Table of contents

Volume 824

Number 2, 2016 June 20

Previous issue Next issue

65

, , and

Solar spicules are chromospheric fibrils that appear everywhere on the Sun, yet their origin is not understood. Using high resolution observations of spicules obtained with the Swedish 1 m Solar Telescope, we aim to understand how spicules appear in filtergrams and Dopplergrams, how they compare in Ca ii H and Hα filtergrams, and what can make them appear and disappear. We find that spicules display a rich and detailed spatial structure, and show a distribution of transverse velocities that, when aligned with the line of sight, can make them appear at different Hα wing positions. They become more abundant at positions closer to the line core, reflecting a distribution of Doppler shifts and widths. In Hα width maps they stand out as bright features both on disk and off limb, reflecting their large Doppler motions and possibly higher temperatures than in the typical Hα formation region. Spicule lifetimes measured from narrowband images at only a few positions will be an underestimate because Doppler shifts can make them disappear prematurely from such images; for such cases, width maps are a more robust tool. In Hα and Ca ii H filtergrams, off-limb spicules essentially have the same properties, appearance, and evolution. We find that the sudden appearance of spicules can be explained by Doppler shifts from their transverse motions, and does not require other convoluted explanations.

66

, , , , , , , , , et al

The Large Binocular Telescope Interferometer (LBTI) is a versatile instrument designed for high angular resolution and high-contrast infrared imaging (1.5–13 μm). In this paper, we focus on the mid-infrared (8–13 μm) nulling mode and present its theory of operation, data reduction, and on-sky performance as of the end of the commissioning phase in 2015 March. With an interferometric baseline of 14.4 m, the LBTI nuller is specifically tuned to resolve the habitable zone of nearby main-sequence stars, where warm exozodiacal dust emission peaks. Measuring the exozodi luminosity function of nearby main-sequence stars is a key milestone to prepare for future exo-Earth direct imaging instruments. Thanks to recent progress in wavefront control and phase stabilization, as well as in data reduction techniques, the LBTI demonstrated in 2015 February a calibrated null accuracy of 0.05% over a 3 hr long observing sequence on the bright nearby A3V star β Leo. This is equivalent to an exozodiacal disk density of 15–30 zodi for a Sun-like star located at 10 pc, depending on the adopted disk model. This result sets a new record for high-contrast mid-infrared interferometric imaging and opens a new window on the study of planetary systems.

67

, , , and

A new simple dynamo model for stellar activity cycle is proposed. By considering an inhomogeneous flow effect on turbulence, it is shown that turbulent cross helicity (velocity–magnetic-field correlation) enters the expression of turbulent electromotive force as the coupling coefficient for the mean absolute vorticity. This makes the present model different from the current α–Ω-type models in two main ways. First, in addition to the usual helicity (α) and turbulent magnetic diffusivity (β) effects, we consider the cross-helicity effect as a key ingredient of the dynamo process. Second, the spatiotemporal evolution of cross helicity is solved simultaneously with the mean magnetic fields. The basic scenario is as follows. In the presence of turbulent cross helicity, the toroidal field is induced by the toroidal rotation. Then, as in usual models, the α effect generates the poloidal field from the toroidal one. This induced poloidal field produces a turbulent cross helicity whose sign is opposite to the original one (negative production). With this cross helicity of the reversed sign, a reversal in field configuration starts. Eigenvalue analyses of the simplest possible model give a butterfly diagram, which confirms the above scenario and the equatorward migrations, the phase relationship between the cross helicity and magnetic fields. These results suggest that the oscillation of the turbulent cross helicity is a key for the activity cycle. The reversal of the cross helicity is not the result of the magnetic-field reversal, but the cause of the latter. This new model is expected to open up the possibility of the mean-field or turbulence closure dynamo approaches.

68

, , , , , , , , , et al

We analyze how passive galaxies at z ∼ 1.5 populate the mass–size plane as a function of their stellar age, to understand if the observed size growth with time can be explained with the appearance of larger quenched galaxies at lower redshift. We use a sample of 32 passive galaxies extracted from the Wide Field Camera 3 Infrared Spectroscopic Parallel (WISP) survey with spectroscopic redshift 1.3 ≲ z ≲ 2.05, specific star formation rates lower than 0.01 Gyr−1, and stellar masses above 4.5 × 1010M. All galaxies have spectrally determined stellar ages from fitting of their rest-frame optical spectra and photometry with stellar population models. When dividing our sample into young (age ≤2.1 Gyr) and old (age >2.1 Gyr) galaxies we do not find a significant trend in the distributions of the difference between the observed radius and that predicted by the mass–size relation. This result indicates that the relation between the galaxy age and its distance from the mass–size relation, if it exists, is rather shallow, with a slope α ≳ −0.6. At face value, this finding suggests that multiple dry and/or wet minor mergers, rather than the appearance of newly quenched galaxies, are mainly responsible for the observed time evolution of the mass–size relation in passive galaxies.

69

and

Recent simulations have indicated that the dark matter halos of galaxy clusters should feature steep density jumps near the virial radius. Since the member galaxies are expected to follow similar collisionless dynamics as the dark matter, the galaxy density profile should show such a feature as well. We examine the potential of current data sets to test this prediction by selecting cluster members for a sample of 56 low-redshift ($0.1\lt z\lt 0.3$) galaxy clusters, constructing their projected number density profiles, and fitting them with two profiles, one with a steep density jump and one without. Additionally, we investigate the presence of a jump using a non-parametric spline approach. We find that some of these clusters show strong evidence for a model with a density jump, with the strength of the signal increasing with the inclusion of spectroscopic cluster member identification. We discuss avenues for further analysis of the density jump with future data sets, particularly with the inclusion of additional spectroscopy of cluster outskirts.

70

and

In this work, we present a study of 207 quasars selected from the Sloan Digital Sky Survey quasar catalogs and the Herschel Stripe 82 survey. Quasars within this sample are high-luminosity quasars with a mean bolometric luminosity of 1046.4 erg s−1. The redshift range of this sample is within z < 4, with a mean value of 1.5 ± 0.78. Because we only selected quasars that have been detected in all three Herschel-SPIRE bands, the quasar sample is complete yet highly biased. Based on the multi-wavelength photometric observation data, we conducted a spectral energy distribution (SED) fitting through UV to FIR. Parameters such as active galactic nucleus (AGN) luminosity, far-IR (FIR) luminosity, stellar mass, as well as many other AGN and galaxy properties are deduced from the SED fitting results. The mean star formation rate (SFR) of the sample is 419 M yr−1 and the mean gas mass is ∼1011.3M. All of these results point to an IR luminous quasar system. Compared with star formation main sequence (MS) galaxies, at least 80 out of 207 quasars are hosted by starburst galaxies. This supports the statement that luminous AGNs are more likely to be associated with major mergers. The SFR increases with the redshift up to z = 2. It is correlated with the AGN bolometric luminosity, where ${L}_{{\rm{FIR}}}\propto {L}_{{\rm{Bol}}}^{0.46\pm 0.03}$. The AGN bolometric luminosity is also correlated with the host galaxy mass and gas mass. Yet the correlation between LFIR and LBol has higher significant level, implies that the link between AGN accretion and the SFR is more primal. The MBH/M* ratio of our sample is 0.02, higher than the value 0.005 in the local universe. It might indicate an evolutionary trend of the MBHM* scaling relation.

71

, , , , , , and

We present a new catalog of 3816 compact star clusters in the grand design spiral galaxy M51 based on observations taken with the Hubble Space Telescope. The age distribution of the clusters declines starting at very young ages, and can be represented by a power law, ${dN}/d\tau \propto {\tau }^{\gamma }$, with $\gamma =-0.65\pm 0.15$. No significant changes in the shape of the age distribution at different masses is observed. The mass function of the clusters younger than $\tau \;\approx \;400\;{\rm{Myr}}$ can also be described by a power law, ${dN}/{dM}\propto {M}^{\beta }$, with $\beta \;\approx \;-2.1\pm 0.2$. We compare these distributions with the predictions from various cluster disruption models, and find that they are consistent with models where clusters disrupt approximately independent of their initial mass, but not with models where lower mass clusters are disrupted earlier than their higher mass counterparts. We find that the half-light radii of clusters more massive than $M\;\approx \;3\times {10}^{4}\;{M}_{\odot }$ and with ages between 100 and 400 ${\rm{Myr}}$ are larger by a factor of ≈3–4 than their counterparts that are younger than 107 years old, suggesting that the clusters physically expand during their early life.

72

, , , , and

We present Submillimeter Array (SMA) CO (2–1) observations toward the protostellar jet driven by SVS 13 A, a variable protostar in the NGC 1333 star-forming region. The SMA CO (2–1) images show an extremely high-velocity jet composed of a series of molecular "bullets." Based on the SMA CO observations, we discover clear and large systematic velocity gradients, perpendicular to the jet axis, in the blueshifted and redshifted bullets. After discussing several alternative interpretations, such as twin-jets, jet precession, warped disk, and internal helical shock, we suggest that the systematic velocity gradients observed in the bullets result from the rotation of the SVS 13 A jet. From the SMA CO images, the measured rotation velocities are 11.7–13.7 km s−1 for the blueshifted bullet and 4.7 ± 0.5 km s−1 for the redshifted bullet. The estimated specific angular momenta of the two bullets are comparable to those of dense cores, about 10 times larger than those of protostellar envelopes, and about 20 times larger than those of circumstellar disks. If the velocity gradients are due to the rotation of the SVS 13 A jet, the significant amount of specific angular momenta of the bullets indicates that the rotation of jets/outflows is a key mechanism to resolve the so-called "angular momentum problem" in the field of star formation. The kinematics of the bullets suggests that the jet launching footprint on the disk has a radius of ∼7.2–7.7 au, which appears to support the extended disk-wind model. We note that further observations are needed to comprehensively understand the kinematics of the SVS 13 A jet, in order to confirm the rotation nature of the bullets.

73

, , , , , , , , and

We present the first measure of Fe and Na abundances in NGC 6362, a low-mass globular cluster (GC) where first- and second-generation stars are fully spatially mixed. A total of 160 member stars (along the red giant branch (RGB) and the red horizontal branch (RHB)) were observed with the multi-object spectrograph FLAMES at the Very Large Telescope. We find that the cluster has an iron abundance of [Fe/H] = −1.09 ± 0.01 dex, without evidence of intrinsic dispersion. On the other hand, the [Na/Fe] distribution turns out to be intrinsically broad and bimodal. The Na-poor and Na-rich stars populate, respectively, the bluest and the reddest RGBs detected in the color–magnitude diagrams including the U filter. The RGB is composed of a mixture of first- and second-generation stars in a similar proportion, while almost all the RHB stars belong to the first cluster generation. To date, NGC 6362 is the least massive GC where both the photometric and spectroscopic signatures of multiple populations have been detected.

74

, , , , and

The investigation of the nonlinearity of the Leavitt law (LL) is a topic that began more than seven decades ago, when some of the studies in this field found that the LL has a break at about 10 days. The goal of this work is to investigate a possible statistical cause of this nonlinearity. By applying linear regressions to OGLE-II and OGLE-IV data, we find that to obtain the LL by using linear regression, robust techniques to deal with influential points and/or outliers are needed instead of the ordinary least-squares regression traditionally used. In particular, by using M- and MM-regressions we establish firmly and without doubt the linearity of the LL in the Large Magellanic Cloud, without rejecting or excluding Cepheid data from the analysis. This implies that light curves of Cepheids suggesting blending, bumps, eclipses, or period changes do not affect the LL for this galaxy. For the Small Magellanic Cloud, when including Cepheids of this kind, it is not possible to find an adequate model, probably because of the geometry of the galaxy. In that case, a possible influence of these stars could exist.

75

, , and

Neutron-capture elements, those with Z > 35, are the least well understood in terms of nucleosynthesis and formation environments. The rapid neutron-capture, or r-process, elements are formed in the environments and/or remnants of massive stars, while the slow neutron-capture, or s-process, elements are primarily formed in low-mass AGB stars. These elements can provide much information about Galactic star formation and enrichment, but observational data are limited. We have assembled a sample of 68 stars in 23 open clusters that we use to probe abundance trends for six neutron-capture elements (Eu, Gd, Dy, Mo, Pr, and Nd) with cluster age and location in the disk of the Galaxy. In order to keep our analysis as homogeneous as possible, we use an automated synthesis fitting program, which also enables us to measure multiple (3–10) lines for each element. We find that the pure r-process elements (Eu, Gd, and Dy) have positive trends with increasing cluster age, while the mixed r- and s-process elements (Mo, Pr, and Nd) have insignificant trends consistent with zero. Pr, Nd, Eu, Gd, and Dy have similar, slight (although mostly statistically significant) gradients of ∼0.04 dex kpc−1. The mixed elements also appear to have nonlinear relationships with RGC.

76

and

Many of the directly imaged self-luminous gas-giant exoplanets have been found to have cloudy atmospheres. Scattering of the emergent thermal radiation from these planets by the dust grains in their atmospheres should locally give rise to significant linear polarization of the emitted radiation. However, the observable disk-averaged polarization should be zero if the planet is spherically symmetric. Rotation-induced oblateness may yield a net non-zero disk-averaged polarization if the planets have sufficiently high spin rotation velocity. On the other hand, when a large natural satellite or exomoon transits a planet with a cloudy atmosphere along the line of sight, the asymmetry induced during the transit should give rise to a net non-zero, time-resolved linear polarization signal. The peak amplitude of such time-dependent polarization may be detectable even for slowly rotating exoplanets. Therefore, we suggest that large exomoons around directly imaged self-luminous exoplanets may be detectable through time-resolved imaging polarimetry. Adopting detailed atmospheric models for several values of effective temperature and surface gravity that are appropriate for self-luminous exoplanets, we present the polarization profiles of these objects in the infrared during the transit phase and estimate the peak amplitude of polarization that occurs during the inner contacts of the transit ingress/egress phase. The peak polarization is predicted to range between 0.1% and 0.3% in the infrared.

