Table of contents

Volume 808

Number 2, 2015 August 1

Previous issue Next issue

106

, , , , , and

We present new near-infrared spectroscopic observations of the outer edges of the young stellar cluster around the supermassive black hole at the Galactic center. The observations show a break in the surface density profile of young stars at ∼13'' (0.52 pc). These observations spectroscopically confirm previous suggestions of a break based on photometry. Using Gemini North's Near-Infrared Integral Field Spectrometer, we are able to detect and separate early- and late-type stars with a 75% completeness at ${K}_{{\rm{s}}}=15.5$. We sample a region with radii between 7'' and 23'' (0.28–0.92 pc) from Sgr A* and present new spectral classifications of 144 stars brighter than ${K}_{{\rm{s}}}=15.5$, where 140 stars are late-type ($\gt 1$ Gyr) and only four stars are early-type (young, 4–6 Myr). A broken power-law fit of the early-type surface density matches well with our data and previously published values. The projected surface density of late-type stars is also measured and found to be consistent with previous results. We find that the observed early-type surface-density profile is inconsistent with the theory of young stars originating from a tightly bound infalling cluster, as no significant trail of young stars is found at radii above 13''. We also note that either a simple disk instability criterion or a cloud–cloud collision could explain the location of the outer edge, though we lack information to make conclusive remarks on either alternative. If this break in surface density represents an edge to the young stellar cluster, it would set an important scale for the most recent episode of star formation at the Galactic center.

107

, , , and

The Galactic center's giant outflows are manifest in three different, nonthermal phenomena: (1) the hard-spectrum, γ-ray "Fermi bubbles" emanating from the nucleus and extending to $| b| \sim 50^\circ $; (2) the hard-spectrum, total-intensity microwave (∼20–40 GHz) "haze" extending to $| b| \sim 35^\circ $ in the lower reaches of the Fermi bubbles; and (3) the steep-spectrum, polarized, "S-PASS" radio (∼2–20 GHz) lobes that envelop the bubbles and extend to $| b| \sim 60^\circ $. We find that the nuclear outflows inflate a genuine bubble in each Galactic hemisphere that has the classical structure, working outward, of reverse shock, contact discontinuity (CD), and forward shock. Expanding into the finite pressure of the halo and given appreciable cooling and gravitational losses, the CD of each bubble is now expanding only very slowly. We find observational signatures in both hemispheres of giant, reverse shocks at heights of ∼1 kpc above the nucleus; their presence ultimately explains all three of the nonthermal phenomena mentioned above. Synchrotron emission from shock-reaccelerated cosmic-ray electrons explains the spectrum, morphology, and vertical extent of the microwave haze and the polarized radio lobes. Collisions between shock-reaccelerated hadrons and denser gas in cooling condensations that form inside the CD account for most of the bubbles' γ-ray emissivity. Inverse Compton emission from primary electrons contributes at the 10%–30% level. Our model suggests that the bubbles are signatures of a comparatively weak but sustained nuclear outflow driven by Galactic center star formation over ≳few × 108 yr.

108

, , , , , , and

We present results from spectroscopic observations with the Michigan/Magellan Fiber System (M2FS) of 182 stellar targets along the line of sight (LOS) to the newly discovered "ultrafaint" object Reticulum 2 (Ret 2). For 37 of these targets, the spectra are sufficient to provide simultaneous estimates of LOS velocity (${v}_{\mathrm{los}}$, median random error ${\delta }_{{v}_{\mathrm{los}}}=1.4$ km s−1), effective temperature (${T}_{\mathrm{eff}}$, ${\delta }_{{T}_{\mathrm{eff}}}=478$ K), surface gravity ($\mathrm{log}g$, ${\delta }_{\mathrm{log}g}=0.63$ dex), and iron abundance ($[\mathrm{Fe}/{\rm{H}}]$, ${\delta }_{[\mathrm{Fe}/{\rm{H}}]}=0.47$ dex). We use these results to confirm 17 stars as members of Ret 2. From the member sample we estimate a velocity dispersion of ${\sigma }_{{v}_{\mathrm{los}}}=$${3.6}_{-0.7}^{+1.0}$ km s−1 about a mean of $\langle {v}_{\mathrm{los}}\rangle =$${64.3}_{-1.2}^{+1.2}$ km s−1 in the solar rest frame ($\sim -90.9$ km s−1 in the Galactic rest frame), and a metallicity dispersion of ${\sigma }_{[\mathrm{Fe}/{\rm{H}}]}\;=$${0.49}_{-0.14}^{+0.19}$ dex about a mean of $\langle [\mathrm{Fe}/{\rm{H}}]\rangle \;=$$-{2.58}_{-0.33}^{+0.34}$. These estimates marginalize over possible velocity and metallicity gradients, which are consistent with zero. Our results place Ret 2 on chemodynamical scaling relations followed by the Milky Way's dwarf-galactic satellites. Under assumptions of dynamic equilibrium and negligible contamination from binary stars—both of which must be checked with deeper imaging and repeat spectroscopic observations—the estimated velocity dispersion suggests a dynamical mass of $M({R}_{{\rm{h}}})\approx 5{R}_{{\rm{h}}}{\sigma }_{{v}_{\mathrm{los}}}{}^{2}/(2G)\;=$${2.4}_{-0.8}^{+1.4}\times {10}^{5}$${M}_{\odot }$ enclosed within projected halflight radius ${R}_{{\rm{h}}}\sim 32$ pc, with mass-to-light ratio $\approx 2M({R}_{{\rm{h}}})/{L}_{V}\;=$${467}_{-168}^{+286}$ in solar units.

