Table of contents

Volume 55

Number 3, March 2015

Previous issue Next issue

Letters

032001

, , and

We report on a very efficient ion-cyclotron-resonance-frequency (ICRF) absorption scheme (Z)–YX, which hinges on the presence of three ion species residing in the plasma. A mode conversion (cutoff-resonance) layer is well known to appear in two-ion species plasmas. If the location of the L-cutoff in YX plasmas, which can be controlled by varying the Y : X density ratio, almost coincides with the fundamental cyclotron resonance of the third ion species Z (resonant absorber), the latter—albeit present only in trace quantities—is shown to absorb almost all the incoming RF power. A quantitative criterion for the resonant Y : X plasma composition is derived and a few numerical examples are given. Since the absorbed power per resonant particle is much larger than for any other ICRF scheme, the here discussed scenarios are particularly promising for fast particle generation. Their possible application as a source of high-energy ions for the stellarator W7-X and to mimic alpha particles during the non-activated phase of ITER tokamak is briefly discussed.

032002

, , , , , , , and

In MAST, bursting toroidal Alfvén eigenmodes and fishbones are observed to give rise to an asymmetric perturbation to the soft x-ray (SXR) emission close to the magnetic axis which grows and decays on the time scale of the fishbone evolution. As the fishbone nears its maximum amplitude, the SXR emission starts to increase (decrease) at radial positions smaller (larger) than the radial position of the magnetic axis. This trend in the SXR emission persists for a few milliseconds, until the fishbone starts to decay in amplitude and the slower overall trend of the SXR emission once again becomes dominant. A preliminary analysis suggests that the change in the SXR emission is due to the localized accumulation of high-Z impurities, sustained against parallel transport by the effects of fishbones on the fast ion population.

032003

, , , , , , , and

Tokamak plasmas rotate even without external injection of momentum. A Doppler backscattering system installed at MAST has allowed this intrinsic rotation to be studied in ohmic L-mode and H-mode plasmas, including the first observation of intrinsic rotation reversals in a spherical tokamak. Experimental results are compared to a novel 1D model, which captures the collisionality dependence of the radial transport of toroidal angular momentum due to the effect of neoclassical flows on turbulent fluctuations. The model is able to accurately reproduce the change in sign of core toroidal rotation, using experimental density and temperature profiles from shots with rotation reversals as inputs and no free parameters fit to experimental data.

032004

, , , and

On the basis of three-dimensional nonlinear magnetohydrodynamic simulations, we propose a new dynamical process leading to the stochastization of magnetic fields during an edge pedestal collapse. Primary tearing modes are shown to grow by extracting kinetic energy of unstable ballooning modes, eventually leading to the island overlap. Secondary tearing modes, which are generated through a coherent nonlinear interaction between adjacent ballooning modes, play a key role in this process, mediating the energy transfer between primary ballooning and tearing modes. Calculations show that the parallel energy loss through the stochastic fields, which has been identified in early nonlinear simulations, could be a dominant thermal energy release mechanism during an edge pedestal collapse.

Papers

033001
The following article is Open access

, and

It is generally accepted that the route to fusion power involves large devices of ITER scale or larger. However, we show, contrary to expectations, that for steady state tokamaks operating at fixed fractions of the density and beta limits, the fusion gain, Qfus, depends mainly on the absolute level of the fusion power and the energy confinement, and only weakly on the device size. Our investigations are carried out using a system code and also by analytical means. Further, we show that for the two qualitatively different global scalings that have been developed to fit the data contained in the ITER ELMy H-mode database, i.e. the normally used beta-dependent IPB98y2 scaling and the alternative beta-independent scalings, the power needed for high fusion performance differs substantially, typically by factors of three to four. Taken together, these two findings imply that lower power, smaller, and hence potentially lower cost, pilot plants and reactors than currently envisaged may be possible. The main parameters of a candidate low power (∼180 MW), high Qfus (∼5), relatively small (∼1.35 m major radius) device are given.