77

, , , , , and

We present a tomographic cosmic shear study from the Deep Lens Survey (DLS), which, providing a limiting magnitude ${r}_{\mathrm{lim}}\sim 27$ ($5\sigma $), is designed as a precursor Large Synoptic Survey Telescope (LSST) survey with an emphasis on depth. Using five tomographic redshift bins, we study their auto- and cross-correlations to constrain cosmological parameters. We use a luminosity-dependent nonlinear model to account for the astrophysical systematics originating from intrinsic alignments of galaxy shapes. We find that the cosmological leverage of the DLS is among the highest among existing $\gt 10$ deg2 cosmic shear surveys. Combining the DLS tomography with the 9 yr results of the Wilkinson Microwave Anisotropy Probe (WMAP9) gives ${{\rm{\Omega }}}_{m}={0.293}_{-0.014}^{+0.012}$, ${\sigma }_{8}={0.833}_{-0.018}^{+0.011}$, ${H}_{0}={68.6}_{-1.2}^{+1.4}\;{\text{km s}}^{-1}\;{{\rm{Mpc}}}^{-1}$, and ${{\rm{\Omega }}}_{b}=0.0475\pm 0.0012$ for ΛCDM, reducing the uncertainties of the WMAP9-only constraints by ∼50%. When we do not assume flatness for ΛCDM, we obtain the curvature constraint ${{\rm{\Omega }}}_{k}=-{0.010}_{-0.015}^{+0.013}$ from the DLS+WMAP9 combination, which, however, is not well constrained when WMAP9 is used alone. The dark energy equation-of-state parameter w is tightly constrained when baryonic acoustic oscillation (BAO) data are added, yielding $w=-{1.02}_{-0.09}^{+0.10}$ with the DLS+WMAP9+BAO joint probe. The addition of supernova constraints further tightens the parameter to $w=-1.03\pm 0.03$. Our joint constraints are fully consistent with the final Planck results and also with the predictions of a ΛCDM universe.

78

, , and

The transport of the energy contained in electrons, both thermal and suprathermal, in solar flares plays a key role in our understanding of many aspects of the flare phenomenon, from the spatial distribution of hard X-ray emission to global energetics. Motivated by recent RHESSI observations that point to the existence of a mechanism that confines electrons to the coronal parts of flare loops more effectively than Coulomb collisions, we here consider the impact of pitch-angle scattering off turbulent magnetic fluctuations on the parallel transport of electrons in flaring coronal loops. It is shown that the presence of such a scattering mechanism in addition to Coulomb collisional scattering can significantly reduce the parallel thermal and electrical conductivities relative to their collisional values. We provide illustrative expressions for the resulting thermoelectric coefficients that relate the thermal flux and electrical current density to the temperature gradient and the applied electric field. We then evaluate the effect of these modified transport coefficients on the flare coronal temperature that can be attained, on the post-impulsive-phase cooling of heated coronal plasma, and on the importance of the beam-neutralizing return current on both ambient heating and the energy loss rate of accelerated electrons. We also discuss the possible ways in which anomalous transport processes have an impact on the required overall energy associated with accelerated electrons in solar flares.

79

and

We use cosmological zoom-in simulations of galaxy formation in a Milky-Way-sized halo started from identical initial conditions to investigate the evolution of galaxy sizes, baryon fractions, morphologies, and angular momenta in runs with different parameters of the star formation–feedback cycle. Our fiducial model with a high local star formation efficiency, which results in efficient feedback, produces a realistic late-type galaxy that matches the evolution of basic properties of late-type galaxies: stellar mass, disk size, morphology dominated by a kinematically cold disk, stellar and gas surface density profiles, and specific angular momentum. We argue that feedback's role in this success is twofold: (1) removal of low angular momentum gas, and (2) maintaining a low disk-to-halo mass fraction, which suppresses disk instabilities that lead to angular momentum redistribution and a central concentration of baryons. However, our model with a low local star formation efficiency, but large energy input per supernova, chosen to produce a galaxy with a similar star formation history as our fiducial model, leads to a highly irregular galaxy with no kinematically cold component, overly extended stellar distribution, and low angular momentum. This indicates that only when feedback is allowed to become vigorous via locally efficient star formation in dense cold gas do resulting galaxy sizes, gas/stellar surface density profiles, and stellar disk angular momenta agree with observed z = 0 galaxies.

80

, , and

The Centaur population is composed of minor bodies wandering between the giant planets that frequently perform close gravitational encounters with these planets, leading to a chaotic orbital evolution. Recently, the discovery of two well-defined narrow rings was announced around the Centaur 10199 Chariklo. The rings are assumed to be in the equatorial plane of Chariklo and to have circular orbits. The existence of a well-defined system of rings around a body in such a perturbed orbital region poses an interesting new problem. Are the rings of Chariklo stable when perturbed by close gravitational encounters with the giant planets? Our approach to address this question consisted of forward and backward numerical simulations of 729 clones of Chariklo, with similar initial orbits, for a period of 100 Myr. We found, on average, that each clone experiences during its lifetime more than 150 close encounters with the giant planets within one Hill radius of the planet in question. We identified some extreme close encounters that were able to significantly disrupt or disturb the rings of Chariklo. About 3% of the clones lose their rings and about 4% of the clones have their rings significantly disturbed. Therefore, our results show that in most cases (more than 90%), the close encounters with the giant planets do not affect the stability of the rings in Chariklo-like systems. Thus, if there is an efficient mechanism that creates the rings, then these structures may be common among these kinds of Centaurs.

81

, , , , and

Solid water has been observed on the surface of many different astronomical objects and is the dominant ice present in the universe, from the solar system (detected on the surface of some asteroids, planets and their satellites, trans-Neptunian objects [TNOs], comets, etc.) to dense cold interstellar clouds (where interstellar dust grains are covered with water-rich ices). Ethane has been detected across the solar system, from the atmosphere of the giant planets and the surface of Saturn's satellite Titan to various comets and TNOs. To date, there were no experiments focused on icy mixtures of C2H6 and H2O exposed to ion irradiation simulating cosmic rays, a case study for many astronomical environments in which C2H6 has been detected. In this work, the radiolysis of a C2H6:H2O (2:3) ice mixture bombarded by a 40 MeV58Ni11+ ion beam is studied. The chemical evolution of the molecular species existing in the sample is monitored by a Fourier transform infrared spectrometer. The analysis of ethane, water, and molecular products in solid phase was performed. Induced chemical reactions in C2H6:H2O ice produce 13 daughter molecular species. Their formation and dissociation cross sections are determined. Furthermore, atomic carbon, oxygen, and hydrogen budgets are determined and used to verify the stoichiometry of the most abundantly formed molecular species. The results are discussed in the view of solar system and interstellar medium chemistry. The study presented here should be regarded as a first step in laboratory works dedicated to simulate the effect of cosmic radiation on multicomponent mixtures involving C2H6 and H2O.

82

, , , , , , and

We use a simple one-zone galactic chemical evolution model to quantify the uncertainties generated by the input parameters in numerical predictions for a galaxy with properties similar to those of the Milky Way. We compiled several studies from the literature to gather the current constraints for our simulations regarding the typical value and uncertainty of the following seven basic parameters: the lower and upper mass limits of the stellar initial mass function (IMF), the slope of the high-mass end of the stellar IMF, the slope of the delay-time distribution function of Type Ia supernovae (SNe Ia), the number of SNe Ia per M formed, the total stellar mass formed, and the final mass of gas. We derived a probability distribution function to express the range of likely values for every parameter, which were then included in a Monte Carlo code to run several hundred simulations with randomly selected input parameters. This approach enables us to analyze the predicted chemical evolution of 16 elements in a statistical manner by identifying the most probable solutions, along with their 68% and 95% confidence levels. Our results show that the overall uncertainties are shaped by several input parameters that individually contribute at different metallicities, and thus at different galactic ages. The level of uncertainty then depends on the metallicity and is different from one element to another. Among the seven input parameters considered in this work, the slope of the IMF and the number of SNe Ia are currently the two main sources of uncertainty. The thicknesses of the uncertainty bands bounded by the 68% and 95% confidence levels are generally within 0.3 and 0.6 dex, respectively. When looking at the evolution of individual elements as a function of galactic age instead of metallicity, those same thicknesses range from 0.1 to 0.6 dex for the 68% confidence levels and from 0.3 to 1.0 dex for the 95% confidence levels. The uncertainty in our chemical evolution model does not include uncertainties relating to stellar yields, star formation and merger histories, and modeling assumptions.

83

, , , , , , , , , et al

Two cold gas giant planets orbiting a G-type main-sequence star in the galactic disk were previously discovered in the high-magnification microlensing event OGLE-2012-BLG-0026. Here, we present revised host star flux measurements and a refined model for the two-planet system using additional light curve data. We performed high angular resolution adaptive optics imaging with the Keck and Subaru telescopes at two epochs while the source star was still amplified. We detected the lens flux, H = 16.39 ± 0.08. The lens, a disk star, is brighter than predicted from the modeling in the original study. We revisited the light curve modeling using additional photometric data from the B&C telescope in New Zealand and CTIO 1.3 m H-band light curve. We then include the Keck and Subaru adaptive optic observation constraints. The system is composed of a ∼4–9 Gyr lens star of Mlens = 1.06 ± 0.05 M at a distance of Dlens = 4.0 ± 0.3 kpc, orbited by two giant planets of 0.145 ± 0.008 MJup and 0.86 ± 0.06 MJup, with projected separations of 4.0 ± 0.5 au and 4.8 ± 0.7 au, respectively. Because the lens is brighter than the source star by 16 ± 8% in H, with no other blend within one arcsec, it will be possible to estimate its metallicity using subsequent IR spectroscopy with 8–10 m class telescopes. By adding a constraint on the metallicity it will be possible to refine the age of the system.

84

, , , , , , , , , et al

Polarization maps of the Vela C molecular cloud were obtained at 250, 350, and 500 μm during the 2012 flight of the balloon-borne telescope BLASTPol. These measurements are used in conjunction with 850 μm data from Planck to study the submillimeter spectrum of the polarization fraction for this cloud. The spectrum is relatively flat and does not exhibit a pronounced minimum at λ ∼ 350 μm as suggested by previous measurements of other molecular clouds. The shape of the spectrum does not depend strongly on the radiative environment of the dust, as quantified by the column density or the dust temperature obtained from Herschel data. The polarization ratios observed in Vela C are consistent with a model of a porous clumpy molecular cloud being uniformly heated by the interstellar radiation field.

85

, , , , and

We present results of our study of eight dense cores, previously classified as starless, using infrared (3–160 μm) imaging observations with the AKARI telescope and molecular line (HCN and N2H+) mapping observations with the KVN telescope. Combining our results with the archival IR to millimeter continuum data, we examined the starless nature of these eight cores. Two of the eight cores are found to harbor faint protostars having luminosities of ∼0.3–4.4 L. The other six cores are found to remain starless and probably are in a dynamically transitional state. The temperature maps produced using multi-wavelength images show an enhancement of about 3–6 K toward the outer boundary of these cores, suggesting that they are most likely being heated externally by nearby stars and/or interstellar radiation fields. Large virial parameters and an overdominance of red asymmetric line profiles over the cores may indicate that the cores are set into either an expansion or an oscillatory motion, probably due to the external heating. Most of the starless cores show a coreshine effect due to the scattering of light by the micron-sized dust grains. This may imply that the age of the cores is of the order of ∼105 years, which is consistent with the timescale required for the cores to evolve into an oscillatory stage due to external perturbation. Our observational results support the idea that the external feedback from nearby stars and/or interstellar radiation fields may play an important role in the dynamical evolution of the cores.

86

, , , , , , , , , et al

We introduce the Baryon Oscillation Spectroscopic Survey (BOSS) Emission-Line Lens Survey GALaxy-Lyα EmitteR sYstems (BELLS GALLERY) Survey, which is a Hubble Space Telescope program to image a sample of galaxy-scale strong gravitational lens candidate systems with high-redshift Lyα emitters (LAEs) as the background sources. The goal of the BELLS GALLERY Survey is to illuminate dark substructures in galaxy-scale halos by exploiting the small-scale clumpiness of rest-frame far-UV emission in lensed LAEs, and to thereby constrain the slope and normalization of the substructure-mass function. In this paper, we describe in detail the spectroscopic strong-lens selection technique, which is based on methods adopted in the previous Sloan Lens ACS (SLACS) Survey, BELLS, and SLACS for the Masses Survey. We present the BELLS GALLERY sample of the 21 highest-quality galaxy–LAE candidates selected from $\approx 1.4\times {10}^{6}$ galaxy spectra in the BOSS of the Sloan Digital Sky Survey III. These systems consist of massive galaxies at redshifts of approximately 0.5 strongly lensing LAEs at redshifts from 2–3. The compact nature of LAEs makes them an ideal probe of dark substructures, with a substructure-mass sensitivity that is unprecedented in other optical strong-lens samples. The magnification effect from lensing will also reveal the structure of LAEs below 100 pc scales, providing a detailed look at the sites of the most concentrated unobscured star formation in the universe. The source code used for candidate selection is available for download as a part of this release.