109

, , , and

Integrating our knowledge of star formation (SF) traced by observations at different wavelengths is essential for correctly interpreting and comparing SF activity in a variety of systems and environments. This study compares extinction corrected integrated ultraviolet (UV) emission from resolved galaxies with color–magnitude diagram (CMD) based star formation rates (SFRs) derived from resolved stellar populations and CMD fitting techniques in 19 nearby starburst and post-starburst dwarf galaxies. The data sets are from the panchromatic Starburst Irregular Dwarf Survey and include deep legacy GALEX UV imaging, Hubble Space Telescope optical imaging, and Spitzer MIPS imaging. For the majority of the sample, the integrated near-UV fluxes predicted from the CMD-based SFRs—using four different models—agree with the measured, extinction corrected, integrated near-UV fluxes from GALEX images, but the far-UV (FUV) predicted fluxes do not. Furthermore, we find a systematic deviation between the SFRs based on integrated FUV luminosities and existing scaling relations, and the SFRs based on the resolved stellar populations. This offset is not driven by different SF timescales, variations in SFRs, UV attenuation, nor stochastic effects. This first comparison between CMD-based SFRs and an integrated FUV emission SFR indicator suggests that the most likely cause of the discrepancy is the theoretical FUV–SFR calibration from stellar evolutionary libraries and/or stellar atmospheric models. We present an empirical calibration of the FUV-based SFR relation for dwarf galaxies, with uncertainties, which is ∼53% larger than previous relations.

110

, , , , , , , , , et al

During moonlit nights, observations with ground-based Cherenkov telescopes at very high energies (VHEs, $E\gt 100$ GeV) are constrained since the photomultiplier tubes (PMTs) in the telescope camera are extremely sensitive to the background moonlight. Observations with the VERITAS telescopes in the standard configuration are performed only with a moon illumination less than 35% of full moon. Since 2012, the VERITAS collaboration has implemented a new observing mode under bright moonlight, by either reducing the voltage applied to the PMTs (reduced-high-voltage; RHV configuration), or by utilizing UV-transparent filters. While these operating modes result in lower sensitivity and increased energy thresholds, the extension of the available observing time is useful for monitoring variable sources such as blazars and sources requiring spectral measurements at the highest energies. In this paper we report the detection of γ-ray flaring activity from the BL Lac object 1ES 1727+502 during RHV observations. This detection represents the first evidence of VHE variability from this blazar. The integral flux is $(1.1\pm 0.2)\times {10}^{-11}\;{\mathrm{cm}}^{-2}\;{{\rm{s}}}^{-1}$ above 250 GeV, which is about five times higher than the low-flux state. The detection triggered additional VERITAS observations during standard dark-time. Multiwavelength observations with the FLWO 48'' telescope, and the Swift and Fermi satellites are presented and used to produce the first spectral energy distribution (SED) of this object during γ-ray flaring activity. The SED is then fitted with a standard synchrotron-self-Compton model, placing constraints on the properties of the emitting region and of the acceleration mechanism at the origin of the relativistic particle population in the jet.

111

, , , and

The Orion–Eridanus superbubble is the prototypical superbubble owing to its proximity and evolutionary state. Here we provide a synthesis of recent observational data from WISE and Planck with archival data, allowing us to draw a new and more complete picture on the history and evolution of the Orion–Eridanus region. We discuss the general morphological structures and observational characteristics of the superbubble and derive quantitative properties of the gas and dust inside Barnard's Loop. We reveal that Barnard's Loop is a complete bubble structure that, together with the λ Ori region and other smaller-scale bubbles, expands within the Orion–Eridanus superbubble. We argue that the Orion–Eridanus superbubble is larger and more complex than previously thought, and that it can be viewed as a series of nested shells, superimposed along the line of sight. During the lifetime of the superbubble, Hii region champagne flows and thermal evaporation of embedded clouds continuously mass-load the superbubble interior, while winds or supernovae from the Orion OB association rejuvenate the superbubble by sweeping up the material from the interior cavities in an episodic fashion, possibly triggering the formation of new stars that form shells of their own. The steady supply of material into the superbubble cavity implies that dust processing from interior supernova remnants is more efficient than previously thought. The cycle of mass loading, interior cleansing, and star formation repeats until the molecular reservoir is depleted or the clouds have been disrupted. While the nested shells come and go, the superbubble remains for tens of millions of years.

112

, , , , , , , and

We present the results of lifetime measurements made using beam-foil techniques on levels of astrophysical interest in Pb ii producing lines at 1203.6 Å (6s6p2${}^{2}{D}_{3/2}$) and 1433.9 Å ($6{s}^{2}6d$${}^{2}{D}_{3/2}$). We also report the first detection of the Pb ii$\lambda 1203$ line in the interstellar medium (ISM) from an analysis of archival spectra acquired by the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope (HST). The oscillator strengths derived from our experimental lifetimes for Pb ii$\lambda \lambda 1203$, 1433 are generally consistent with recent theoretical results, including our own relativistic calculations. Our analysis of high-resolution HST/STIS spectra helps to confirm the relative strengths of the Pb ii$\lambda \lambda 1203$, 1433 lines. However, the oscillator strength that we obtain for Pb ii$\lambda 1433$ (0.321 ± 0.034) is significantly smaller than earlier theoretical values, which have been used to study the abundance of Pb in the ISM. Our revised oscillator strength for $\lambda 1433$ yields an increase in the interstellar abundance of Pb of 0.43 dex over determinations based on the value given by Morton, indicating that the depletion of Pb onto interstellar dust grains is less severe than previously thought.