033002

, , , , , , , and

Plasma start-up by neutral beam injection was investigated for stellarators. A zero-dimensional collisional model was extended to evaluate the temporal evolution of the plasma start-up in a confining toroidal magnetic field. Inclusion of different beam energy components indicated a substantial effect due to the energy dependence of beam–gas collisions. Additional collision processes and particle equations were considered to simulate the plasma start-up in helium–hydrogen mixtures. The isotope effect between operation with hydrogen and deuterium beams was also investigated.

As a major objective the conditions necessary for a plasma start-up with neutral beams in W7-X have been examined. The assessed beam configuration in W7-X was found not to allow plasma start-up by neutral beam injection alone. The model has been validated for experimental data from W7-AS and Large Helical Device. Quantitative predictions of this study show that the ratio of the beam–plasma interaction length and the plasma volume is an essential quantity for the successful plasma start-up with neutral beams.

033003

and

Fundamental studies on the interactions between transient deuterium-plasma heat pulses and tungsten surfaces were carried out in terms of electrical, mechanical and thermal response in a compact plasma device AIT-PID (Aichi Institute of Technology-Plasma Irradiation Device). Firstly, electron-emission-induced surface-temperature increase is discussed in the surface-temperature range near tungsten's melting point, which is accomplished by controlling the sheath voltage and power transmission factor. Secondly, anomalous penetration of tungsten atomic efflux into the surrounding plasma was observed in addition to a normal layered population; it is discussed in terms of the effect of substantial tungsten influx into the deuterium plasma, which causes dissipation of plasma electron energy. Thirdly, a momentum input from pulsed plasma onto a tungsten target was observed visually. The force is estimated numerically by the accelerated ion flow to the target as well as the reaction of tungsten-vapour efflux. Finally, a discussion follows on the effects of the plasma heat pulses on the morphology of tungsten surface (originally a helium-induced 'fuzzy' nanostructure). A kind of bifurcated effect is obtained: melting and annealing. Open questions remain for all the phenomena observed, although sheath-voltage-dependent plasma-heat input may be a key parameter. Discussions on all these phenomena are provided by considering their implications to tokamak fusion devices.

033004

, , , , , , , and

The first stable completely detached H-mode plasma in the full tungsten ASDEX Upgrade has been achieved. Complete detachment of both targets is induced by nitrogen seeding into the divertor. Two new phases are added to the detachment classification described in Potzel et al (2014 Nucl. Fusion54 013001): first, the line integrated density increases by about 15% with partial detachment of the outer divertor. Second, complete detachment of both targets is correlated to the appearance of intense, strongly localized, stable radiation at the X-point. Radiated power fractions, frad, increase from about 50% to 85% with nitrogen seeding. X-point radiation is accompanied by a loss of pedestal top plasma pressure of about 60%. However, the core pressure at ρpol < 0.7 changes only by about 10%. H98 = 0.8–1.0 is observed during detached operation. With nitrogen seeding the edge-localized mode (ELM) frequency increases from the 100 Hz range to a broadband distribution at 1–2 kHz with a large reduction in ELM size.

033005

, , and

A stellarator is said to be omnigeneous if all particles have vanishing average radial drifts. In omnigeneous stellarators, particles are perfectly confined in the absence of turbulence and collisions, whereas in non-omnigeneous configurations, particle can drift large radial distances. One of the consequences of omnigeneity is that the unfavourable inverse scaling with collisionality of the stellarator neoclassical fluxes disappears. In the pioneering and influential article by Cary and Shasharina (1997 Phys. Plasmas4 3323), the conditions that the magnetic field of a stellarator must satisfy to be omnigeneous are derived. However, Cary and Shasharina (1997 Phys. Plasmas4 3323) only considered omnigeneous stellarators in which all the minima of the magnetic field strength on a flux surface must have the same value. The same is assumed for the maxima. We show that omnigeneous magnetic fields can have local minima and maxima with different values. Thus, the parameter space in which omnigeneous stellarators are possible is larger than previously expected. The analysis presented in this article is only valid for orbits with vanishing radial width, and in principle it is not applicable to energetic particles. However, one would expect that improving neoclassical confinement would improve energetic particle confinement.