87

, , , , , , , , , et al

The relativistic double neutron star binary PSR J0737−3039 shows clear evidence of orbital phase-dependent wind-companion interaction, both in radio and X-rays. In this paper, we present the results of timing analysis of PSR J0737−3039 performed during 2006 and 2011 XMM-Newton Large Programs that collected ∼20,000 X-ray counts from the system. We detected pulsations from PSR J0737−3039A (PSR A) through the most accurate timing measurement obtained by XMM-Newton so far, the spin period error being of 2 × 10−13 s. PSR A's pulse profile in X-rays is very stable despite significant relativistic spin precession that occurred within the time span of observations. This yields a constraint on the misalignment between the spin axis and the orbital momentum axis ${\delta }_{{\rm{A}}}\approx {6.6}_{-5.4}^{+1.3}$ deg, consistent with estimates based on radio data. We confirmed pulsed emission from PSR J0737−3039B (PSR B) in X-rays even after its disappearance in radio. The unusual phenomenology of PSR B's X-ray emission includes orbital pulsed flux and profile variations as well as a loss of pulsar phase coherence on timescales of years. We hypothesize that this is due to the interaction of PSR A's wind with PSR B's magnetosphere and the orbital-dependent penetration of the wind plasma onto PSR B closed field lines. Finally, the analysis of the full XMM-Newton data set provided evidence of orbital flux variability (∼7%) for the first time, involving a bow-shock scenario between PSR A's wind and PSR B's magnetosphere.

88

, , , , , , , and

We have analyzed rotational spectral line emission of OCS, CH3OH, HCOOCH3, and H2CS observed toward the low-mass Class 0 protostellar source IRAS 16293–2422 Source A at a sub-arcsecond resolution (∼0farcs6 × 0farcs5) with ALMA. Significant chemical differentiation is found on a scale of 50 au. The OCS line is found to trace well the infalling–rotating envelope in this source. On the other hand, the distributions of CH3OH and HCOOCH3 are found to be concentrated around the inner part of the infalling–rotating envelope. With a simple ballistic model of the infalling–rotating envelope, the radius of the centrifugal barrier (a half of the centrifugal radius) and the protostellar mass are evaluated from the OCS data to be from 40 to 60 au and from 0.5 to 1.0 M, respectively, assuming the inclination angle of the envelope/disk structure to be 60° (90° for the edge-on configuration). Although the protostellar mass is correlated with the inclination angle, the radius of the centrifugal barrier is not. This is the first indication of the centrifugal barrier of the infalling–rotating envelope in a hot corino source. CH3OH and HCOOCH3 may be liberated from ice mantles by weak accretion shocks around the centrifugal barrier and/or by protostellar heating. The H2CS emission seems to come from the disk component inside the centrifugal barrier in addition to the envelope component. The centrifugal barrier plays a central role not only in the formation of a rotationally supported disk but also in the chemical evolution from the envelope to the protoplanetary disk.

89

, , and

The diffusive propagation of nonrelativistic cosmic ray (CR) protons undergoing energy losses by ionization in a dense homogeneous infinitely extended interstellar molecular cloud (MC) is investigated. The steady-state transport equation for the differential number density of nonrelativistic CR protons is solved with the boundary condition that at the edge of cloud it agrees with the interstellar CR number density. It is shown that giant interstellar MCs with column depths much greater than about $7\cdot {10}^{22}$ cm−2 are an efficient sink of nonrelativistic CRs. At small penetration depths the CRs lose energy by ionizing and heating the molecular gas, whereas at large penetration depths they are collectively dissipated by the streaming instability, which transfers one-half of the energy density of the incoming interstellar nonrelativistic CRs to Alfvénic magnetic field turbulence.

90

and

Brown & Mallik and the corresponding corrigendum Brown et al. presented expressions for non-thermal recombination (NTR) in the collisionally thin- and thick-target regimes, claiming that the process could account for a substantial part of the hard X-ray continuum in solar flares usually attributed entirely to thermal and non-thermal bremsstrahlung (NTB). However, we have found the thick-target expression to become unphysical for low cut-offs in the injected electron energy spectrum. We trace this to an error in the derivation, derive a corrected version that is real-valued and continuous for all photon energies and cut-offs, and show that, for thick targets, Brown et al. overestimated NTR emission at small photon energies. The regime of small cut-offs and large spectral indices involve large (reducing) correction factors but in some other thick-target parameter regimes NTR/NTB can still be of the order of unity. We comment on the importance of these results to flare and microflare modeling and spectral fitting. An empirical fit to our results shows that the peak NTR contribution comprises over half of the hard X-ray signal if $\delta \gtrsim 6{\left(\tfrac{{E}_{0c}}{4\mathrm{keV}}\right)}^{0.4}$.

91

and

Low mass, self-gravitating accretion disks admit quasi-steady, "gravito-turbulent" states in which cooling balances turbulent viscous heating. However, numerical simulations show that gravito-turbulence cannot be sustained beyond dynamical timescales when the cooling rate or corresponding turbulent viscosity is too large. The result is disk fragmentation. We motivate and quantify an interpretation of disk fragmentation as the inability to maintain gravito-turbulence due to formal secondary instabilities driven by: (1) cooling, which reduces pressure support; and/or (2) viscosity, which reduces rotational support. We analyze the axisymmetric gravitational stability of viscous, non-adiabatic accretion disks with internal heating, external irradiation, and cooling in the shearing box approximation. We consider parameterized cooling functions in 2D and 3D disks, as well as radiative diffusion in 3D. We show that generally there is no critical cooling rate/viscosity below which the disk is formally stable, although interesting limits appear for unstable modes with lengthscales on the order of the disk thickness. We apply this new linear theory to protoplanetary disks subject to gravito-turbulence modeled as an effective viscosity, and cooling regulated by dust opacity. We find that viscosity renders the disk beyond ∼60 au dynamically unstable on radial lengthscales a few times the local disk thickness. This is coincident with the empirical condition for disk fragmentation based on a maximum sustainable stress. We suggest turbulent stresses can play an active role in realistic disk fragmentation by removing rotational stabilization against self-gravity, and that the observed transition in behavior from gravito-turbulent to fragmenting may reflect instability of the gravito-turbulent state itself.

92

and

Since the closure of the "solar flare myth" debate in the mid-1990s, a specific narrative of the nature of coronal mass ejections (CMEs) has been widely accepted by the solar physics community. This narrative describes structured magnetic flux ropes at the CME core that drive the surrounding field plasma away from the Sun. This narrative replaced the "traditional" view that CMEs were blast waves driven by solar flares. While the flux rope CME narrative is supported by a vast quantity of measurements made over five decades, it does not adequately describe every observation of what have been termed CME-related phenomena. In this paper we present evidence that some large-scale coronal eruptions, particularly those associated with EIT waves, exhibit characteristics that are more consistent with a blast wave originating from a localized region (such as a flare site) rather than a large-scale structure driven by an intrinsic flux rope. We present detailed examples of CMEs that are suspected blast waves and flux ropes, and show that of our small sample of 22 EIT-wave-related CMEs, 91% involve a blast wave as at least part of the eruption, and 50% are probably blast waves exclusively. We conclude with a description of possible signatures to look for in determining the difference between the two types of CMEs and with a discussion on modeling efforts to explore this possibility.

93

We carry out a 3D magnetohydrodynamic simulation to model the initiation of the coronal mass ejection (CME) on 2006 December 13 in the emerging δ-sunspot active region NOAA 10930. The setup of the simulation is similar to a previous simulation by Fan, but with a significantly widened simulation domain to accommodate the wide CME. The simulation shows that the CME can result from the emergence of a east–west oriented twisted flux rope whose positive, following emerging pole corresponds to the observed positive rotating sunspot emerging against the southern edge of the dominant pre-existing negative sunspot. The erupting flux rope in the simulation accelerates to a terminal speed that exceeds 1500 km s−1 and undergoes a counter-clockwise rotation of nearly 180° such that its front and flanks all exhibit southward directed magnetic fields, explaining the observed southward magnetic field in the magnetic cloud impacting the Earth. With continued driving of flux emergence, the source region coronal magnetic field also shows the reformation of a coronal flux rope underlying the flare current sheet of the erupting flux rope, ready for a second eruption. This may explain the build up for another X-class eruptive flare that occurred the following day from the same region.

94

, , , , , , , and

We introduce a new set of simulations of Milky Way (MW)-sized galaxies using the AMR code ART + hydrodynamics in a Λ cold dark matter cosmogony. The simulation series is called GARROTXA and it follows the formation of a halo/galaxy from z = 60 to z = 0. The final virial mass of the system is ∼7.4 × 1011M. Our results are as follows. (a) Contrary to many previous studies, the circular velocity curve shows no central peak and overall agrees with recent MW observations. (b) Other quantities, such as $M\_\ast $(6 × 1010M) and Rd (2.56 kpc), fall well inside the observational MW range. (c) We measure the disk-to-total ratio kinematically and find that D/T = 0.42. (d) The cold-gas fraction and star formation rate at z = 0, on the other hand, fall short of the values estimated for the MW. As a first scientific exploitation of the simulation series, we study the spatial distribution of hot X-ray luminous gas. We have found that most of this X-ray emitting gas is in a halo-like distribution accounting for an important fraction but not all of the missing baryons. An important amount of hot gas is also present in filaments. In all our models there is not a massive disk-like hot-gas distribution dominating the column density. Our analysis of hot-gas mock observations reveals that the homogeneity assumption leads to an overestimation of the total mass by factors of 3–5 or to an underestimation by factors of 0.7–0.1, depending on the used observational method. Finally, we confirm a clear correlation between the total hot-gas mass and the dark matter halo mass of galactic systems.

95

, , , , , and

Near-infrared imaging polarimetry in the J, H, and Ks bands was carried out for GGD 27 in the dark cloud Lynds 291. Details of an infrared reflection nebula associated with the optical nebulosity GGD 27 and the infrared nebula GGD 27 IRS are presented. Aperture photometry of 1263 point-like sources, detected in all three bands, was used to classify them based on a color–color diagram, and the linear polarization of several hundred sources was determined, with the latter used to map the magnetic field structure around GGD 27. This field, around GGD 27 IRS, appears to be associated with the extended CO outflow of IRAS 18162–2048; however, there are partly distorted or bent components in the field. The Chandrasekhar–Fermi method gives an estimate of the magnetic field strength as ∼90 μG. A region associated with GGD 27 IRS is discovered to have a circular polarization in the range of ∼2%–11% in the Ks band. The circular polarization has an asymmetric positive/negative pattern and extends out to ∼ 120'' or 1.0 pc. The circular and linear polarization patterns are explained as resulting from a combination of dense inner and fainter outer lobes, suggesting episodic outflow.

96

, , , and

Recent observations by the Interface Region Imaging Spectrograph (IRIS) have revealed pockets of hot gas (∼2–8 × 104 K) potentially resulting from magnetic reconnection in the partially ionized lower solar atmosphere (IRIS bombs; IBs). Using joint observations between IRIS and the Chinese New Vacuum Solar Telescope, we have identified 10 IBs. We find that 3 are unambiguously and 3 others are possibly connected to Ellerman bombs (EBs), which show intense brightening of the extended ${{\rm{H}}}_{\alpha }$ wings without leaving an obvious signature in the ${{\rm{H}}}_{\alpha }$ core. These bombs generally reveal the following distinct properties: (1) the O iv 1401.156 Å and 1399.774 Å lines are absent or very weak; (2) the Mn i 2795.640 Å line manifests as an absorption feature superimposed on the greatly enhanced Mg ii k line wing; (3) the Mg ii k and h lines show intense brightening in the wings and no dramatic enhancement in the cores; (4) chromospheric absorption lines such as Ni ii 1393.330 Å and 1335.203 Å are very strong; and (5) the 1700 Å images obtained with the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory reveal intense and compact brightenings. These properties support the formation of these bombs in the photosphere, demonstrating that EBs can be heated much more efficiently than previously thought. We also demonstrate that the Mg ii k and h lines can be used to investigate EBs similarly to ${{\rm{H}}}_{\alpha }$, which opens a promising new window for EB studies. The remaining four IBs obviously have no connection to EBs and they do not have the properties mentioned above, suggesting a higher formation layer, possibly in the chromosphere.

97

We explore a time-dependent energy dissipation of the energetic electrons in the inhomogeneous intergalactic medium (IGM) during the epoch of cosmic reionization. In addition to the atomic processes, we take into account the inverse Compton (IC) scattering of the electrons on the cosmic microwave background photons, which is the dominant channel of energy loss for electrons with energies above a few MeV. We show that: (1) the effect on the IGM has both local (atomic processes) and non-local (IC radiation) components; (2) the energy distribution between hydrogen and helium ionizations depends on the initial energy of an electron; (3) the local baryon overdensity significantly affects the fractions of energy distributed in each channel; and (4) the relativistic effect of the atomic cross-section becomes important during the epoch of cosmic reionization. We release our code as open source for further modification by the community.

98

, , and

The calculation of line widths constitutes theoretical and computational challenges in the calculation of opacities of hot, dense plasmas. Opacity models use line broadening approximations that are untested at stellar interior conditions. Moreover, calculations of atomic spectra of the Sun indicate a large discrepancy in the K-shell line widths between several atomic codes and the Opacity-Project (OP). In this work, the atomic code STAR is used to study the sensitivity of solar opacities to line broadening. Variations in the solar opacity profile due to an increase of the Stark widths resulting from discrepancies with OP, are compared, in light of the solar opacity problem, with the required opacity variations of the present day Sun, as imposed by helioseismic and neutrino observations. The resulting variation profile is much larger than the discrepancy between different atomic codes, agrees qualitatively with the missing opacity profile, recovers about half of the missing opacity nearby the convection boundary, and has a little effect in the internal regions. Since it is hard to estimate quantitatively the uncertainty in the Stark widths, we show that an increase of all line widths by a factor of about ∼100 recovers quantitatively the missing opacity. These results emphasize the possibility that photoexcitation processes are not modeled properly, and more specifically, highlight the need for a better theoretical characterization of the line broadening phenomena at stellar interior conditions, and of the uncertainty due to the way it is implemented by atomic codes.