113

, , , , , , , , , et al

Extreme scattering events (ESEs) in the interstellar medium (ISM) were first observed in regular flux measurements of compact extragalactic sources. They are characterized by a flux variation over a period of weeks, suggesting the passage of a "diverging plasma lens" across the line of sight (LOS). Modeling the refraction of such a lens indicates that the structure size must be of the order of AU and the electron density of the order of 10s of cm−3. Similar structures have been observed in measurements of pulsar intensity scintillation and group delay. Here we report observations of two ESEs, showing increases in both intensity scintillation and dispersion made with the Parkes Pulsar Timing Array. These allow us to make more complete models of the ESE, including an estimate of the "outer-scale" of the turbulence in the plasma lens. These observations clearly show that the ESE structure is fully turbulent on an AU scale. They provide some support for the idea that the structures are extended along the LOS, such as would be the case for a scattering shell. The dispersion measurements also show a variety of AU scale structures that would not be called ESEs, yet involve electron density variations typical of ESEs and likely have the same origin.

114

, , , , , , , and

${{\rm{C}}}_{2}{\rm{H}}$ is a representative hydrocarbon that is abundant and ubiquitous in the interstellar medium. To study its chemical properties, we present Submillimeter Array observations of the C2H N = 3–2 and HC3N J = 30–29 transitions and the 1.1 mm continuum emission toward four OB cluster-forming regions, AFGL 490, ON 1, W33 Main, and G10.6-0.4, which cover a bolometric luminosity range of ∼103–106${L}_{\odot }$. We found that on large scales, the C2H emission traces the dense molecular envelope. However, for all observed sources, the peaks of C2H emission are offset by several times 104 AU from the peaks of 1.1 mm continuum emission, where the most luminous stars are located. By comparing the distribution and profiles of C2H hyperfine lines and the 1.1 mm continuum emission, we find that the C2H column density (and abundance) around the 1.1 mm continuum peaks is lower than those in the ambient gas envelope. Chemical models suggest that C2H might be transformed to other species owing to increased temperature and density; thus, its reduced abundance could be the signpost of the heated molecular gas in the ∼104 AU vicinity around the embedded high-mass stars. Our results support such theoretical prediction for centrally embedded ∼103–106${L}_{\odot }$ OB star-forming cores, while future higher-resolution observations are required to examine the C2H transformation around the localized sites of high-mass star formation.

115

, , , , , and

We present high spatial resolution ($\approx $60–90 mas) images of the molecular hydrogen emission in the planetary nebula (PN) NGC 2346. The data were acquired during the system verification of the Gemini Multi-conjugate Adaptive Optics System + Gemini South Adaptive Optics Imager. At the distance of NGC 2346, 700 pc, the physical resolution corresponds to $\approx $56 AU, which is slightly higher than an [N ii] image of NGC 2346 that was obtained with the Hubble Space Telescope/WFPC2. With this unprecedented resolution, for the first time we were able to study the structure of the H2 gas within the nebula in detail. We found it to be composed of knots and filaments, which at a lower resolution had appeared to be a uniform torus of material. We explain how the formation of the clumps and filaments in this PN are consistent with a mechanism in which a central hot bubble of nebular gas surrounding the central star has been depressurized, and the thermal pressure of the photoionized region drives the fragmentation of the swept-up shell.

116

A recent analysis of UV data from the Interface Region Imaging Spectrograph (IRIS) reports plasma "bombs" with temperatures near 8 × 104 K within the solar photosphere. This is a curious result, first because most bomb plasma pressures p (the largest reported case exceeds 103 dyn cm−2) fall well below photospheric pressures ($\gt 7\times {10}^{3}$), and second, UV radiation cannot easily escape from the photosphere. In the present paper the IRIS data is independently analyzed. I find that the bombs arise from plasma originally at pressures between ≤ 80 and 800 dyne cm−2 before explosion, i.e., between ≥ 850 and 550 km above ${\tau }_{500}=1$. This places the phenomenon's origin in the low-mid chromosphere or above. I suggest that bomb spectra are more compatible with Alfvénic turbulence than with bi-directional reconnection jets.

117

, , , and

We use data at 131, 171, and 304 Å from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory to search for hot flux ropes in 141 M-class and X-class solar flares that occurred at solar longitudes equal to or larger than 50°. Half of the flares were associated with coronal mass ejections. The goal of our survey is to assess the frequency of hot flux ropes in large flares irrespective of their formation time relative to the onset of eruptions. The flux ropes were identified in 131 Å images using morphological criteria and their high temperatures were confirmed by their absence in the cooler 171 and 304 Å passbands. We found hot flux ropes in 45 of our events (32% of the flares); 11 of them were associated with confined flares while the remaining 34 were associated with eruptive flares. Therefore almost half (49%) of the eruptive events involved a hot flux rope configuration. The use of supplementary Hinode X-Ray Telescope data indicates that these percentages should be considered as lower limits of the actual rates of occurrence of hot flux ropes in large flares.

118

and

Even though it is well-known from observations of the Sun that three-minute period chromospheric oscillations persist in the internetwork quiet regions and sunspot umbrae, until now their origin and persistence has defied clear explanation. Here we provide a clear and simple explanation for it with a demonstration of how such oscillations at the chromosphere's cutoff frequency naturally arise in a gravitationally stratified medium when it is disturbed. The largest-wavenumber vertical components of a chromospheric disturbance produce the highest-frequency wave packets, which propagate out of the disturbed region at group speeds that are close to the sound speed. Meanwhile, the smallest-wavenumber components develop into wave packets of frequencies close to the acoustic cutoff frequency that propagate at group speeds that are much lower than the sound speed. Because of their low propagation speed, these low-frequency wave packets linger in the disturbed region and nearby, and thus, are the ones that an observer would identify as the persistent, chromospheric three-minute oscillations. We emphasize that we can account for the power of the persistent chromospheric oscillations as coming from the repeated occurrence of disturbances with length scales greater than twice the pressure scale height in the upper photosphere.