033006

, , , , , , , , , et al

The influence of electron heating compared to ion heating on plasma performance has been analysed in order to make valid projections towards future devices. The capabilities of the newly upgraded electron cyclotron resonance heating system at ASDEX Upgrade make this analysis feasible by replacing neutral beam injection. Dominantly electron heated plasmas are analysed and compared to dominantly ion heated plasmas. It is investigated if they behave systematically different or if the change of heated species is fully compensated by heat exchange from electrons to ions. Studies of plasmas at high collisionalities are presented in Sommer et al (2012 Nucl. Fusion52 114018). Here, these former investigations are extended towards lower collisionalities. The global plasma parameters show a slight reduction with increasing electron heating arising from a significant decrease of the ion temperature, whereas the electron temperature profile is unchanged. The density profile shows a strong peaking which remains unchanged when modifying the heating mix. The power balance analysis shows an important impact of the heat exchange between electrons and ions. The electron and ion temperatures and the plasma density are modelled with the transport model TGLF. The experimental observations are reproduced verifying the applied code. Linear gyrokinetic calculations with GS2 found the ion temperature gradient mode to be the dominant microinstability in all analysed cases.

033007

, , and

We investigated the effect of edge-localized mode like transient heat events on pristine samples for two different grades of deformed tungsten with ultrafine and nanocrystalline grains as potential candidates for plasma-facing components. Pulses from a laser beam with durations ∼1 ms and operating in the near infrared wavelength were used for simulating transient heat loading in fusion devices. We specifically focused on investigating and analysis of different mechanisms for material removal from the sample surface under repetitive transient heat loads. Several techniques were applied for analysing different mechanisms leading to material removal from the W surface under repetitive transient heat loads which include witness plates for collected ejected material, and subsequent analysis using x-ray photoelectron spectroscopy and scanning electron microscopy, visible imaging using fast-gated camera, and evaluating thermal emission from the particles using optical emission spectroscopy. Our results show a significantly improved performance of polycrystalline cold-rolled tungsten compared to tungsten produced using an orthogonal machining process under repetitive transient loads for a wide range of the power densities.

033008

A theoretical approach to studying the plasma stability in toroidal systems with a resistive wall is developed. The energy principle of the ideal magnetohydrodynamics (MHD) is based on the energy conservation. The dissipation in the wall breaks this fundamental property, but can be incorporated into the mathematical frame of the standard stability theory. Such extension is presented here. With a resistive wall the system becomes open that couples the task with calculation of additional sinks in and behind the wall. The derivations are performed without restrictions on the mode nature, aspect ratio and plasma/wall shape. General estimates are given with emphasis on applications of the derived torque–energy balance to MHD events faster than the conventional resistive wall modes (RWMs). In this dynamic range, the skin effect in the wall must be strong. This fact is used here for evaluation of the dissipative term. Finally the latter is expressed through the ideal-wall asymptote for the magnetic perturbation. Then the result gives a dispersion relation for the RWMs far from the no-wall stability boundary with a smooth transition to the ideal MHD instabilities.

033009

The experimental results of ATC (Adiabatic Toroidal Compressor) are re-analysed with magnetic-compression theory for clarifying the inductance of compressed plasma. Its time-varying nature during compression is revealed, as there has been uncertainty since 1977 (Daughney et al 1977 Nucl. Fusion17 2). During compression in the major radius, the plasma inductance decreases quasi-linearly with the major radius, and its magnetic energy increases quasi-linearly with the major radius.