99

, , and

Large chemical diversity was found in the gas clumps associated with the massive star cluster-forming G33.92+0.11 region with sub-arcsecond angular resolution (0farcs6–0farcs8) observations with ALMA. The most prominent gas clumps are associated with the dust emission peaks A1, A2, and A5. The close correlation between CH3OH and OCS in the emission distributions strongly suggests that these species share a common origin of hot core grain mantle evaporation. The latest generation of star clusters are forming in the A5 clump, as indicated by multiple SiO outflows and its rich hot core chemistry. We also found a narrow SiO emission associated with the outflows, which may trace a cooled component of the outflows. Part of the chemical complexity may have resulted from the accreting gas from the ambient clouds, especially in the northern part of A1 and the southern part of A2. The chemical diversity found in this region is believed to mainly result from the different chemical evolutionary timescales of massive star formation. In particular, the abundance ratio between CH3OH and CH3CN may be a good chemical clock for the early phase of star formation.

100

and

We investigate circumstellar and explosion properties of Type Ibn supernovae (SNe) by analyzing their bolometric light curves (LCs). Bolometric LCs of SNe Ibn generally have a large contrast between peak luminosity and late-phase luminosity, which is much larger than those of 56Ni-powered SNe. Thus, most of them are likely powered by the interaction between SN ejecta and dense circumstellar media. In addition, SNe Ibn decline much faster than SNe IIn, and this indicates that the interaction in SNe Ibn ceases earlier than in SNe IIn. Thus, we argue that SN Ibn progenitors experience high mass-loss rates in a short period just before explosion, while SN IIn progenitors have high mass-loss rates sustained for a long time. Furthermore, we show that rise time and peak luminosity of SNe Ibn and IIn are similar and thus, they have similar explosion properties and circumstellar density. The similar circumstellar density in the two kinds of SNe may indicate that mass-loss rates of SN Ibn progenitors are generally higher than those of Type IIn as the wind velocities inferred from narrow spectral components are generally higher in SNe Ibn. We also show that ${}^{56}\mathrm{Ni}$ mass and explosion energy of SNe Ibn may be smaller than those of other stripped-envelope SNe, probably because they tend to suffer large fallback or some of them may not even be terminal stellar explosions.

101

, , , , , , , , , et al

The ultraviolet (UV) spectral energy distributions (SEDs) of low-mass (K- and M-type) stars play a critical role in the heating and chemistry of exoplanet atmospheres, but are not observationally well-constrained. Direct observations of the intrinsic flux of the Lyα line (the dominant source of UV photons from low-mass stars) are challenging, as interstellar H i absorbs the entire line core for even the closest stars. To address the existing gap in empirical constraints on the UV flux of K and M dwarfs, the MUSCLES Hubble Space Telescope Treasury Survey has obtained UV observations of 11 nearby M and K dwarfs hosting exoplanets. This paper presents the Lyα and extreme-UV spectral reconstructions for the MUSCLES targets. Most targets are optically inactive, but all exhibit significant UV activity. We use a Markov Chain Monte Carlo technique to correct the observed Lyα profiles for interstellar absorption, and we employ empirical relations to compute the extreme-UV SED from the intrinsic Lyα flux in ∼100 Å bins from 100–1170 Å. The reconstructed Lyα profiles have 300 km s−1 broad cores, while >1% of the total intrinsic Lyα flux is measured in extended wings between 300 and 1200 km s−1. The Lyα surface flux positively correlates with the Mg ii surface flux and negatively correlates with the stellar rotation period. Stars with larger Lyα surface flux also tend to have larger surface flux in ions formed at higher temperatures, but these correlations remain statistically insignificant in our sample of 11 stars. We also present H i column density measurements for 10 new sightlines through the local interstellar medium.

102

, , , , , , , , , et al

We present a catalog of panchromatic spectral energy distributions (SEDs) for 7 M and 4 K dwarf stars that span X-ray to infrared wavelengths (5 Å –5.5 μm). These SEDs are composites of Chandra or XMM-Newton data from 5–∼50 Å, a plasma emission model from ∼50–100 Å, broadband empirical estimates from 100–1170 Å, Hubble Space Telescope data from 1170–5700 Å, including a reconstruction of stellar Lyα emission at 1215.67 Å, and a PHOENIX model spectrum from 5700–55000 Å. Using these SEDs, we computed the photodissociation rates of several molecules prevalent in planetary atmospheres when exposed to each star's unattenuated flux ("unshielded" photodissociation rates) and found that rates differ among stars by over an order of magnitude for most molecules. In general, the same spectral regions drive unshielded photodissociations both for the minimally and maximally FUV active stars. However, for O3 visible flux drives dissociation for the M stars whereas near-UV flux drives dissociation for the K stars. We also searched for an far-UV continuum in the assembled SEDs and detected it in 5/11 stars, where it contributes around 10% of the flux in the range spanned by the continuum bands. An ultraviolet continuum shape is resolved for the star $\epsilon $ Eri that shows an edge likely attributable to Si ii recombination. The 11 SEDs presented in this paper, available online through the Mikulski Archive for Space Telescopes, will be valuable for vetting stellar upper-atmosphere emission models and simulating photochemistry in exoplanet atmospheres.

103

, , , , , and

Extensive experimental studies show that all major rock-forming elements (e.g., Si, Mg, Fe, Ca, Al, Na, K) dissolve in steam to a greater or lesser extent. We use these results to compute chemical equilibrium abundances of rocky-element-bearing gases in steam atmospheres equilibrated with silicate magma oceans. Rocky elements partition into steam atmospheres as volatile hydroxide gases (e.g., Si(OH)4, Mg(OH)2, Fe(OH)2, Ni(OH)2, Al(OH)3, Ca(OH)2, NaOH, KOH) and via reaction with HF and HCl as volatile halide gases (e.g., NaCl, KCl, CaFOH, CaClOH, FAl(OH)2) in much larger amounts than expected from their vapor pressures over volatile-free solid or molten rock at high temperatures expected for steam atmospheres on the early Earth and hot rocky exoplanets. We quantitatively compute the extent of fractional vaporization by defining gas/magma distribution coefficients and show that Earth's subsolar Si/Mg ratio may be due to loss of a primordial steam atmosphere. We conclude that hot rocky exoplanets that are undergoing or have undergone escape of steam-bearing atmospheres may experience fractional vaporization and loss of Si, Mg, Fe, Ni, Al, Ca, Na, and K. This loss can modify their bulk composition, density, heat balance, and interior structure.

104

, , , and

The Ophiuchus stellar stream is peculiar: (1) its length is short given the age of its constituent stars, and (2) several probable member stars have dispersions in sky position and velocity that far exceed those seen within the stream. The stream's proximity to the Galactic center suggests that its dynamical history is significantly influenced by the Galactic bar. We explore this hypothesis with models of stream formation along orbits consistent with Ophiuchus' properties in a Milky Way potential model that includes a rotating bar. In all choices for the rotation parameters of the bar, orbits fit to the stream are strongly chaotic. Mock streams generated along these orbits qualitatively match the observed properties of the stream: because of chaos, stars stripped early generally form low-density, high-dispersion "fans" leaving only the most recently disrupted material detectable as a strong over-density. Our models predict that there should be a significant amount of low-surface-brightness tidal debris around the stream with a complex phase-space morphology. The existence of or lack of these features could provide interesting constraints on the Milky Way bar and would rule out formation scenarios for the stream. This is the first time that chaos has been used to explain the properties of a stellar stream and is the first demonstration of the dynamical importance of chaos in the Galactic halo. The existence of long, thin streams around the Milky Way, presumably formed along non- or weakly chaotic orbits, may represent only a subset of the total population of disrupted satellites.

105

, , and

We examine the proposal that the dispersion measures (DMs) and Faraday rotation measures (RMs) of extragalactic linearly polarized fast radio bursts (FRBs) can be used to probe the intergalactic magnetic field (IGMF) in filaments of galaxies. The DM through the cosmic web is dominated by contributions from the warm-hot intergalactic medium (WHIM) in filaments and from the gas in voids. On the other hand, RM is induced mostly by the hot medium in galaxy clusters, and only a fraction of it is produced in the WHIM. We show that if one excludes FRBs whose sightlines pass through galaxy clusters, the line of sight (LOS) strength of the IGMF in filaments, ${B}_{| | }$, is approximately $C(\langle 1+z\rangle /{f}_{\mathrm{DM}})(\mathrm{RM}/\mathrm{DM})$, where C is a known constant. Here, the redshift of the FRB is not required to be known; fDM is the fraction of total DM due to the WHIM, while $\langle 1+z\rangle $ is the redshift of interevening gas weighted by the WHIM gas density, both of which can be evaluated for a given cosmology model solely from the DM of an FRB. Using data on structure formation simulations and a model IGMF, we show that $C(\langle 1+z\rangle /{f}_{\mathrm{DM}})(\mathrm{RM}/\mathrm{DM})$ closely reproduces the density-weighted LOS strength of the IGMF in filaments of the large-scale structure.

106

, , , , and

Recent studies have shown that outflows in at least some broad absorption line (BAL) quasars are extended well beyond the putative dusty torus. Such outflows should be detectable in obscured quasars. We present four WISE selected infrared red quasars with very strong and peculiar ultraviolet Fe ii emission lines: strong UV Fe ii UV arising from transitions to ground/low excitation levels, and very weak Fe ii at wavelengths longer than 2800 Å. The spectra of these quasars display strong resonant emission lines, such as C iv, Al iii and Mg ii but sometimes, a lack of non-resonant lines such as C iii], S iii and He ii. We interpret the Fe ii lines as resonantly scattered light from the extended outflows that are viewed nearly edge-on, so that the accretion disk and broad line region are obscured by the dusty torus, while the extended outflows are not. We show that dust free gas exposed to strong radiation longward of 912 Å produces Fe ii emission very similar to that observed. The gas is too cool to collisionally excite Fe ii lines, accounting for the lack of optical emission. The spectral energy distribution from the UV to the mid-infrared can be modeled as emission from a clumpy dusty torus, with UV emission being reflected/scattered light either by the dusty torus or the outflow. Within this scenario, we estimate a minimum covering factor of the outflows from a few to 20% for the Fe ii scattering region, suggesting that Fe ii BAL quasars are at a special stage of quasar evolution.

107

, , , , , , , , , et al

We present the results from sensitive, multi-epoch NuSTAR observations of the late-type star-forming galaxy M83 (d = 4.6 Mpc). This is the first investigation to spatially resolve the hard ($E\gt 10$ keV) X-ray emission of this galaxy. The nuclear region and ∼20 off-nuclear point sources, including a previously discovered ultraluminous X-ray source, are detected in our NuSTAR observations. The X-ray hardnesses and luminosities of the majority of the point sources are consistent with hard X-ray sources resolved in the starburst galaxy NGC 253. We infer that the hard X-ray emission is most likely dominated by intermediate accretion state black hole binaries and neutron star low-mass X-ray binaries (Z-sources). We construct the X-ray binary luminosity function (XLF) in the NuSTAR band for an extragalactic environment for the first time. The M83 XLF has a steeper XLF than the X-ray binary XLF in NGC 253, which is consistent with previous measurements by Chandra at softer X-ray energies. The NuSTAR integrated galaxy spectrum of M83 drops quickly above 10 keV, which is also seen in the starburst galaxies NGC 253, NGC 3310, and NGC 3256. The NuSTAR observations constrain any active galactic nucleus (AGN) to be either highly obscured or to have an extremely low luminosity of ≲1038 erg s−1 (10–30 keV), implying that it is emitting at a very low Eddington ratio. An X-ray point source that is consistent with the location of the nuclear star cluster with an X-ray luminosity of a few times 1038 erg s−1 may be a low-luminosity AGN but is more consistent with being an X-ray binary.

108

, , and

Electromagnetic radiation from blazar jets often displays strong variability, extending from radio to γ-ray frequencies. In a few cases, this variability has been characterized using Fourier time lags, such as those detected in the X-rays from Mrk 421 using BeppoSAX. The lack of a theoretical framework to interpret the data has motivated us to develop a new model for the formation of the X-ray spectrum and the time lags in blazar jets based on a transport equation including terms describing stochastic Fermi acceleration, synchrotron losses, shock acceleration, adiabatic expansion, and spatial diffusion. We derive the exact solution for the Fourier transform of the electron distribution and use it to compute the Fourier transform of the synchrotron radiation spectrum and the associated X-ray time lags. The same theoretical framework is also used to compute the peak flare X-ray spectrum, assuming that a steady-state electron distribution is achieved during the peak of the flare. The model parameters are constrained by comparing the theoretical predictions with the observational data for Mrk 421. The resulting integrated model yields, for the first time, a complete first-principles physical explanation for both the formation of the observed time lags and the shape of the peak flare X-ray spectrum. It also yields direct estimates of the strength of the shock and the stochastic magnetohydrodynamical wave acceleration components in the Mrk 421 jet.

109

and

Motivated by the ongoing Spitzer observational campaign, and the forthcoming K2 one, we revisit, working in an heliocentric reference frame, the geometrical foundation for the analysis of the microlensing parallax, as measured with the simultaneous observation of the same microlensing event from two observers with relative distance of order au. For the case of observers at rest, we discuss the well-known fourfold microlensing parallax degeneracy and determine an equation for the degenerate directions of the lens trajectory. For the case of observers in motion, we write down an extension of the Gould relationship between the microlensing parallax and the observable quantities and, at the same time, highlight the functional dependence of these same quantities from the timescale of the underlying microlensing event. Furthermore, through a series of examples, we show the importance of taking into account themotion of the observers to correctly recover the parameters of the underlying microlensing event. In particular, we discuss the cases of the amplitude of the microlensing parallax and that of the difference of the timescales between the observed microlensing events, which are key to understand the breaking of the microlensing parallax degeneracy. Finally, we consider the case of the simultaneous observation of the same microlensing event from the ground and two satellites, a case relevant for the expected joint K2 and Spitzer observational programs in 2016.

