energy Science Collaboration, such as survey footprint definition, single-visit exposure time, and the cadence of repeat visits in different filters, are yet to be finalized. Here, we present metrics used to assess the impact of observing strategy on the cosmological probes considered most sensitive to survey design; these are large-scale structure, weak lensing, type Ia supernovae, kilonovae, and strong lens systems (as well as photometric redshifts, which enable many of these probes). We evaluate these metrics for over 100 different simulated potential survey designs. Our results show that multiple observing strategy decisions can profoundly impact cosmological constraints with LSST; these include adjusting the survey footprint, ensuring repeat nightly visits are taken in different filters, and enforcing regular cadence. We provide public code for our metrics, which makes them readily available for evaluating further modifications to the survey design. We conclude with a set of recommendations and highlight observing strategy factors that require further research.

59
The following article is Open access

We propose a new, efficient multiscale method to decompose a map (or signal in general) into component maps that contain structures of different sizes. In the widely used wave transform, artifacts containing negative values arise around regions with sharp transitions due to the application of band-limited filters. In our approach, the decomposition is achieved by solving a modified, nonlinear version of the diffusion equation. This is inspired by the anisotropic diffusion methods, which establish the link between image filtering and partial differential equations. In our case, the artifact issue is addressed where the positivity of the decomposed images is guaranteed. Our new method is particularly suitable for signals which contain localized, nonlinear features, as typical of astronomical observations. It can be used to study the multiscale structures of astronomical maps quantitatively and should be useful in observation-related tasks such as background removal. We thus propose a new measure called the "scale spectrum," which describes how the image values distribute among different components in the scale space, to describe maps. The method allows for input arrays of an arbitrary number of dimensions, and a python3 implementation of the algorithms is included in the Appendix and available at https://github.com/gxli/constrained_diffusion_decomposition.

60
The following article is Open access

, , , , , , , , , et al

The Sloan Extension for Galactic Understanding and Exploration 2 (SEGUE-2) obtained 128,288 low-resolution spectra (R ∼ 1800) of 118,958 unique stars in the first year of the Sloan Digital Sky Survey III (2008–2009). SEGUE-2 targeted prioritized distant halo tracers (blue horizontal-branch stars, K giants, and M giants) and metal-poor or kinematically hot populations. The main goal of SEGUE-2 was to target stars in the distant halo and measure their kinematics and chemical abundances to learn about the formation and evolution of the Milky Way. We present the SEGUE-2 field placement and target selection strategies. We discuss the success rate of the targeting based on the SEGUE-2 spectra and other spectroscopic and astrometric surveys. We describe the final SEGUE-2/SDSS-III improvements to the stellar parameter determinations based on the SEGUE Stellar Parameter Pipeline. We report a (gi) color−effective temperature relation calibrated to the IRFM. We evaluate the accuracy and uncertainties associated with these stellar parameters by comparing with fundamental parameters, a sample of high-resolution spectra of SEGUE stars analyzed homogeneously, stars in well-studied clusters, and stars observed in common by the APOGEE survey. The final SEGUE spectra, calibration data, and derived parameters described here were released in SDSS-III Data Release 9 and continue to be included in all subsequent SDSS Data Releases. Because of its faint limiting magnitude and emphasis on the distant halo, the public SEGUE-2 data remain an important resource for the spectroscopy of stars in the Milky Way.

61
The following article is Open access

, , , , , , , , , et al

We present the Cosmology and Astrophysics with Machine Learning Simulations (CAMELS) Multifield Data set (CMD), a collection of hundreds of thousands of 2D maps and 3D grids containing many different properties of cosmic gas, dark matter, and stars from more than 2000 distinct simulated universes at several cosmic times. The 2D maps and 3D grids represent cosmic regions that span ∼100 million light-years and have been generated from thousands of state-of-the-art hydrodynamic and gravity-only N-body simulations from the CAMELS project. Designed to train machine-learning models, CMD is the largest data set of its kind containing more than 70 TB of data. In this paper we describe CMD in detail and outline a few of its applications. We focus our attention on one such task, parameter inference, formulating the problems we face as a challenge to the community. We release all data and provide further technical details at https://camels-multifield-dataset.readthedocs.io.

62
The following article is Open access

and

We provide a database of transit times and updated ephemerides for 382 planets based on data from the NASA Transiting Exoplanet Survey Satellite (TESS) and previously reported transit times, which were scraped from the literature in a semiautomated fashion. In total, our database contains 8667 transit-timing measurements for 382 systems. About 240 planets in the catalog are hot Jupiters (i.e., planets with mass >0.3 MJup and period <10 days) that have been observed by TESS. The new ephemerides are useful for scheduling follow-up observations and searching for long-term period changes. WASP-12 remains the only system for which a period change is securely detected. We remark on other cases of interest, such as a few systems with suggestive (but not yet convincing) evidence for period changes, and the detection of a second transiting planet in the NGTS-11 system. The compilation of light curves, transit times, ephemerides, and timing residuals are made available online, along with the Python code that generated them (visit https://transit-timing.github.io).