119

and

We extend the kinetic guiding-center model of collisionless coronal hole protons presented in Isenberg & Vasquez to consider driving by imbalanced spectra of obliquely propagating ion-cyclotron waves. These waves are assumed to be a small by-product of the imbalanced turbulent cascade to high perpendicular wavenumber, and their total intensity is taken to be 1% of the total fluctuation energy. We also extend the kinetic solutions for the proton distribution function in the resulting fast solar wind to heliocentric distances of 20 solar radii, which will be attainable by the Solar Probe Plus spacecraft. We consider three ratios of outward-propagating to inward-propagating resonant intensities: 1, 4, and 9. The self-consistent bulk flow speed reaches fast solar wind values in all cases, and these speeds are basically independent of the intensity ratio. The steady-state proton distribution is highly organized into nested constant-density shells by the resonant wave-particle interaction. The radial evolution of this kinetic distribution as the coronal hole plasma flows outward is understood as a competition between the inward- and outward-directed large-scale forces, causing an effective circulation of particles through the (v, v) phase space and a characteristic asymmetric shape to the distribution. These asymmetries are substantial and persist to the outer limit of the model computation, where they should be observable by the Solar Probe Plus instruments.

120

We study the dynamical stability and fates of hierarchical (in semimajor axis) two-planet systems with arbitrary eccentricities and mutual inclinations. We run a large number of long-term numerical integrations and use the Support Vector Machine algorithm to search for an empirical boundary that best separates stable systems from systems experiencing either ejections or collisions with the star. We propose the following new criterion for dynamical stability: ${a}_{\mathrm{out}}(1-{e}_{\mathrm{out}}){/[a}_{\mathrm{in}}$$(1+{e}_{\mathrm{in}})]\gt 2.4$${\left[\mathrm{max}({\mu }_{\mathrm{in}},{\mu }_{\mathrm{out}})\right]}^{1/3}$${({a}_{\mathrm{out}}{/a}_{\mathrm{in}})}^{1/2}+1.15$, which should be applicable to planet-star mass ratios ${\mu }_{\mathrm{in}},{\mu }_{\mathrm{out}}={10}^{-4}-{10}^{-2}$, integration times up to 108 orbits of the inner planet, and mutual inclinations $\lesssim 40^\circ $. Systems that do not satisfy this condition by a margin of $\gtrsim 0.5$ are expected to be unstable, mostly leading to planet ejections if ${\mu }_{\mathrm{in}}\gt {\mu }_{\mathrm{out}}$, while slightly favoring collisions with the star for ${\mu }_{\mathrm{in}}\lt {\mu }_{\mathrm{out}}$. We use our numerical integrations to test other stability criteria that have been proposed in the literature and show that our stability criterion performs significantly better for the range of system parameters that we have explored.

121

, , , , , , , , , et al

We report detections of two candidate distant submillimeter galaxies (SMGs), MM J154506.4−344318 and MM J154132.7−350320, which are discovered in the AzTEC/ASTE 1.1 mm survey toward the Lupus-I star-forming region. The two objects have 1.1 mm flux densities of 43.9 and 27.1 mJy, and have Herschel/SPIRE counterparts as well. The Submillimeter Array counterpart to the former SMG is identified at 890 μm and 1.3 mm. Photometric redshift estimates using all available data from the mid-infrared to the radio suggest that the redshifts of the two SMGs are ${z}_{\mathrm{photo}}\simeq 4$–5 and 3, respectively. Near-infrared objects are found very close to the SMGs and they are consistent with low-z ellipticals, suggesting that the high apparent luminosities can be attributed to gravitational magnification. The cumulative number counts at ${S}_{1.1\mathrm{mm}}\geqslant 25$ mJy, combined with the other two 1.1 mm brightest sources, are ${0.70}_{-0.34}^{+0.56}$ deg−2, which is consistent with a model prediction that accounts for flux magnification due to strong gravitational lensing. Unexpectedly, a $z\gt 3$ SMG and a Galactic dense starless core (e.g., a first hydrostatic core) could be similar in the mid-infrared to millimeter spectral energy distributions and spatial structures at least at $\gtrsim 1\prime\prime $. This indicates that it is necessary to distinguish the two possibilities by means of broadband photometry from the optical to centimeter and spectroscopy to determine the redshift, when a compact object is identified toward Galactic star-forming regions.

122

, , , , , , , , , et al

We present spectral analyses of five Nuclear Spectroscopic Telescope Array and Swift observations of GX 339–4 taken during a failed outburst during the summer of 2013. These observations cover Eddington luminosity fractions in the range ≈0.9%–6%. Throughout this outburst GX 339–4 stayed in the hard state and all five observations show similar X-ray spectra, with a hard power law with a photon index near 1.6, and significant contribution from reflection. Using simple reflection models we find unrealistically high iron abundances. Allowing for different photon indices for the continuum incident on the reflector relative to the underlying observed continuum results in a statistically better fit and reduced iron abundances. With a photon index around 1.3, the input power law on the reflector is significantly harder than that which is directly observed. We study the influence of different emissivity profiles and geometries and consistently find an improvement when using separate photon indices. The inferred inner accretion disk radius is strongly model dependent, but we do not find evidence for a truncation radius larger than $100\;{r}_{g}$ in any model. The data do not allow independent spin constraints, but the results are consistent with the literature (i.e., $a\gt 0$). Our best-fit models indicate an inclination angle in the range 40°–60°, consistent with limits on the orbital inclination but higher than reported in the literature using standard reflection models. The iron line around 6.4 keV is clearly broadened, and we detect a superimposed narrow core as well. This core originates from a fluorescent region outside the influence of the strong gravity of the black hole. Additionally, we discuss possible geometries.