110

, , , , , , , , and

We present the H i content of galaxies in nearby groups and clusters as measured by the 70% complete Arecibo Legacy Fast-ALFA (ALFALFA) survey, including constraints from ALFALFA detection limits. Our sample includes 22 systems at distances between 70 and 160 Mpc over the mass range $12.5\lt \mathrm{log}\;M/{M}_{\odot }\lt 15.0$, for a total of 1986 late-type galaxies. We find that late-type galaxies in the centers of groups lack H i at fixed stellar mass relative to the regions surrounding them. Larger groups show evidence of a stronger dependence of H i properties on environment, despite a similar dependence of color on environment at fixed stellar mass. We compare several environment variables to determine which is the best predictor of galaxy properties; group-centric distance r and $r/{R}_{200}$ are similarly effective predictors, while local density is slightly more effective and group size and halo mass are slightly less effective. While both central and satellite galaxies in the blue cloud exhibit a significant dependence of H i content on local density, only centrals show a strong dependence on stellar mass, and only satellites show a strong dependence on halo mass. Finally, we see evidence that H i is deficient for blue cloud galaxies in denser environments even when both stellar mass and color are fixed. This is consistent with a picture where H i is removed or destroyed, followed by reddening within the blue cloud. Our results support the existence of pre-processing in isolated groups, along with an additional rapid mechanism for gas removal within larger groups and clusters, perhaps ram-pressure stripping.

111

, , and

We report new properties of the 11 and 12.7 μm emission complexes of polycyclic aromatic hydrocarbons (PAHs) by applying a Gaussian-based decomposition technique. Using high-resolution Spitzer Space Telescope data, we study in detail the spectral and spatial characteristics of the 11 and 12.7 μm emission bands in maps of reflection nebulae NGC 7023 and NGC 2023 (north and south) and the star-forming region M17. Profile variations are observed in both the 11 and 12.7 μm emission bands. We identify a neutral contribution to the traditional 11.0 μm PAH band and a cationic contribution to the traditional 11.2 μm band, the latter of which affects the PAH class of the 11.2 μm emission in our sample. The peak variations of the 12.7 μm complex are explained by the competition between two underlying blended components. The spatial distributions of these components link them to cations and neutrals. We conclude that the 12.7 μm emission originates in both neutral and cationic PAHs, lending support to the use of the 12.7/11.2 intensity ratio as a charge proxy.

112

, , and

A considerable fraction of the massive quiescent galaxies at z ≈ 2, which are known to be much more compact than galaxies of comparable mass today, appear to have a disk. How well can we measure the bulge and disk properties of these systems? We simulate two-component model galaxies in order to systematically quantify the effects of non-homology in structures and the methods employed. We employ empirical scaling relations to produce realistic-looking local galaxies with a uniform and wide range of bulge-to-total ratios (B/T), and then rescale them to mimic the signal-to-noise ratios and sizes of observed galaxies at z ≈ 2. This provides the most complete set of simulations to date for which we can examine the robustness of two-component decomposition of compact disk galaxies at different B/T. We confirm that the size of these massive, compact galaxies can be measured robustly using a single Sérsic fit. We can measure B/T accurately without imposing any constraints on the light profile shape of the bulge, but, due to the small angular sizes of bulges at high redshift, their detailed properties can only be recovered for galaxies with B/T ≳ 0.2. The disk component, by contrast, can be measured with little difficulty.

113

and

The observed structure function (SF) of rotation measure (RM) varies as a broken power-law function of angular scales. The systematic shallowness of its spectral slope is inconsistent with the standard Kolmogorov scaling. This motivates us to examine the statistical analysis on RM fluctuations. The correlations of RM constructed by Lazarian & Pogosyan are demonstrated to be adequate in explaining the observed features of RM SFs through a direct comparison between the theoretically obtained and observationally measured SF results. By segregating the density and magnetic field fluctuations and adopting arbitrary indices for their respective power spectra, we find that when the SFs of RM and emission measure have a similar form over the same range of angular scales, the statistics of the RM fluctuations reflect the properties of density fluctuations. RM SFs can be used to evaluate the mean magnetic field along the line of sight, but cannot serve as an informative source on the properties of turbulent magnetic field in the interstellar medium. We identify the spectral break of RM SFs as the inner scale of a shallow spectrum of electron density fluctuations, which characterizes the typical size of discrete electron density structures in the observed region.

114

and

We explore the mean and fluctuating redshifted 21 cm signal in numerical simulations from the Cosmic Reionization On Computers project. We find that the mean signal varies between about ±25 mK. Most significantly, we find that the negative pre-reionization dip at z ∼ 10–15 only extends to $\langle {\rm{\Delta }}{T}_{B}\rangle \sim -25\;{\rm{mK}}$, requiring substantially higher sensitivity from global signal experiments that operate in this redshift range (EDGES-II, LEDA, SCI-HI, and DARE) than has often been assumed previously. We also explore the role of dense substructure (filaments and embedded galaxies) in the formation of the 21 cm power spectrum. We find that by neglecting the semi-neutral substructure inside ionized bubbles, the power spectrum can be misestimated by 25%–50% at scales k ∼ 0.1–1h Mpc−1. This scale range is of particular interest, because the upcoming 21 cm experiments (Murchison Widefield Array, Precision Array for Probing the Epoch of Reionization, Hydrogen Epoch of Reionization Array) are expected to be most sensitive within it.

115

, , , , , , , , , et al

We present the results and methodology of a search for neutrinos produced in the decay of charged pions created in interactions between protons and gamma-rays during the prompt emission of 807 gamma-ray bursts (GRBs) over the entire sky. This three-year search is the first in IceCube for shower-like Cherenkov light patterns from electron, muon, and tau neutrinos correlated with GRBs. We detect five low-significance events correlated with five GRBs. These events are consistent with the background expectation from atmospheric muons and neutrinos. The results of this search in combination with those of IceCube's four years of searches for track-like Cherenkov light patterns from muon neutrinos correlated with Northern-Hemisphere GRBs produce limits that tightly constrain current models of neutrino and ultra high energy cosmic ray production in GRB fireballs.

116

and

We update the method of the Holmberg & Flynn study, including an updated model of the Milky Way's interstellar gas, radial velocities, an updated reddening map, and a careful statistical analysis, to bound the allowed surface density and scale height of a dark disk. We pay careful attention to the self-consistency of the model, including the gravitational influence of the dark disk on other disk components, and to the net velocity of the tracer stars. We find that the data set exhibits a non-zero bulk velocity in the vertical direction as well as a displacement from the expected location at the Galactic midplane. If not properly accounted for, these features would bias the bound toward low dark disk mass. We therefore perform our analysis two ways. In the first, using the traditional method, we subtract the mean velocity and displacement from the tracers' phase space distributions. In the second method, we perform a non-equilibrium version of the HF method to derive a bound on the dark disk parameters for an oscillating tracer distribution. Despite updates in the mass model and reddening map, the traditional method results remain consistent with those of HF2000. The second, non-equilibrium technique, however, allows a surface density as large as $14\;{M}_{\odot }\;{{\rm{pc}}}^{-2}$ (and as small as $0\;{M}_{\odot }\;{{\rm{pc}}}^{-2}$), demonstrating much weaker constraints. For both techniques, the bound on surface density is weaker for larger scale height. In future analyses of Gaia data it will be important to verify whether the tracer populations are in equilibrium.

117

A new class of high-contrast image analysis algorithms that empirically fit and subtract systematic noise has lead to recent discoveries of faint exoplanet/substellar companions and scattered light images of circumstellar disks. These methods are extremely efficient at enhancing the detectability of a faint astrophysical signal, but they generally create systematic biases in their observed properties. This paper provides a general solution for this outstanding problem. We present an analytical derivation of a linear expansion that captures the impact of astrophysical over-subtraction or self-subtraction in current image analysis techniques. We examine the general case for which the reference images of the astrophysical scene move azimuthally and/or radially across the field of view as a result of the observation strategy. Our new method is based on perturbing the covariance matrix underlying any least-squares speckles problem, and propagating this perturbation through the data analysis algorithm. Most of the work in this paper is presented in the Principal Component Analysis framework, but it can be easily generalized to methods relying on the linear combination of images (instead of eigenmodes). Based on this linear expansion, which is obtained in the most general case, we then demonstrate practical applications of this new algorithm. We first consider the spectral extraction of faint point sources in IFS data and illustrate, using public Gemini Planet Imager commissioning data, that our novel perturbation-based Forward Modeling, which we named Karhunen Loeve Image Processing (KLIP-FM), can indeed alleviate algorithmic biases. We then apply KLIP-FM to the detection of point sources and show how it decreases the rate of false negatives while keeping the rate of false positives unchanged when compared to classical KLIP. This can potentially have important consequences on the design of follow-up strategies of ongoing direct imaging surveys.

118

The kinetic Sunyaev–Zel'dovich (kSZ) effect results from Thomson scattering by coherent flows in the reionized intergalactic medium. We present new results based on ray-tracing an 8 Gpc/h realization of reionization with resolution elements 2 Mpc/h (subtending $\sim 1$' at z = 6) on a side to create a full-sky kSZ map. The realization includes, self-consistently, the effects of reionization on scales corresponding to multipoles $10\lesssim {\ell }\lesssim 5000$. We separate the kSZ map into Doppler (${\boldsymbol{v}}$), Ostriker–Vishniac ($\delta {\boldsymbol{v}}$), patchy ($x{\boldsymbol{v}}$), and third-order ($x\delta {\boldsymbol{v}}$) components, and compute explicitly all the auto- and cross-correlations (e.g., $\langle {\boldsymbol{vv}}\rangle $, $\langle \delta {\boldsymbol{v}}x{\boldsymbol{v}}\rangle $, etc.) that contribute to the total power. We find a complex and nonmonotonic dependence on the duration of reionization at ${\ell }\sim 300$ and evidence for a non-negligible (10%–30%) contribution from connected four-point correlations, $\langle x{\boldsymbol{v}}x{\boldsymbol{v}}{\rangle }_{c}$, usually neglected in analytical models. We also investigate the cross-correlation of linear matter and large-scale kSZ temperature fluctuations, focusing on (1) cross-power spectra with biased tracers of the matter density and (2) cold spots from infall onto large, rare H ii regions centered on peaks in the matter distribution at redshifts $z\gt 10$ that are a generic non-Gaussian feature of patchy reionization. Finally, we show that the reionization history can be reconstructed at 5σ–10σ significance by correlating full-sky 21 cm maps stacked in bins with ${\rm{\Delta }}\nu \;=\;10\;{\rm{MHz}}$ with existing cosmic microwave background (CMB) temperature maps at ${\ell }\lt 500$, raising the prospects for probing reionization by correlating CMB and LSS measurements. The resulting kSZ maps have been made publicly available at www.cita.utoronto.ca/~malvarez/research/ksz-data/.

119

, , , , , and

We present coupled stellar evolution (SE) and 3D radiation-hydrodynamic (RHD) simulations of the evolution of primordial protostars, their immediate environment, and the dynamic accretion history under the influence of stellar ionizing and dissociating UV feedback. Our coupled SE RHD calculations result in a wide diversity of final stellar masses covering 10 ${M}_{\odot }$ ≲ M* ≲ 103${M}_{\odot }$. The formation of very massive (≳250 ${M}_{\odot }$) stars is possible under weak UV feedback, whereas ordinary massive (a few ×10 ${M}_{\odot }$) stars form when UV feedback can efficiently halt the accretion. This may explain the peculiar abundance pattern of a Galactic metal-poor star recently reported by Aoki et al., possibly the observational signature of very massive precursor primordial stars. Weak UV feedback occurs in cases of variable accretion, in particular when repeated short accretion bursts temporarily exceed 0.01 ${M}_{\odot }\;{{\rm{yr}}}^{-1}$, causing the protostar to inflate. In the bloated state, the protostar has low surface temperature and UV feedback is suppressed until the star eventually contracts, on a thermal adjustment timescale, to create an H ii region. If the delay time between successive accretion bursts is sufficiently short, the protostar remains bloated for extended periods, initiating at most only short periods of UV feedback. Disk fragmentation does not necessarily reduce the final stellar mass. Quite the contrary, we find that disk fragmentation enhances episodic accretion as many fragments migrate inward and are accreted onto the star, thus allowing continued stellar mass growth under conditions of intermittent UV feedback. This trend becomes more prominent as we improve the resolution of our simulations. We argue that simulations with significantly higher resolution than reported previously are needed to derive accurate gas mass accretion rates onto primordial protostars.

120

and

We derive horizontal fluid motions on the solar surface over large areas covering the quiet-Sun magnetic network from local correlation tracking of convective granules imaged in continuum intensity and Doppler velocity by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. From these we calculate the horizontal divergence, the vertical component of vorticity, and the kinetic helicity of fluid motions. We study the correlations between fluid divergence and vorticity, and between vorticity (kinetic helicity) and the magnetic field. We find that the vorticity (kinetic helicity) around small-scale fields exhibits a hemispherical pattern (in sign) similar to that followed by the magnetic helicity of large-scale active regions (containing sunspots). We identify this pattern to be a result of the Coriolis force acting on supergranular-scale flows (both the outflows and inflows), consistent with earlier studies using local helioseismology. Furthermore, we show that the magnetic fields cause transfer of vorticity from supergranular inflow regions to outflow regions, and that they tend to suppress the vortical motions around them when magnetic flux densities exceed about 300 G (from HMI). We also show that such an action of the magnetic fields leads to marked changes in the correlations between fluid divergence and vorticity. These results are speculated to be of importance to local dynamo action (if present) and to the dynamical evolution of magnetic helicity at the small-scale.