033010

, , , , , , , and

The mechanism of improving energy confinement with argon seeding at high density has been investigated in JT-60U. Better confinement is sustained at high density by argon seeding accompanied by higher core and pedestal temperatures. The electron density profiles become flatter with increasing density in conventional H-mode plasmas, whereas peaked density profiles are maintained with argon seeding. Density peaking and dilution effects lower the pedestal density at a given averaged density. The pedestal density in the argon seeded plasmas, which is lower than that in plasmas with deuterium puff, enables the pedestal temperature to be higher, whereas the increase in the pedestal pressure with argon seeding is small. High pedestal temperature is a boundary condition for high core temperature through profile stiffness, which leads to better confinement with argon seeding. The density peaking is a key factor of sustaining better confinement in argon seeded H-mode plasmas. The radiative loss power density is predominantly enhanced in the edge region by argon puff. The role of argon seeding in the pedestal characteristics has also been examined. The pedestal width becomes larger continuously with edge collisionality, but is nearly independent of the presence of argon seeding.

033011

, , , and

The development of negative ion (NI) sources for ITER is strongly accompanied by modelling activities. The ONIX code addresses the physics of formation and extraction of negative hydrogen ions at caesiated sources as well as the amount of co-extracted electrons. In order to be closer to the experimental conditions the code has been improved. It includes now the bias potential applied to first grid (plasma grid) of the extraction system, and the presence of Cs+ ions in the plasma. The simulation results show that such aspects play an important role for the formation of an ion–ion plasma in the boundary region by reducing the depth of the negative potential well in vicinity to the plasma grid that limits the extraction of the NIs produced at the Cs covered plasma grid surface. The influence of the initial temperature of the surface produced NI and its emission rate on the NI density in the bulk plasma that in turn affects the beam formation region was analysed. The formation of the plasma meniscus, the boundary between the plasma and the beam, was investigated for the extraction potentials of 5 and 10 kV. At the smaller extraction potential the meniscus moves closer to the plasma grid but as in the case of 10 kV the deepest meniscus bend point is still outside of the aperture. Finally, a plasma containing the same amount of NI and electrons $(n_{{\rm H}^{-}} =n_{\rm e} =10^{17}\,{\rm m}^{-3})$ , representing good source conditioning, was simulated. It is shown that at such conditions the extracted NI current can reach values of ∼32 mA cm−2 using ITER-relevant extraction potential of 10 kV and ∼19 mA cm−2 at 5 kV. These results are in good agreement with experimental measurements performed at the small scale ITER prototype source at the test facility BATMAN.

033012

, , , , , , , , , et al

Dedicated experiments focusing on the influence of lower hybrid waves (LHWs) on edge-localized modes (ELMs) were first performed during the 2012 experimental campaign of EAST, via modulating the input power of LHWs in the high-confinement-mode (H-mode) plasma mainly sustained by ion cyclotron resonant heating. Natural ELMs are effectively mitigated (ELM frequency increases, while its intensity decreases dramatically) as the LHW is applied, observed over a fairly wide range of plasma current or edge safety factor. By scanning the modulation frequency (fm) of LHW injected power in a target plasma dominated by the so-called small ELMs, we conclude that large ELMs with markedly larger amplitudes and lower frequencies are reproduced at low modulation frequencies (fm < 100 Hz). Analysis of the evolution of edge extreme ultraviolet radiation signals further indicates that plasma fluctuations at the pedestal region indistinctively respond to rapid modulation (fm ⩾ 100 Hz) of LHW injected power. This is proposed as the mechanism responsible for the observed fm dependence of the mitigation effect induced by LHWs on large ELMs. In addition, a critical threshold of LHW input power PLHW is estimated as $P_{{\rm LHW}}^{{\rm thr}}\simeq800\,{\rm kW}$ , beyond which the impact of applied LHWs on ELM behaviours can be achieved. Finally, Langmuir probe measurements suggest that, rather than the concentration of free energy into a narrowband quasi-coherent precursor commonly observed growing until the ELM crash, the continuous development of broadband turbulence during the ELM-absent phase with the application of LHWs might contribute to the avoidance of ELM crashes. These results present new insights into existing experiments, and also provide some foundations and references for the next-step research about exploring in more depth and improving this new attractive method to effectively control the ELM-induced very large transient heat and particle flux.