123

and

Asteroseismology is a powerful tool that can precisely characterize the mass, radius, and other properties of field stars. However, our inability to properly model the near-surface layers of stars creates a frequency-dependent frequency difference between the observed and the modeled frequencies, usually referred to as the "surface term." This surface term can add significant errors to the derived stellar properties unless removed properly. In this paper, we simulate surface terms across a significant portion of the HR diagram, exploring four different masses ($M=0.8,1.0,1.2$, and 1.5 ${M}_{\odot }$) at five metallicities ($[\mathrm{Fe}/{\rm{H}}]=0.5,0.0,-0.5,-1.0$, and $-1.5$) from the main sequence to red giants for stars with ${T}_{\mathrm{eff}}\lt 6500$ K and explore how well the most common ways of fitting and removing the surface term actually perform. We find that the two-term model proposed by Ball & Gizon works much better than other models across a large portion of the HR diagram, including the red giants, leading us to recommend its use for future asteroseismic analyses.

124

, , and

Helium is a pivotal element in understanding the multiple main sequences and extended horizontal branches observed in some globular clusters. Here we present a spectroscopic study of helium in the nearby globular cluster Messier 4 (M4). We have obtained spectra of the chromospheric He i 10830 Å line in 16 red horizontal branch (RHB), red giant branch, and asymptotic giant branch stars. Clear He i absorption or emission is present in most of the stars. Effective temperature is the principal parameter that correlates with 10830 Å line strength. Stars with ${T}_{\mathrm{eff}}\lt 4450$ K do not exhibit the helium line. RHB stars, which are the hottest stars in our sample, all have strong He i line absorption. A number of these stars show very broad 10830 Å lines with shortward extensions indicating outflows as high as 80–100 km s−1 and the possibility of mass loss. We have also derived [Na/Fe] and [Al/Fe] abundances to see whether these standard tracers of "second generation" cluster stars are correlated with He i line strength. Unlike the case for our previous study of ω Cen, no clear correlation is observed. This may be because the sample does not cover the full range of abundance variations found in M4, or simply because the physical conditions in the chromosphere, rather than the helium abundance, primarily determine the He i 10830 Å line strength. A larger sample of high-quality He i spectra of both "first" and "second" generation red giants within a narrow range of ${T}_{\mathrm{eff}}$ and luminosity is needed to test for the subtle spectroscopic variations in He i expected in M4.

125

and

Using the quantum Cramér–Rao bound from quantum estimation theory, we derive a fundamental quantum limit on the sensitivity of a temperature measurement of a thermal astronomical source. This limit is expressed in terms of the source temperature Ts, input spectral bandwidth ${\rm{\Delta }}\nu $, and measurement duration T, subject to a long measurement time assumption $T{\rm{\Delta }}\nu \gg 1$. It is valid for any measurement procedure that yields an unbiased estimate of the source temperature. The limit agrees with the sensitivity of direct detection or photon counting, and also with that of the ideal radiometer in the regime ${{kT}}_{{\rm{s}}}/h{\nu }_{0}\gg 1$ for which the Rayleigh–Jeans approximation is valid, where ${\nu }_{0}$ is the center frequency at which the radiometer operates. While valid across the electromagnetic spectrum, the limit is especially relevant for radio astronomy in this regime, since it implies that no ingenious design or technological improvement can beat an ideal radiometer for temperature measurement. In this connection, our result refutes the recent claim of a radio astronomy technique with much-improved sensitivity over the radiometer.

126

and

Solar system planets move on almost circular orbits. In strong contrast, many massive gas giant exoplanets travel on highly elliptical orbits, whereas the shape of the orbits of smaller, more terrestrial, exoplanets remained largely elusive. Knowing the eccentricity distribution in systems of small planets would be important as it holds information about the planet's formation and evolution, and influences its habitability. We make these measurements using photometry from the Kepler satellite and utilizing a method relying on Kepler's second law, which relates the duration of a planetary transit to its orbital eccentricity, if the stellar density is known. Our sample consists of 28 bright stars with precise asteroseismic density measurements. These stars host 74 planets with an average radius of 2.6 R. We find that the eccentricity of planets in Kepler multi-planet systems is low and can be described by a Rayleigh distribution with σ = 0.049 ± 0.013. This is in full agreement with solar system eccentricities, but in contrast to the eccentricity distributions previously derived for exoplanets from radial velocity studies. Our findings are helpful in identifying which planets are habitable because the location of the habitable zone depends on eccentricity, and to determine occurrence rates inferred for these planets because planets on circular orbits are less likely to transit. For measuring eccentricity it is crucial to detect and remove Transit Timing Variations (TTVs), and we present some previously unreported TTVs. Finally transit durations help distinguish between false positives and true planets and we use our measurements to confirm six new exoplanets.

127

, , and

Kepler-78b is a transiting planet that is 1.2 times the radius of Earth and orbits a young, active K dwarf every 8 hr. The mass of Kepler-78b has been independently reported by two teams based on radial velocity (RV) measurements using the HIRES and HARPS-N spectrographs. Due to the active nature of the host star, a stellar activity model is required to distinguish and isolate the planetary signal in RV data. Whereas previous studies tested parametric stellar activity models, we modeled this system using nonparametric Gaussian process (GP) regression. We produced a GP regression of relevant Kepler photometry. We then use the posterior parameter distribution for our photometric fit as a prior for our simultaneous GP + Keplerian orbit models of the RV data sets. We tested three simple kernel functions for our GP regressions. Based on a Bayesian likelihood analysis, we selected a quasi-periodic kernel model with GP hyperparameters coupled between the two RV data sets, giving a Doppler amplitude of 1.86 ± 0.25 m s−1 and supporting our belief that the correlated noise we are modeling is astrophysical. The corresponding mass of ${1.87}_{-0.26}^{+0.27}\;{M}_{\oplus }$ is consistent with that measured in previous studies, and more robust due to our nonparametric signal estimation. Based on our mass and the radius measurement from transit photometry, Kepler-78b has a bulk density of ${6.0}_{-1.4}^{+1.9}$ g cm−3. We estimate that Kepler-78b is 32% ± 26% iron using a two-component rock-iron model. This is consistent with an Earth-like composition, with uncertainty spanning Moon-like to Mercury-like compositions.