121

, , , , , , , , , et al

We present new H (1.5–1.8 μm) photometric and K1 (1.9–2.2 μm) spectroscopic observations of the young exoplanet HD 95086 b obtained with the Gemini Planet Imager. The H-band magnitude has been significantly improved relative to previous measurements, whereas the low-resolution K1 ($\lambda /\delta \lambda \approx 66$) spectrum is featureless within the measurement uncertainties and presents a monotonically increasing pseudo-continuum consistent with a cloudy atmosphere. By combining these new measurements with literature $L^{\prime} $ photometry, we compare the spectral energy distribution (SED) of the planet to other young planetary-mass companions, field brown dwarfs, and to the predictions of grids of model atmospheres. HD 95086 b is over a magnitude redder in ${K}_{1}-L^{\prime} $ color than 2MASS J12073346–3932539 b and HR 8799 c and d, despite having a similar $L^{\prime} $ magnitude. Considering only the near-infrared measurements, HD 95086 b is most analogous to the brown dwarfs 2MASS J2244316+204343 and 2MASS J21481633+4003594, both of which are thought to have dusty atmospheres. Morphologically, the SED of HD 95086 b is best fit by low temperature (${T}_{{\rm{eff}}}$ = 800–1300 K), low surface gravity spectra from models which simulate high photospheric dust content. This range of effective temperatures is consistent with field L/T transition objects, but the spectral type of HD 95086 b is poorly constrained between early L and late T due to its unusual position the color–magnitude diagram, demonstrating the difficulty in spectral typing young, low surface gravity substellar objects. As one of the reddest such objects, HD 95086 b represents an important empirical benchmark against which our current understanding of the atmospheric properties of young extrasolar planets can be tested.

122

, , , and

We have performed a spectral decomposition to search for recoiling supermassive black holes (rSMBHs) in Sloan Digital Sky Survey (SDSS) quasi-stellar objects (QSOs) with z < 0.25. Out of 1271 QSOs, we have identified 26 rSMBH candidates that are recoiling toward us. The projected recoil velocities range from −76 to −307 km s−1 with a mean of −149 ± 58 km s−1. Most of the rSMBH candidates are hosted by gas-rich luminous infrared galaxies (LIRGs)/ultra-luminous infrared galaxies (ULIRGs), but only 23% of them show signs of tidal features, which suggests that a majority of them are advanced mergers. We find that the black hole masses MBH of the rSMBH candidates are on average ∼5 times smaller than those of their stationary counterparts and cause a scatter in the ${M}_{\mathrm{BH}}-{\sigma }_{\ast }$ relation. The Eddington ratios of all of the rSMBH candidates are larger than 0.1, with a mean of 0.52 ± 0.27, suggesting that they are actively accreting mass. Velocity shifts in high-excitation coronal lines suggest that the rSMBH candidates are recoiling with an average velocity of about −265 km s−1. The electron density in the narrow line region of the H ii rSMBH candidates is about 1/10 of that in active galactic nucleus (AGN) rSMBH candidates, probably because the AGN in the former was more spatially offset than that in the latter. The estimated spatial offsets between the rSMBH candidate and the center of the host galaxy range from 0farcs21 to 1farcs97 and need to be confirmed spatially with high-resolution adaptive optics imaging observations.

123

, , and

In low-collisionality plasmas, velocity-space instabilities are a key mechanism providing an effective collisionality for the plasma. We use particle-in-cell (PIC) simulations to study the interplay between electron- and ion-scale velocity-space instabilities and their effect on electron pressure anisotropy, viscous heating, and thermal conduction. The adiabatic invariance of the magnetic moment in low-collisionality plasmas leads to pressure anisotropy, ${\rm{\Delta }}{p}_{j}\equiv {p}_{\perp ,j}-{p}_{\parallel ,j}\gt 0$, if the magnetic field ${\boldsymbol{B}}$ is amplified (${p}_{\perp ,j}$ and ${p}_{\parallel ,j}$ denote the pressure of species j (electron, ion) perpendicular and parallel to ${\boldsymbol{B}}$). If the resulting anisotropy is large enough, it can in turn trigger small-scale plasma instabilities. Our PIC simulations explore the nonlinear regime of the mirror, IC, and electron whistler instabilities, through continuous amplification of the magnetic field $| {\boldsymbol{B}}| $ by an imposed shear in the plasma. In the regime $1\lesssim {\beta }_{j}\lesssim 20$ (${\beta }_{j}\equiv 8\pi {p}_{j}/| {\boldsymbol{B}}{| }^{2}$), the saturated electron pressure anisotropy, ${\rm{\Delta }}{p}_{{\rm{e}}}/{p}_{\parallel ,{\rm{e}}}$, is determined mainly by the (electron-lengthscale) whistler marginal stability condition, with a modest factor of ∼1.5–2 decrease due to the trapping of electrons into ion-lengthscale mirrors. We explicitly calculate the mean free path of the electrons and ions along the mean magnetic field and provide a simple physical prescription for the mean free path and thermal conductivity in low-collisionality βj ≳ 1 plasmas. Our results imply that velocity-space instabilities likely decrease the thermal conductivity of plasma in the outer parts of massive, hot, galaxy clusters. We also discuss the implications of our results for electron heating and thermal conduction in low-collisionality accretion flows onto black holes, including Sgr A* in the Galactic Center.

124

, , , , , and

In this work, we present galaxy stellar and baryonic (stars plus cold gas) mass functions (SMF and BMF) and their halo mass dependence for two volume-limited data sets. The first, RESOLVE-B, coincides with the Stripe 82 footprint and is extremely complete down to baryonic mass Mbary ∼ 109.1M, probing the gas-rich dwarf regime below Mbary ∼ 1010M. The second, ECO, covers a ∼40× larger volume (containing RESOLVE-A) and is complete to Mbary ∼ 109.4M. To construct the SMF and BMF we implement a new "cross-bin sampling" technique with Monte Carlo sampling from the full likelihood distributions of stellar or baryonic mass. Our SMFs exhibit the "plateau" feature starting below Mstar ∼ 1010M that has been described in prior work. However, the BMF fills in this feature and rises as a straight power law below ∼1010M, as gas-dominated galaxies become the majority of the population. Nonetheless, the low-mass slope of the BMF is not as steep as that of the theoretical dark matter halo MF. Moreover, we assign group halo masses by abundance matching, finding that the SMF and BMF, separated into four physically motivated halo mass regimes, reveal complex structure underlying the simple shape of the overall MFs. In particular, the satellite MFs are depressed below the central galaxy MF "humps" in groups with mass <1013.5M yet rise steeply in clusters. Our results suggest that satellite destruction and stripping are active from the point of nascent group formation. We show that the key role of groups in shaping MFs enables reconstruction of a given survey's SMF or BMF based on its group halo mass distribution.

125

, , , , and

Using data from the Green Bank Telescope, we analyze the radio continuum (free–free) and radio recombination line (RRL) emission of the compact H ii region NGC 7538 (Sharpless 158). We detect extended radio continuum and hydrogen RRL emission beyond the photodissociation region (PDR) toward the north and east, but a sharp decrease in emission toward the south and west. This indicates that a non-uniform PDR morphology is affecting the amount of radiation "leaking" through the PDR. The strongest carbon RRL emission is found in the western PDR that appears to be dense. We compute a leaking fraction fR = 15 ± 5% of the radio continuum emission measured in the plane of the sky which represents a lower limit when accounting for the three-dimensional geometry of the region. We detect an average ${}^{4}{{\rm{He}}}^{+}/{{\rm{H}}}^{+}$ abundance ratio by number of 0.088 ± 0.003 inside the H ii region and a decrease in this ratio with increasing distance from the region beyond the PDR. Using Herschel Space Observatory data, we show that small dust temperature enhancements to the north and east of NGC 7538 coincide with extended radio emission, but that the dust temperature enhancements are mostly contained within a second PDR to the east. Unlike the giant H ii region W43, the radiation leaking from NGC 7538 seems to only affect the local ambient medium. This suggests that giant H ii regions may have a large effect in maintaining the ionization of the interstellar medium.

126

, , and

We present the analysis of time-variable Doppler-shifted absorption features in far-UV spectra of the unusual 49 Ceti debris disk. This nearly edge-on disk is one of the brightest known and is one of the very few containing detectable amounts of circumstellar (CS) gas as well as dust. In our two visits of Hubble Space Telescope STIS spectra, variable absorption features are seen on the wings of lines arising from Cii and Civ but not for any of the other CS absorption lines. Similar variable features have long been seen in spectra of the well-studied $\beta $ Pictoris debris disk and attributed to the transits of star-grazing comets. We calculated the velocity ranges and apparent column densities of the 49 Cet variable gas, which appears to have been moving at velocities of tens to hundreds of km s−1 relative to the central star. The velocities in the redshifted variable event seen in the second visit show that the maximum distances of the infalling gas at the time of transit were about 0.05–0.2 au from the central star. A preliminary attempt at a composition analysis of the redshifted event suggests that the C/O ratio in the infalling gas is super-solar, as it is in the bulk of the stable disk gas.

127

, , , and

We compare the isotropic equivalent 15–2000 keV γ-ray energy, Eγ, emitted by a sample of 91 swift Gamma-Ray Bursts with known redshifts, with the isotropic equivalent fireball energy, Efb, as estimated within the fireball model framework from X-ray afterglow observations of these bursts. The uncertainty in Eγ, which spans the range of ∼1051 to ∼1053.5 erg, is ≈25% on average, due mainly to the extrapolation from the BAT detector band to the 15–2000 keV band. The uncertainty in Efb is approximately a factor of 2, due mainly to the X-ray measurements' scatter. We find Eγ and Efb to be tightly correlated. The average(std) of ${\eta }_{\gamma }^{11\;\mathrm{hr}}\equiv {\mathrm{log}}_{10}({E}_{\gamma }/(3{\varepsilon }_{{\rm{e}}}{E}_{{\rm{fb}}}^{11\;\mathrm{hr}}))$ are −0.34(0.60), and the upper limit on the intrinsic spread of ηγ is approximately 0.5 (${\varepsilon }_{{\rm{e}}}$ is the fraction of energy carried by electrons and ${E}_{{\rm{fb}}}^{x\;\mathrm{hr}}$ is inferred from the X-ray flux at x hours). ${E}_{{\rm{fb}}}^{3\;\mathrm{hr}}$ and ${E}_{{\rm{fb}}}^{11\;\mathrm{hr}}$ are similar, with an average(std) of ${\mathrm{log}}_{10}({E}_{{\rm{fb}}}^{3\;\mathrm{hr}}/{E}_{{\rm{fb}}}^{11\;\mathrm{hr}})$ of 0.04(0.28). The small variance of ηγ implies that burst-to-burst variations in ${\varepsilon }_{{\rm{e}}}$ and in the efficiency of fireball energy conversion to γ-rays are small, and suggests that both are of order unity. The small variance of ηγ and the similarity of ${E}_{{\rm{fb}}}^{3\;\mathrm{hr}}$ and ${E}_{{\rm{fb}}}^{11\;\mathrm{hr}}$ further imply that deviations from a simple fireball model description, if present, are small. This puts stringent constraints on models incorporating such modifications (due e.g., to radiative losses, energy injection, off-axis viewing).

128

, , and

We present measurements of the Sun's sub-surface convective flows and provide evidence that the pattern of supergranulation is driven at the surface. The pattern subsequently descends slowly throughout the near-surface shear layer in a manner that is inconsistent with a 3D cellular structure. The flow measurements are obtained through the application of a new helioseismic technique based on traditional ring analysis. We measure the flow field over the course of eleven days and perform a correlation analysis between all possible pairs of depths and temporal separations. In congruence with previous studies, we find that the supergranulation pattern remains coherent at the surface for slightly less than two days and the instantaneous surface pattern is imprinted to a depth of 7 Mm. However, these correlation times and depths are deceptive. When we admit a potential time lag in the correlation, we find that peak correlation in the convective flows descends at a rate of 10–40 m s−1 (or equivalently 1–3 Mm per day). Furthermore, the correlation extends throughout all depths of the near-surface shear layer. This pattern-propagation rate is well matched by estimates of the speed of downflows obtained through the anelastic approximation. Direct integration of the measured speed indicates that the supergranulation pattern that first appears at the surface eventually reaches the bottom of the near-surface shear layer a month later. Thus, the downflows have a Rossby radius of deformation equal to the depth of the shear layer and we suggest that this equality may not be coincidental.

129

, , , , and

The E- and Z-isomers of ethanimine (CH3CHNH) were recently detected toward the star-forming region Sagittarius (Sgr) B2(N) using the Green Bank Telescope PRIMOS cm-wave spectral data, and imaged by the Australia Telescope Compact Array. Ethanimine is not reported in the hot cores of Sgr B2, but only in gas that absorbs at +64 and +82 km s−1 in the foreground of continuum emission generated by H ii regions. The ethanimine isomers can serve as precursors of the amino acid alanine and may play important roles in forming biological molecules in the interstellar medium. Here we present a study of the chemistry of ethanimine using a gas-grain simulation based on rate equations, with both isothermal and warm-up conditions. In addition, the density, kinetic temperature, and cosmic ray ionization rate have been varied. For a variety of physical conditions in the warm-up models for Sgr B2(N) and environs, the simulations show reasonable agreement with observationally obtained abundances. Isothermal models of translucent clouds along the same line of sight yield much lower abundances, so that ethanimine would be much more difficult to detect in these sources despite the fact that other complex molecules have been detected there.