033013

, , , , , , , , , et al

A centre-solenoid-free merging start-up scheme for spherical tokamak plasmas was developed in a University of Tokyo spherical tokamak (UTST) experiment by using outer poloidal field coils. Torus breakdown was initiated at null points and two spherical tokamak plasmas with a total current up to 80 kA were generated inductively. Their merging process provided substantial ion and electron heating by magnetic reconnection. The obtained dependence of heating on plasma current suggests that high-temperature and high-current plasma suitable for neutral beam injection is attainable under the realistic conditions in the merging start-up method.

033014

, , , , , , , , , et al

Core impurity transport has been investigated for a variety of confinement regimes in Alcator C-Mod plasmas from x-ray emission following injection of medium and high Z materials. In ohmic L-mode discharges, impurity transport is anomalous (Deff ≫ Dnc) and changes very little across the LOC/SOC boundary. In ion cyclotron range of frequencies (ICRF) heated L-mode plasmas, the core impurity confinement time decreases with increasing ICRF input power (and subsequent increasing electron temperature) and increases with plasma current. Nearly identical impurity confinement characteristics are observed in I-mode plasmas. In enhanced Dα H-mode discharges the core impurity confinement times are much longer. There is a strong connection between core impurity confinement time and the edge density gradient across all confinement regimes studied here. Deduced central impurity density profiles in stationary plasmas are generally flat, in spite of large amplitude sawtooth oscillations, and there is little evidence of impurity convection inside of r/a = 0.3 when averaged over sawteeth.

033015

, , , , , , , , and

Experiments of disruption mitigation with massive gas injection are conducted in ASDEX Upgrade with fast valves located close to the plasma. The valves and the dedicated experiment are described in this paper. The dependence of the fuelling efficiency on plasma and gas parameters is documented and discussed. Several sources of uncertainties affecting its evaluation and physical interpretation have been addressed. An actual fuelling efficiency of 40% has been reached for neon injection with valves close to the plasma and for gas quantities relevant for the thermal and current quench mitigation of ITER. Refuelling the plasma after thermal quench is shown to be feasible; this result opens the possibility of raising the density in a runaway beam and therefore of increasing the collisional drag on and the radiative energy losses of the fast electrons.

033016

, , , and

Two analytical models for the ordinary mode propagating through a turbulent inhomogeneous edge plasma layer are developed based on the eikonal perturbation method and weak turbulence theory approach. Simple analytical expression for a diffusion-like angular beam width variation is obtained by both methods in the case of long scale density perturbations. The predictions for the spatial beam width are benchmarked against timeaveraged results coming from the 2D Maxwell's equations solver for different turbulence k-spectra and plasma conditions. The strong (more than twofold) increase of the microwave beam angular and spatial width after crossing the turbulent edge is predicted at realistic parameters for ECRH experiments at ITER.

033017

, and

An inductively coupled plasma (ICP) based negative hydrogen ion source is chosen for ITER neutral beam (NB) systems. To avoid regular maintenance in a radioactive environment with high flux of 14 MeV neutrons and gamma rays, invasive plasma diagnostics like probes are not included in the ITER NB source design. While, optical or microwave based diagnostics which are normally used in other plasma sources, are to be avoided in the case of ITER sources due to the overall system design and interface issues. In such situation, alternative forms of assessment to characterize ion source plasma become a necessity. In the present situation, the beam current through the extraction system in the ion source is the only measurement which indicates plasma condition inside the ion source. However, beam current not only depends on the plasma condition near the extraction region but also on the perveance condition and negative ion stripping. Apart from that, the ICP production region radio frequency (RF) driver region) is placed far (∼30 cm) from the extraction region. Therefore, there are uncertainties involved in linking the beam current with plasma properties inside the RF driver. To maintain the optimum condition for source operation it is necessary to maintain the optimum conditions in the driver. A method of characterization of the plasma density in the driver without using any invasive or non-invasive probes could be a useful tool to achieve that objective. Such a method, which is exclusively for ICP based ion sources, is presented in this paper. In this technique, plasma density inside the RF driver is estimated through the measurements of the electrical parameters in the RF power supply circuit path. Monitoring RF driver plasma through the described route will be useful during the source commissioning phase and also in the beam operation phase.