128

, , , , , , and

We constrain the deviation of adiabatic evolution of the universe using the data on the cosmic microwave background (CMB) temperature anisotropies measured by the Planck satellite and a sample of 481 X-ray selected clusters with spectroscopically measured redshifts. To avoid antenna beam effects, we bring all of the maps to the same resolution. We use a CMB template to subtract the cosmological signal while preserving the Thermal Sunyaev–Zeldovich (TSZ) anisotropies; next, we remove galactic foreground emissions around each cluster and we mask out all known point sources. If the CMB blackbody temperature scales with redshift as $T{(z)={T}_{0}(1+z)}^{1-\alpha }$, we constrain deviations of adiabatic evolution to be α = −0.007 ± 0.013, consistent with the temperature-redshift relation of the standard cosmological model. This result could suffer from a potential bias δα associated with the CMB template. We quantify it to be $| \delta \alpha | \leqslant 0.02$, with the same sign as the measured value of α. Our result is free from those biases associated with using TSZ selected clusters; it represents the best constraint to date of the temperature-redshift relation of the Big Bang model using only CMB data, confirming previous results.

129

, , and

We develop a simple analytical model that tracks galactic metallicities governed by star formation and feedback to gain insight from the observed galaxy stellar mass–metallicity relations over a large range of stellar masses and redshifts. The model reveals the following implications of star formation and feedback processes in galaxy formation. First, the observed metallicity relations provide a stringent upper limit for the averaged outflow mass-loading factors of local galaxies, which are ∼20 for ${M}_{*}\sim {10}^{9}\;{M}_{\odot }$ galaxies and monotonically decrease to ∼1 for ${M}_{*}\sim {10}^{11}\;{M}_{\odot }$ galaxies. Second, the inferred upper limit for the outflow mass-loading factor sensitively depends on whether the outflow is metal-enriched with respect to the interstellar medium metallicity. If half of the metals ejected from supernovae leave the galaxy in metal-enriched winds, the outflow mass-loading factor for galaxies at any mass can barely be higher than ∼10, which puts strong constraints on galaxy formation models. Third, the relatively lower stellar-phase to gas-phase metallicity ratio for lower-mass galaxies indicates that low-mass galaxies are still rapidly enriching their metallicities in recent times, while high-mass galaxies are more settled, which seems to show a downsizing effect in the metallicity evolution of galaxies. The analysis presented in the paper demonstrates the importance of accurate measurements of galaxy metallicities and the cold gas fraction of galaxies at different redshifts for constraining star formation and feedback processes, and demonstrates the power of these relations for constraining the physics of galaxy formation.

130

, , , , , and

Central compact objects (CCOs) are a handful of young neutron stars found at the center of supernova remnants (SNRs). They show high thermal X-ray luminosities but no radio emission. Spin-down rate measurements of three CCOs with X-ray pulsations indicate surface dipole fields much weaker than those of typical young pulsars. To investigate if CCOs and known radio pulsars are objects at different evolutionary stages, we carried out a census of all weak-field ($\lt {10}^{11}$ G) isolated radio pulsars in the Galactic plane to search for CCO-like X-ray emission. None of the 12 candidates are detected at X-ray energies, with luminosity limits of ${10}^{32}-{10}^{34}$ erg s−1. We consider a scenario in which the weak surface fields of CCOs are due to a rapid accretion of supernova materials and show that as the buried field diffuses back to the surface, a CCO descendant is expected to leave the P$\dot{P}$ parameter space of our candidates at a young age of a few ×10 kyr. Hence, the candidates are likely to just be old ordinary pulsars in this case. We suggest that further searches for orphaned CCOs, which are aged CCOs with parent SNRs that have dissipated, should include pulsars with stronger magnetic fields.

131

, , , and

The Stark-induced shift and asymmetry, the so-called pressure shift (PS) of Hα and Hβ Balmer lines in spectra of DA white dwarfs (WDs), have been examined in detail as masking effects in measurements of the gravitational redshift in WDs. The results are compared with our earlier ones from a quarter of a century ago. In these earlier papers, the standard, symmetrical Stark line profiles, as a dominant constituent of the Balmer line profiles but shifted as a whole by the PS effect, were applied to all spectrally active layers of the WD atmosphere. At present, in each of the WD layers, the Stark line profiles (especially of Hβ) are inherently asymmetrical and shifted due to the effects of strong inhomogeneity of the perturbing fields in plasma. To calculate the Stark line profiles in successive layers of the WD atmosphere we used the modified Full Computer Simulation Method, able to take adequately into account the complexity of local elementary quantum processes in plasma. In the case of the Hα line, the present value of Stark-induced shift of the synthetic Hα line profile is about half the previous one and it is negligible in comparison with the gravitational redshift. In the case of the Hβ line, the present value of Stark-induced shift of the synthetic Hβ line profile is about twice the previous one. The source of this extra shift is the asymmetry of Hβ peaks.