130

, , , , , , , , , et al

We present results from the largest systematic investigation of broad absorption line (BAL) acceleration to date. We use spectra of 140 quasars from three Sloan Digital Sky Survey programs to search for global velocity offsets in BALs over timescales of ≈2.5–5.5 years in the quasar rest frame. We carefully select acceleration candidates by requiring monolithic velocity shifts over the entire BAL trough, avoiding BALs with velocity shifts that might be caused by profile variability. The C iv BALs of two quasars show velocity shifts consistent with the expected signatures of BAL acceleration, and the BAL of one quasar shows a velocity-shift signature of deceleration. In our two acceleration candidates, we see evidence that the magnitude of the acceleration is not constant over time; the magnitudes of the change in acceleration for both acceleration candidates are difficult to produce with a standard disk-wind model or via geometric projection effects. We measure upper limits to acceleration and deceleration for 76 additional BAL troughs and find that the majority of BALs are stable to within about 3% of their mean velocities. The lack of widespread acceleration/deceleration could indicate that the gas producing most BALs is located at large radii from the central black hole and/or is not currently strongly interacting with ambient material within the host galaxy along our line of sight.

131

, , , , , , and

In this study, we present a new method for forecasting arrival times and speeds of coronal mass ejections (CMEs) at any location in the inner heliosphere. This new approach enables the adoption of a highly flexible geometrical shape for the CME front with an adjustable CME angular width and an adjustable radius of curvature of its leading edge, i.e., the assumed geometry is elliptical. Using, as input, Solar TErrestrial RElations Observatory (STEREO) heliospheric imager (HI) observations, a new elliptic conversion (ElCon) method is introduced and combined with the use of drag-based model (DBM) fitting to quantify the deceleration or acceleration experienced by CMEs during propagation. The result is then used as input for the Ellipse Evolution Model (ElEvo). Together, ElCon, DBM fitting, and ElEvo form the novel ElEvoHI forecasting utility. To demonstrate the applicability of ElEvoHI, we forecast the arrival times and speeds of 21 CMEs remotely observed from STEREO/HI and compare them to in situ arrival times and speeds at 1 AU. Compared to the commonly used STEREO/HI fitting techniques (Fixed-ϕ, Harmonic Mean, and Self-similar Expansion fitting), ElEvoHI improves the arrival time forecast by about 2 to ±6.5 hr and the arrival speed forecast by $\approx 250$ to ±53 km s−1, depending on the ellipse aspect ratio assumed. In particular, the remarkable improvement of the arrival speed prediction is potentially beneficial for predicting geomagnetic storm strength at Earth.

132

, , , , , , , , and

We present full-polarization observations of the compact, steep-spectrum radio quasar 3C 286 made with the Atacama Large Millimeter and Submillimeter Array (ALMA) at 1.3 mm. These are the first full-polarization ALMA observations, which were obtained in the framework of Science Verification. A bright core and a south–west component are detected in the total intensity image, similar to previous centimeter images. Polarized emission is also detected toward both components. The fractional polarization of the core is about 17%; this is higher than the fractional polarization at centimeter wavelengths, suggesting that the magnetic field is even more ordered in the millimeter radio core than it is further downstream in the jet. The observed polarization position angle (or electric vector position angle (EVPA)) in the core is ∼39, which confirms the trend that the EVPA slowly increases from centimeter to millimeter wavelengths. With the aid of multi-frequency VLBI observations, we argue that this EVPA change is associated with the frequency-dependent core position. We also report a serendipitous detection of a sub-mJy source in the field of view, which is likely to be a submillimeter galaxy.

133

, , , and

The lifetime of quasars is fundamental for understanding the growth of supermassive black holes, and is an important ingredient in models of the reionization of the intergalactic medium (IGM). However, despite various attempts to determine quasar lifetimes, current estimates from a variety of methods are uncertain by orders of magnitude. This work combines cosmological hydrodynamical simulations and 1D radiative transfer to investigate the structure and evolution of the He ii Lyα proximity zones around quasars at z ≃ 3–4. We show that the time evolution in the proximity zone can be described by a simple analytical model for the approach of the He ii fraction ${x}_{\mathrm{He}{\rm{II}}}(t)$ to ionization equilibrium, and use this picture to illustrate how the transmission profile depends on the quasar lifetime, quasar UV luminosity, and the ionization state of Helium in the ambient IGM (i.e., the average He ii fraction, or equivalently the metagalactic He ii ionizing background). A significant degeneracy exists between the lifetime and the average He ii fraction, however the latter can be determined from measurements of the He ii Lyα optical depth far from quasars, allowing the lifetime to be measured. We advocate stacking existing He ii quasar spectra at z ∼ 3, and show that the shape of this average proximity zone profile is sensitive to lifetimes as long as ∼30 Myr. At higher redshift z ∼ 4 where the He ii fraction is poorly constrained, degeneracies will make it challenging to determine these parameters independently. Our analytical model for He ii proximity zones should also provide a useful description of the properties of H i proximity zones around quasars at z ≃ 6–7.

134

, , , , , , , , , et al

We present results for Vela C obtained during the 2012 flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry. We mapped polarized intensity across almost the entire extent of this giant molecular cloud, in bands centered at 250, 350, and 500 μm. In this initial paper, we show our 500 μm data smoothed to a resolution of 2farcm5 (approximately 0.5 pc). We show that the mean level of the fractional polarization p and most of its spatial variations can be accounted for using an empirical three-parameter power-law fit, $p\;\propto \;{{\boldsymbol{N}}}^{-0.45}\;{{\boldsymbol{S}}}^{-0.60}$, where N is the hydrogen column density and S is the polarization-angle dispersion on 0.5 pc scales. The decrease of p with increasing S is expected because changes in the magnetic field direction within the cloud volume sampled by each measurement will lead to cancellation of polarization signals. The decrease of p with increasing N might be caused by the same effect, if magnetic field disorder increases for high column density sightlines. Alternatively, the intrinsic polarization efficiency of the dust grain population might be lower for material along higher density sightlines. We find no significant correlation between N and S. Comparison of observed submillimeter polarization maps with synthetic polarization maps derived from numerical simulations provides a promising method for testing star formation theories. Realistic simulations should allow for the possibility of variable intrinsic polarization efficiency. The measured levels of correlation among p, N, and S provide points of comparison between observations and simulations.

135

and

We study the effects of Rayleigh and Raman scattering on the formation of polarized spectral lines in a Λ-type multi-term atom. We fully take into account the partial redistribution of frequency and the presence of atomic polarization in the lower states of the atomic model. Problems that can be modeled with this formalism include, for example, the formation of the Ca ii H–K and IR triplet, the analogous system of Ba ii, and the Lyβ–Hα system of hydrogenic ions.

136

, , , , , , , , , et al

We report Shanghai Tian Ma Radio Telescope (TMRT) detections of several long carbon-chain molecules in the C and Ku bands, including HC3N, HC5N, HC7N, HC9N, C3S, C6H, and C8H toward the starless cloud Serpens South 1a. We detected some transitions (HC9N J = 13–12, F = 12–11, and F = 14–13; H13CCCN J = 2–1, F = 1–0, and F = 1–1; HC13CCN J = 2–1, F = 2–2, F = 1–0, and F = 1–1; HCC13CN J = 2–1, F = 1–0, and F = 1–1) and resolved some hyperfine components (HC5N J = 6–5, F = 5–4; H13CCCN J = 2–1, F = 2–1) for the first time in the interstellar medium. The column densities of these carbon-chain molecules in the range 1012–1013 cm−2 are comparable to two carbon-chain molecule rich sources, TMC-1 and Lupus-1A. The abundance ratios are 1.00:(1.11 ± 0.15):(1.47 ± 0.18) for [H13CCCN]:[HC13CCN]:[HCC13CN]. This result implies that the 13C isotope is also concentrated in the carbon atom adjacent to the nitrogen atom in HC3N in Serpens South 1a, which is similar to TMC-1. The [HC3N]/[H13CCCN] ratio of 78 ± 9, the [HC3N]/[HC13CCN] ratio of 70 ± 8, and the [HC3N]/[HCC13CN] ratio of 53 ± 4 are also comparable to those in TMC-1. Serpens South 1a proves to be a suitable testing ground for understanding carbon-chain chemistry.

137

, , , and

We use a 1D model to address photochemistry and possible haze formation in the irradiated warm Jupiter, 51 Eridani b. The intended focus was to be carbon, but sulfur photochemistry turns out to be important. The case for organic photochemical hazes is intriguing but falls short of being compelling. If organic hazes form, they are likeliest to do so if vertical mixing in 51 Eri b is weaker than in Jupiter, and they would be found below the altitudes where methane and water are photolyzed. The more novel result is that photochemistry turns H2S into elemental sulfur, here treated as S8. In the cooler models, S8 is predicted to condense in optically thick clouds of solid sulfur particles, while in the warmer models S8 remains a vapor along with several other sulfur allotropes that are both visually striking and potentially observable. For 51 Eri b, the division between models with and without condensed sulfur is at an effective temperature of 700 K, which is within error its actual effective temperature; the local temperature where sulfur condenses is between 280 and 320 K. The sulfur photochemistry we have discussed is quite general and ought to be found in a wide variety of worlds over a broad temperature range, both colder and hotter than the 650–750 K range studied here, and we show that products of sulfur photochemistry will be nearly as abundant on planets where the UV irradiation is orders of magnitude weaker than it is on 51 Eri b.

138

, , , , , , , , , et al

We report on the analysis of two deep XMM-Newton observations of the magnetar Swift J1834.9−0846 and its surrounding extended emission taken in 2014 March and October, 2.5 and 3.1 yr after the source went into outburst. The magnetar is only weakly detected in the first observation, with an absorption-corrected flux ${F}_{0.5-10\mathrm{keV}}\approx 4\times {10}^{-14}$ erg s−1 cm−2 and a $3\sigma $ upper limit during the second observation of about 3 × 10−14 erg s−1 cm−2. This flux level is more than 3 orders of magnitude lower than the flux measured at the outburst onset in 2011 September. The extended emission, centered at the magnetar position and elongated toward the southwest, is clearly seen in both observations; it is best fit by a highly absorbed power law (PL), with a hydrogen column density of ${N}_{{\rm{H}}}=8.0\times {10}^{22}$ cm−2 and PL photon index ${\rm{\Gamma }}=2.2\pm 0.2$. Its flux is constant between the two observations at ${F}_{0.5-10\mathrm{keV}}=1.3\times {10}^{-12}$ erg s−1 cm−2. We find no statistically significant changes in the spectral shape or the flux of this extended emission over a period of 9 yr from 2005 to 2014. These new results strongly support the extended emission nature as a wind nebula and firmly establish Swift J1834.9−0846 as the first magnetar to show a surrounding wind nebula. Further, our results imply that such nebulae are no longer exclusive to rotation-powered pulsars and narrow the gap between these two subpopulations of isolated neutron stars. The size and spectrum of the nebula are compatible with those of pulsar-wind nebulae, but its radiative efficiency ${\eta }_{{\rm{X}}}={L}_{{\rm{X}}}/\dot{E}\approx 0.1$ is markedly high, possibly pointing to an additional wind component in Swift J1834.9−0846.

139

, , , , , , , , , et al

We report the discovery of a planet by the microlensing method, OGLE-2012-BLG-0724Lb. Although the duration of the planetary signal for this event was one of the shortest seen for a planetary event, the anomaly was well covered thanks to high-cadence observations taken by the survey groups OGLE and MOA. By analyzing the light curve, this planetary system is found to have a mass ratio $q=(1.58\pm 0.15)\times {10}^{-3}$. By conducting a Bayesian analysis, we estimate that the host star is an M dwarf with a mass of ${M}_{{\rm{L}}}={0.29}_{-0.16}^{+0.33}\,{M}_{\odot }$ located at ${D}_{{\rm{L}}}={6.7}_{-1.2}^{+1.1}\,{\rm{kpc}}$ away from the Earth and the companion's mass is ${m}_{{\rm{P}}}={0.47}_{-0.26}^{+0.54}\,{M}_{{\rm{Jup}}}$. The projected planet–host separation is ${a}_{\perp }={1.6}_{-0.3}^{+0.4}\,{\rm{AU}}$. Because the lens–source relative proper motion is relatively high, future high-resolution images would detect the lens host star and determine the lens properties uniquely. This system is likely a Saturn-mass exoplanet around an M dwarf, and such systems are commonly detected by gravitational microlensing. This adds another example of a possible pileup of sub-Jupiters $(0.2\lt {m}_{{\rm{P}}}/{M}_{{\rm{Jup}}}\lt 1)$ in contrast to a lack of Jupiters ($\sim 1\mbox{--}2\,{M}_{{\rm{Jup}}}$) around M dwarfs, supporting the prediction by core accretion models that Jupiter-mass or more massive planets are unlikely to form around M dwarfs.

140

, , and

We present the first study of the evolution of galaxy groups in the Illustris simulation. We focus on dynamically relaxed and unrelaxed galaxy groups representing dynamically evolved and evolving galaxy systems, respectively. The evolutionary state of a group is probed from its luminosity gap and separation between the brightest group galaxy and the center of mass of the group members. We find that the Illustris simulation overproduces galaxy systems with a large luminosity gap, known as fossil systems, in comparison to observations and the probed semi-analytical predictions. However, this simulation is just as successful as the probed semi-analytic model in recovering the correlation between luminosity gap and offset of the luminosity centroid. We find evolutionary tracks based on luminosity gap that indicate that a group with a large luminosity gap is rooted in one with a small luminosity gap, regardless of the position of the brightest group galaxy within the halo. This simulation helps to explore, for the first time, the black hole mass and its accretion rate in galaxy groups. For a given stellar mass of the brightest group galaxies, the black hole mass is larger in dynamically relaxed groups with a lower rate of mass accretion. We find this to be consistent with the latest observational studies of radio activity in the brightest group galaxies in fossil groups. We also find that the intragalactic medium in dynamically evolved groups is hotter for a given halo mass than that in evolving groups, again consistent with earlier observational studies.