63
The following article is Open access

, , , , , , , , , and

In the eighth data release (DR8) of the Large Sky Area Multi-Object Fiber Spectroscopic Telescope, more than 318,740 low-resolution stellar spectra with types from B to early F and signal-to-noise ratios >50 were released. With this large volume of the early-type stars, we tried machine-learning algorithms to search for class-one and class-two chemical peculiars (CP1 and CP2), and to detect spectral features to distinguish the two classes in low-resolution spectra. We selected the XGBoost algorithm after comparing the classification efficiency of three machine-learning ensemble algorithms. Using XGBoost followed by the visual investigation, we presented a catalog of 20,694 sources, including 17,986 CP1 and 2708 CP2, in which 6917 CP1 and 1652 CP2 are newly discovered. We also list the spectral features to separate CP1 from CP2 discovered through XGBoost. The stellar parameters (including effective temperature (Teff), surface gravity (log g), metallicity [Fe/H]), the spatial distribution in Galactic coordinates, and the color magnitude were provided for all of the entries of the catalog. The Teff for CP1 distributes from ∼6000 to ∼8500 K, while for CP2 it distributes from ∼7000 to ∼13,700 K. The log g of CP1 ranges from 2.8 to 4.8 dex, peaking at 4.5 dex, and of CP2 it ranges from 2.0 to 5.0 dex, peaking at 3.6 dex, respectively. The [Fe/H] of CP1 and CP2 are from −1.4 to 0.4 dex, and the [Fe/H] of CP1 are on average higher than that of CP2. Almost all of the targets in our sample locate around the Galactic plane.

64
The following article is Open access

, , , , , , , , , et al

The Event Horizon Telescope (EHT) has released analyses of reconstructed images of horizon-scale millimeter emission near the supermassive black hole at the center of the M87 galaxy. Parts of the analyses made use of a large library of synthetic black hole images and spectra, which were produced using numerical general relativistic magnetohydrodynamics fluid simulations and polarized ray tracing. In this article, we describe the PATOKA pipeline, which was used to generate the Illinois contribution to the EHT simulation library. We begin by describing the relevant accretion systems and radiative processes. We then describe the details of the three numerical codes we use, iharm, ipole, and igrmonty, paying particular attention to differences between the current generation of the codes and the originally published versions. Finally, we provide a brief overview of simulated data as produced by PATOKA and conclude with a discussion of limitations and future directions.

65
The following article is Open access

and

The theory of instability of accretion disks about black holes, neutron stars, or protoplanets is revisited by means of the recent method of the Spectral Web. The cylindrical accretion disk differential equation is shown to be governed by the forward and backward Doppler-shifted continuous Alfvén spectra ${{\rm{\Omega }}}_{{\rm{A}}}^{\pm }\equiv m{\rm{\Omega }}\pm {\omega }_{{\rm{A}}}$, where ωA is the static Alfvén frequency. It is crucial to take nonaxisymmetry (m ≠ 0) and super-Alfvénic rotation of the Doppler frames (∣mΩ∣ ≫ ∣ωA∣) into account. The continua ${{\rm{\Omega }}}_{{\rm{A}}}^{+}$ and ${{\rm{\Omega }}}_{{\rm{A}}}^{-}$ then overlap, ejecting a plethora of super-Alfvénic rotational instabilities (SARIs). In-depth analysis for small inhomogeneity shows that the two Alfvén singularities reduce the extent of the modes to sizes much smaller than the width of the accretion disk. Generalization for large inhomogeneity leads to the completely unprecedented result that, for mode numbers ∣k∣ ≫ ∣m∣, any complex ω in a wide neighborhood of the real axis is an approximate "eigenvalue." The difference with genuine eigenmodes is that the amount of complementary energy to excite the modes is tiny, ∣Wcom∣ ≤ c, with c the machine accuracy of the computation. This yields a multitude of two-dimensional continua of quasi-discrete modes: quasi-continuum SARIs. We conjecture that the onset of 3D turbulence in magnetized accretion disks is governed not by the excitation of discrete axisymmetric magnetorotational instabilities but by the excitation of modes from these two-dimensional continua of quasi-discrete nonaxisymmetric SARIs.

66
The following article is Open access

, , , , , , , , , et al

We present a catalog of 97 uniformly vetted candidates for quadruple star systems. The candidates were identified in TESS full-frame image data from sectors 1–42 through a combination of machine-learning techniques and visual examination, with major contributions from a dedicated group of citizen scientists. All targets exhibit two sets of eclipses with two different periods, both of which pass photocenter tests confirming that the eclipses are on target. This catalog outlines the statistical properties of the sample, nearly doubles the number of known multiply eclipsing quadruple systems, and provides the basis for detailed future studies of individual systems. Several important discoveries have already resulted from this effort, including the first sextuply eclipsing sextuple stellar system and the first transiting circumbinary planet detected from one sector of TESS data.

67
The following article is Open access

, , , , , , , , , et al

Long (>2 s) gamma-ray bursts (GRBs) are associated with explosions of massive stars, although in three instances, supernovae (SNe) have not been detected, despite deep observations. With new H i line and archival optical integral-field spectroscopy data, we characterize the interstellar medium (ISM) of the host galaxy of one of these events, GRB 111005A, in order to shed light on the unclear nature of these peculiar objects. We found that the atomic gas, radio continuum, and rotational patterns are in general very smooth throughout the galaxy, which does not indicate a recent gas inflow or outflow. There is also no gas concentration around the GRB position. The ISM in this galaxy differs from that in hosts of other GRBs and SNe, which may suggest that the progenitor of GRB 111005A was not an explosion of a very massive star (e.g., a compact object merger). However, there are subtle irregularities of the GRB 111005A host (most at a 2σ level), which may point to a weak gas inflow or interaction. Because in the SE part of the host there is 15% more atomic gas and half the molecular gas than in the NW part, the molecular gas fraction is low. In the SE part there is also a region with a very high Hα equivalent width. There is more continuum 1.4 GHz emission to the SE and an S-shaped warp in the UV. Finally, there is also a low-metallicity region 3farcs5 (1 kpc) from the GRB position. Two galaxies within 300 kpc or a past merger can be responsible for these irregularities.