132

, , , , , , , , , et al

Using a sample of 69,919 red giants from the SDSS-III/APOGEE Data Release 12, we measure the distribution of stars in the [α/Fe] versus [Fe/H] plane and the metallicity distribution functions (MDFs) across an unprecedented volume of the Milky Way disk, with radius 3 < R < 15 kpc and height $| z| \lt 2$ kpc. Stars in the inner disk (R < 5 kpc) lie along a single track in [α/Fe] versus [Fe/H], starting with α-enhanced, metal-poor stars and ending at [α/Fe] ∼ 0 and [Fe/H] ∼ +0.4. At larger radii we find two distinct sequences in [α/Fe] versus [Fe/H] space, with a roughly solar-α sequence that spans a decade in metallicity and a high-α sequence that merges with the low-α sequence at super-solar [Fe/H]. The location of the high-α sequence is nearly constant across the disk; however, there are very few high-α stars at R > 11 kpc. The peak of the midplane MDF shifts to lower metallicity at larger R, reflecting the Galactic metallicity gradient. Most strikingly, the shape of the midplane MDF changes systematically with radius, from a negatively skewed distribution at 3 < R < 7 kpc, to a roughly Gaussian distribution at the solar annulus, to a positively skewed shape in the outer Galaxy. For stars with $| z| \gt 1$ kpc or [α/Fe] > 0.18, the MDF shows little dependence on R. The positive skewness of the outer-disk MDF may be a signature of radial migration; we show that blurring of stellar populations by orbital eccentricities is not enough to explain the reversal of MDF shape, but a simple model of radial migration can do so.

133

, , and

Ellerman bombs are transient brightenings of the wings of the solar Balmer lines that mark reconnection in the photosphere. Ellerman noted in 1917 that he did not observe such brightenings in the Na i D and Mg i b lines. This non-visibility should constrain EB interpretation, but has not been addressed in published bomb modeling. We therefore test Ellerman's observation and confirm it using high-quality imaging spectrometry with the Swedish 1-m Solar Telescope. However, we find a diffuse brightness in these lines that seems to result from prior EBs. We tentatively suggest this is a post-bomb hot-cloud phenomenon also found in recent EB spectroscopy in the ultraviolet.

134

, , and

We investigate the existence of magnetohydrostatic equilibria for topologically complex magnetic fields. The approach employed is to perform ideal numerical relaxation experiments. We use a newly developed Lagrangian relaxation scheme that exactly preserves the magnetic field topology during the relaxation. Our configurations include both twisted and sheared fields, of which some fall into the category for which Parker predicted no force-free equilibrium. The first class of field considered contains no magnetic null points, and field lines connect between two perfectly conducting plates. In these cases, we observe only resolved current layers of finite thickness. In further numerical experiments, we confirm that magnetic null points are loci of singular currents.

135

and

A new generation of solar telescopes has led to an increase in the resolution of localized features seen on the Sun spatially, temporally, and spectrally, enabling a detailed study of macrospicules. Macrospicules are members of a wide variety of solar ejecta and ascertaining where they belong in this family is vitally important, particularly given that they are chromospheric events which penetrate the transition region and lower corona. We examine the overall properties of macrospicules, both temporal and spatial. We also investigate possible relationships between the macrospicule properties and the sample time period itself, which is selected as a proxy for the ramp from solar minimum to solar maximum. Measurements are taken using the Solar Dynamic Observatory to provide the necessary temporal resolution and coverage. At each point in time, the length of the macrospicule is measured from base to tip and the width is recorded at half the length at each step. The measurements were then applied to determine the statistical properties and relationships between them. It is evident that the properties of maximum velocity, maximum length, and lifetime are all related in specific, established terms. We provide appropriate scaling in terms of the physical properties, which would be a useful test bed for modeling. Also, we note that the maximum lengths and lifetimes of the features show some correlation with the sample epoch and, therefore, by proxy the solar minimum to maximum ramp.

136

, , , and

We present ultraviolet (UV) follow-up of a sample of potential dwarf galaxy candidates selected for their neutral hydrogen (HI) properties, taking advantage of the low UV background seen by the GALEX satellite and its large and publicly available imaging footprint. The HI clouds, which are drawn from published Galactic Arecibo L-band Feed Array and Arecibo Legacy Fast Arecibo $L$-band Feed Array HI survey compact cloud catalogs, are selected to be galaxy candidates based on their spatial compactness and non-association with known high-velocity cloud complexes or Galactic HI emission. Based on a comparison of their UV characteristics to those of known dwarf galaxies, half (48%) of the compact HI clouds have at least one potential stellar counterpart with UV properties similar to those of nearby dwarf galaxies. If they are galaxies, then the star formation rates, HI masses, and star formation efficiencies of these systems follow the trends seen for much larger galaxies. The presence of UV emission is an efficient method to identify the best targets for spectroscopic follow-up, which is necessary to prove that the stars are associated with compact HI. Furthermore, searches of this nature help to refine the salient HI properties of likely dwarfs (even beyond the Local Group). In particular, HI compact clouds considered to be velocity outliers relative to their neighbor HI clouds have the most significant detection rate of single, appropriate UV counterparts. Correcting for the sky coverage of the two all-Arecibo sky surveys yielding the compact HI clouds, these results may imply the presence of potentially hundreds of new tiny galaxies across the entire sky.

137

, , and

We present a powerful new algorithm that combines both spatial information (event locations and the point-spread function) and spectral information (photon energies) to separate photons from overlapping sources. We use Bayesian statistical methods to simultaneously infer the number of overlapping sources, to probabilistically separate the photons among the sources, and to fit the parameters describing the individual sources. Using the Bayesian joint posterior distribution, we are able to coherently quantify the uncertainties associated with all these parameters. The advantages of combining spatial and spectral information are demonstrated through a simulation study. The utility of the approach is then illustrated by analysis of observations of FK Aqr and FL Aqr with the XMM-Newton Observatory and the central region of the Orion Nebula Cluster with the ChandraX-ray Observatory.