033018

, , , , , , , , , et al

The dynamics of blob filaments are investigated in the scrape-off layer of ASDEX Upgrade by means of lithium beam emission spectroscopy. A comparison of the measurements in L-mode with a recently developed analytical blob model based on a drift-interchange-Alfvén fluid model indicates an influence of a finite ion temperature on the blob dynamics which has typically been neglected in other blob models. The blob dynamics agree well with the sheath-connected regime at lower plasma densities, and inertial effects play only a minor role. At higher densities, a transition into another regime with large blob amplitudes and increased transport is found. This points to a prominent role of blob transport at higher Greenwald fractions. On the basis of the measured blob properties, the erosion on plasma facing components is estimated. For pure deuterium plasmas, the high ion temperatures of blobs lead to a dominant erosion induced by blobs. However, if an impurity concentration of 1% is taken into account, the blob-induced erosion plays a minor role and background plasma parameters determine the total gross erosion.

033019

, , , , , , , , , et al

The inboard limiters for ITER were initially designed on the assumption that the parallel heat flux density in the scrape-off layer (SOL) could be approximated by a single exponential with decay length λq. This assumption was found not to be adequate in 2012, when infra-red (IR) thermography measurements on the inner column during JET limiter discharges clearly revealed the presence of a narrow heat flux channel adjacent to the last closed flux surface. This near-SOL decay occurs with λq ∼ few mm, much shorter than the main SOL λq, and can raise the heat flux at the limiter apex a factor up to ∼4 above the value expected from a single, broader exponential. The original logarithmically shaped ITER inner wall first wall panels (FWPs) would be unsuited to handling the power loads produced by such a narrow feature. A multi-machine study involving the C-Mod, COMPASS, DIII-D and TCV tokamaks, employing inner wall IR measurements and/or inner wall reciprocating probes, was initiated to investigate the narrow limiter SOL heat flux channel. This paper describes the new results which have provided an experimental database for the narrow feature and presents an ITER inner wall FWP toroidal shape optimized for a double-exponential profile with λq = 4 (narrow feature) and 50 mm (main-SOL), the latter also derived from a separate multi-machine database constituted recently within the International Tokamak Physics Activity. It is shown that the new shape allows the power handling capability of the original shape design to be completely recovered for a wide variety of limiter start-up equilibria in the presence of a narrow feature, even taking assembly tolerances into account. It is, moreover, further shown that the new shape has the interesting property of both mitigating the impact of the narrow feature and resulting in only a very modest increase in heat load, compared to the current design, if the narrow feature is not eventually found on ITER.

033020

, and

Determination of the mechanisms underlying the growth of tungsten fuzz is an important step towards mitigation of fuzz formation. Nanostructured tungsten was produced on resistively heated tungsten wires in a helicon plasma source (maximum flux of 2.5 × 1021 m−2 s−1). Asymmetry in the setup allows for investigation of temperature and flux effects in a single sample. An effort at elucidating the mechanism of formation was made by inspecting SEM micrographs of the nanostructured tungsten at successive fluence steps of helium ions up to a fluence of 1 × 1027 m−2. To create these micrographs a single tungsten sample was exposed to the plasma, removed and inspected with an SEM, and replaced into the plasma. The tungsten surface was marked in several locations so that each micrograph is centred within 200 nm of each previous micrograph. Pitting of the surface (diameter 9.5 ± 2.3 nm, fluence (5 ± 2) × 1025 m−2) followed by surface roughening (fluence (9 ± 2) × 1025 m−2) and tendril formation (diameter 30 ± 10 nm, fluence (2 ± 1) × 1026 m−2) is observed, providing evidence of bubble bursting as the mechanism for seeding the growth of the tungsten fuzz.