141

, , , , , , and

We study the effects of an asymmetric radiation field on the properties of a molecular cloud envelope. We employ observations of carbon monoxide (12CO and 13CO), atomic carbon, ionized carbon, and atomic hydrogen to analyze the chemical and physical properties of the core and envelope of L1599B, a molecular cloud forming a portion of the ring at ≃27 pc from the star Λ Ori. The O8 star provides an asymmetric radiation field that produces a moderate enhancement of the external radiation field. Observations of the [C ii] fine structure line with the GREAT instrument on SOFIA indicate a significant enhanced emission on the side of the cloud facing the star, while the [C i], 12CO and 13CO J = 1–0 and 2–1, and 12CO J = 3–2 data from the Purple Mountain Observatory and APEX telescopes suggest a relatively typical cloud interior. The atomic, ionic, and molecular line centroid velocities track each other very closely, and indicate that the cloud may be undergoing differential radial motion. The H i data from the Arecibo GALFA survey and the SOFIA/GREAT [C ii] data do not suggest any systematic motion of the halo gas, relative to the dense central portion of the cloud traced by 12CO and 13CO.

142

, , and

Recent observations of the pickup helium focusing cone by STEREO/Plasma and Suprathermal Ion Composition indicate an inflow longitude of the interstellar wind that differs from the observations of IBEX by $1\buildrel{\circ}\over{.} 8\pm 2\buildrel{\circ}\over{.} 4$. It has been under debate whether the transport of helium pickup ions with an anisotropic velocity distribution is the cause of this difference. If so, the roughly field-aligned pickup ion streaming relative to the solar wind should create a shift in the pickup ion density relative to the focusing cone. A large pickup ion streaming depends on the size of the mean free path. Therefore, the observed longitudinal shift in the pickup ion density relative to the neutral focusing cone may carry fundamental information about the mean free path experienced by pickup ions inside 1 au. We test this hypothesis using the Energetic Particle Radiation Environment Module (EPREM) model by simulating the transport of helium pickup ions within the focusing cone finding a mean free path of ${\lambda }_{\parallel }=0.19+0.29(-0.19)$ au. We calculate the average azimuthal velocity of pickup ions and find that the anisotropic distribution reaches ∼8% of the solar wind speed. Lastly, we isolate transport effects within EPREM, finding that pitch-angle scattering, adiabatic focusing, perpendicular diffusion, and particle drift contribute to shifting the focusing cone 20.00%, 69.43%, 10.56%, and $\lt 0.01 \% $, respectively. Thus we show with the EPREM model that the transport of pickup ions does indeed shift the peak of the focusing cone relative to the progenitor neutral atoms and this shift provides fundamental information on the scattering of pickup ions inside 1 au.

143

, , and

Neutron stars in high-mass X-ray binaries (HMXBs) generally accrete from the wind matter of their massive companion stars. Recently, Shakura et al. suggested a subsonic accretion model for low-luminosity (<4 × 1036 erg s−1), wind-fed X-ray pulsars. To test the feasibility of this model, we investigate the spin period distribution of wind-fed X-ray pulsars with a supergiant companion star, using a population synthesis method. We find that the modeled distribution of supergiant HMXBs in the spin period–orbital period diagram is consistent with observations, provided that the winds from the donor stars have relatively low terminal velocities (≲1000 km s−1). The measured wind velocities in several supergiant HMXBs seem to favor this viewpoint. The predicted number ratio of wind-fed X-ray pulsars with persistent X-ray luminosities that are higher and lower than 4 × 1036 erg s−1 is about 1:10.

144

, , , and

We present initial results from the "Ponos" zoom-in numerical simulations of dark matter substructures in massive ellipticals. Two very highly resolved dark matter halos with Mvir = 1.2 × 1013${M}_{\odot }$ and Mvir = 6.5 × 1012${M}_{\odot }$ and different ("violent" versus "quiescent") assembly histories have been simulated down to z = 0 in a ΛCDM cosmology with a total of 921,651,914 and 408,377,544 particles, respectively. Within the virial radius, the total mass fraction in self-bound Msub > 106${M}_{\odot }$ subhalos at the present epoch is 15% for the violent host and 16.5% for the quiescent one. At z = 0.7, these fractions increase to 19% and 33%, respectively, as more recently accreted satellites are less prone to tidal destruction. In projection, the average fraction of surface mass density in substructure at a distance of R/Rvir = 0.02 (∼5–10 kpc) from the two halo centers ranges from 0.6% to ≳2%, significantly higher than that measured in simulations of Milky Way-sized halos. The contribution of subhalos with Msub < 109${M}_{\odot }$ to the projected mass fraction is between one-fifth and one-third of the total, with the smallest share found in the quiescent host. We assess the impact of baryonic effects via twin, lower-resolution hydrodynamical simulations that include metallicity-dependent gas cooling, star formation, and a delayed-radiative-cooling scheme for supernova feedback. Baryonic contraction produces a super-isothermal total density profile and increases the number of massive subhalos in the inner regions of the main host. The host density profiles and projected subhalo mass fractions appear to be broadly consistent with observations of gravitational lenses.

145

, , and

Galaxy groups differ from clusters primarily by way of their lower masses, M ∼ 1014M versus M ∼ 1015M. We discuss how mass affects the thermal state of the intracluster or the intragroup medium, specifically as to their entropy levels and radial profiles. We show that entropy is produced in both cases by the continuing inflow of intergalactic gas across the system boundary into the gravitational potential well. The inflow is highly supersonic in clusters, but weakly so in groups. The former condition implies strong accretion shocks with substantial conversion of a large bulk kinetic into thermal energy, whereas the latter condition implies less effective conversion of lower energies. These features produce a conspicuous difference in entropy deposition at the current boundary. Thereafter, adiabatic compression of the hot gas into the potential well converts such time histories into radial profiles throughout a cluster or a group. In addition, in both cases, a location of the system at low z in the accelerating universe or in a poor environment will starve out the inflow and the entropy production and produce flattening or even bending down of the outer profile. We analyze, in detail, the sharp evidence provided by the two groups ESO 3060170 and RXJ1159+5531 that have been recently observed in X-rays out to their virial radii and find a close and detailed match with our expectations.

146

, , and

We present a study of the interstellar medium (ISM) in the host galaxies of nine QSOs at 0.1 < z < 0.2 with black hole masses of $3\times {10}^{7}\;{M}_{\odot }$ to $3\times {10}^{9}\;{M}_{\odot }$ based on the far-IR spectroscopy taken with Herschel Space Observatory. We detect the [O i] 63 μm ([C ii] 158 μm) emission in 6 (8) out of 8 (9) sources. Our QSO sample has far-infrared luminosities (${L}_{{\rm{FIR}}}$) ∼ several times ${10}^{11}{L}_{\odot }$. The observed line-to-${L}_{{\rm{FIR}}}$ ratios (${L}_{[{\rm{O}}{\rm{I}}]63\mu {\rm{m}}}$/${L}_{{\rm{FIR}}}$ and ${L}_{[{\rm{C}}{\rm{II}}]}$/${L}_{{\rm{FIR}}}$) are in the ranges of 2.6 × 10−4 to 10−2 and 2.8 × 10−4 to 2 × 10−3, respectively (including upper limits). These ratios are comparable to the values found in local ULIRGs, but higher than the average value published so far for $z\gt 1$ IR-bright QSOs. One target, W0752+19, shows an additional broad velocity component (∼720 km s−1) and exceptionally strong [O i] 63 μm emission with ${L}_{[{\rm{O}}{\rm{I}}]63\mu {\rm{m}}}$/${L}_{{\rm{FIR}}}$ of 10−2, an order of magnitude higher than the average value found among local (U)LIRGs. Combining with the analyses of the Sloan Digital Sky Survey optical spectra, we conclude that the [O i] 63 μm emission in these QSOs is unlikely excited by shocks. We infer that the broad [O i] 63 μm emission in W0752+19 could arise from the warm and dense ISM in the narrow-line region of the central active galactic nucleus. Another possible explanation is the existence of a dense gas outflow with ${n}_{{\rm{H}}}\sim {10}^{4}$ cm−3, where the corresponding broad [C ii] emission is suppressed. Based on the far-IR [O i] and [C ii] line ratios, we estimate constraints on the ISM density and UV radiation field intensity of ${n}_{{\rm{H}}}\lesssim {10}^{3.3}$ cm−3 and ${10}^{3}\lt {G}_{0}\lesssim {10}^{4.2}$, respectively. These values are consistent with those found in local Seyfert 1 ULIRGs. In contrast, the gas with broad velocity width in W0752+19 has ${n}_{{\rm{H}}}\gtrsim {10}^{4.3}$ cm−3 and ${G}_{0}\gt {10}^{4}$.

147

, , and

The hyperfine structure of the rotation-inversion (v2 = 0+, 0, 1+, 1) states of the 14NH3 and 15NH3 ammonia isotopomers is rationalized in terms of effective (ro-inversional) hyperfine-structure (hfs) functions. These are determined by fitting to available experimental data using the Hougen's effective hyperfine-structure Hamiltonian within the framework of the non-rigid inverter theory. Involving only a moderate number of mass independent fitting parameters, the fitted hfs functions provide a fairly close reproduction of a large majority of available experimental data, thus evidencing adequacy of these functions for reliable prediction. In future experiments, this may help us derive spectroscopic constants of observed inversion and rotation-inversion transitions deperturbed from hyperfine effects. The deperturbed band centers of ammonia come to the forefront of fundamental physics especially as the probes of a variable proton-to-electron mass ratio.

148

, , and

Magnetic flux ropes (MFRs) play an important role in solar activities. The quantitative assessment of the topology of an MFR and its evolution is crucial for a better understanding of the relationship between the MFR and associated activities. In this paper, we investigate the magnetic field of active region (AR) 12017 from 2014 March 28–29, during which time 12 flares were triggered by intermittent eruptions of a filament (either successful or confined). Using vector magnetic field data from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, we calculate the magnetic energy and helicity injection in the AR, and extrapolate the 3D magnetic field with a nonlinear force-free field model. From the extrapolations, we find an MFR that is cospatial with the filament. We further determine the configuration of this MFR from the closed quasi-separatrix layer (QSL) around it. Then, we calculate the twist number and the magnetic helicity for the field lines composing the MFR. The results show that the closed QSL structure surrounding the MFR becomes smaller as a consequence of flare occurrence. We also find that the flares in our sample are mainly triggered by kink instability. Moreover, the twist number varies more sensitively than other parameters with the occurrence of flares.

149

, , , , , , , , , et al

Recently, 1H 0323+342 has attracted a lot of attention as one of several narrow-line Seyfert 1 galaxies detected in the γ-ray band. To understand their central energy engines and jet phenomena, the black hole mass is important. We made use of the Lijiang 2.4 m Telescope to monitor 1H 0323+342 for more than two months. This galaxy is one of the candidates for a monitoring project of super-Eddington accreting massive black holes. The reverberation mapping shows that Hβ emission has a delayed response of ${14.8}_{-2.7}^{+3.9}$ days with respect to the SDSS g' light curve in the rest frame. The optical Fe ii variations were detected after subtracting host contaminations, and a reverberation with a delay of ${15.2}_{-4.1}^{+7.4}$ days was found in the rest frame. By assuming the viral factor fBLR = 6.17 for the broad-line region (BLR) velocity characterized by FWHM because of the face-on orientation, we find that the black hole mass derived from Hβ is ${M}_{\bullet }={3.4}_{-0.6}^{+0.9}\times {10}^{7}{M}_{\odot }$, and the accretion rate is $\dot{{\mathcal{M}}}={1.11}_{-0.47}^{+0.69}$, where $\dot{{\mathcal{M}}}={\dot{M}}_{\bullet }{c}^{2}/{L}_{{\rm{Edd}}}$, ${\dot{M}}_{\bullet }$ is the mass accretion rate, LEdd is the Eddington luminosity, and c is the speed of light. This black hole is one order less massive than that given by the Magorrian relation from the bulge mass. We test the relation between accretion rates and radio-loudnesses in all mapped radio-loud active galactic nuclei, and find that 1H 0323+342 falls within this group.

150

, , , , , and

We present simultaneous ground-based radial velocity (RV) measurements and space-based photometric measurements of the young and active K dwarf Epsilon Eridani. These measurements provide a data set for exploring methods of identifying and ultimately distinguishing stellar photospheric velocities from Keplerian motion. We compare three methods we have used in exploring this data set: Dalmatian, an MCMC spot modeling code that fits photometric and RV measurements simultaneously; the FF' method, which uses photometric measurements to predict the stellar activity signal in simultaneous RV measurements; and Hα analysis. We show that our Hα measurements are strongly correlated with the Microvariability and Oscillations of STars telescope (MOST) photometry, which led to a promising new method based solely on the spectroscopic observations. This new method, which we refer to as the HH' method, uses Hα measurements as input into the FF' model. While the Dalmatian spot modeling analysis and the FF' method with MOST space-based photometry are currently more robust, the HH' method only makes use of one of the thousands of stellar lines in the visible spectrum. By leveraging additional spectral activity indicators, we believe the HH' method may prove quite useful in disentangling stellar signals.