138

, , , and

Type Iax supernovae (SNe Iax) are proposed as one new sub-class of SNe Ia since they present observational properties that are sufficiently distinct from the bulk of SNe Ia. SNe Iax are the most common of all types of peculiar SNe by both number and rate, with an estimated rate of occurrence of about 5%–30% of the total SN Ia rate. However, the progenitor systems of SNe Iax are still uncertain. Analyzing pre-explosion images at SN Iax positions provides a direct way to place strong constraints on the nature of progenitor systems of SNe Iax. In this work, we predict pre-explosion properties of binary companion stars in a variety of potential progenitor systems by performing detailed binary evolution calculations with the one-dimensional stellar evolution code STARS. This will be helpful for constraining progenitor systems of SNe Iax from their pre-explosion observations. With our binary evolution calculations, it is found that the non-degenerate helium (He) companion star to both a massive C/O WD ($\gt 1.1\;{M}_{\odot }$) and a hybrid C/O/Ne WD can provide an explanation for the observations of SN 2012Z-S1, but the hybrid WD+He star scenario is more favorable.

139

, , , , , , , and

Faint Lyα emitters become increasingly rarer toward the reionization epoch (z ∼ 6–7). However, observations from a very large (∼5 deg2) Lyα narrow-band survey at z = 6.6 show that this is not the case for the most luminous emitters, capable of ionizing their own local bubbles. Here we present follow-up observations of the two most luminous Lyα candidates in the COSMOS field: "MASOSA" and "CR7." We used X-SHOOTER, SINFONI, and FORS2 on the Very Large Telescope, and DEIMOS on Keck, to confirm both candidates beyond any doubt. We find redshifts of z = 6.541 and z = 6.604 for "MASOSA" and "CR7," respectively. MASOSA has a strong detection in Lyα with a line width of 386 ± 30 km s−1 (FWHM) and with very high EW0 (>200 Å), but undetected in the continuum, implying very low stellar mass and a likely young, metal-poor stellar population. "CR7," with an observed Lyα luminosity of 1043.92±0.05 erg s−1 is the most luminous Lyα emitter ever found at z > 6 and is spatially extended (∼16 kpc). "CR7" reveals a narrow Lyα line with 266 ± 15 km s−1 FWHM, being detected in the near-infrared (NIR) (rest-frame UV; β = −2.3 ± 0.1) and in IRAC/Spitzer. We detect a narrow He ii 1640 Å emission line (6σ, FWHM = 130 ± 30 km s−1) in CR7 which can explain the clear excess seen in the J-band photometry (EW0 ∼ 80 Å). We find no other emission lines from the UV to the NIR in our X-SHOOTER spectra (He ii/O iii] 1663 Å > 3 and He ii/C iii] 1908 Å > 2.5). We conclude that CR7 is best explained by a combination of a PopIII-like population, which dominates the rest-frame UV and the nebular emission, and a more normal stellar population, which presumably dominates the mass. Hubble Space Telescope/WFC3 observations show that the light is indeed spatially separated between a very blue component, coincident with Lyα and He ii emission, and two red components (∼5 kpc away), which dominate the mass. Our findings are consistent with theoretical predictions of a PopIII wave, with PopIII star formation migrating away from the original sites of star formation.

140

, , and

Physical parameters of both the mass donor and compact object can be constrained in X-ray binaries with well-defined eclipses, as our survey of wind-fed supergiant X-ray binaries IGR J16393-4643, IGR J16418-4532, IGR J16479-4514, IGR J18027-2016, and XTE J1855-026 reveals. Using the orbital period and Kepler's third law, we express the eclipse half-angle in terms of radius, inclination angle, and the sum of the masses. Pulse-timing and radial velocity curves can give masses of both the donor and compact object as in the case of the "double-lined" binaries IGR J18027-2016 and XTE J1855-026. The eclipse half angles are ${15}_{-2}^{+3}$, ${31.7}_{-0.8}^{+0.7}$, 32 ± 2,34 ± 2, and $33.6\pm 0.7$ degrees for IGR J16393-4643, IGR J16418-4532, IGR J16479-4514, IGR J18027-2016, and XTE 1855-026, respectively. In wind-fed systems, the primary not exceeding the Roche-lobe size provides an upper limit on system parameters. In IGR J16393-4643, spectral types of B0 V or B0-5 III are found to be consistent with the eclipse duration and Roche-lobe, but the previously proposed donor stars in IGR J16418-4532 and IGR J16479-4514 were found to be inconsistent with the Roche-lobe size. Stars with spectral types O7.5 I and earlier are possible. For IGR J18027-2016, the mass and radius of the donor star lie between 18.6–19.4 ${M}_{\odot }$ and 17.4–19.5 ${R}_{\odot }$. We constrain the neutron star mass between 1.37 and 1.43 ${M}_{\odot }$.We find the mass and radius of the donor star in XTE J1855-026 to lie between 19.6–20.2 ${M}_{\odot }$ and 21.5–23.0 ${R}_{\odot }$. The neutron star mass was constrained to 1.77–1.82 ${M}_{\odot }$. Eclipse profiles are asymmetric in IGR J18027-2016 and XTE J1855-026, which we attribute to accretion wakes.

141

, , , , and

We present an approach to deriving global properties of accretion disks from the knowledge of local solutions derived from numerical simulations based on the shearing box approximation. The approach consists of a two-step procedure. First, a local solution valid for all values of the disk height is constructed by piecing together an interior solution obtained numerically with an analytical exterior radiative solution. The matching is obtained by assuming hydrostatic balance and radiative equilibrium. Although in principle the procedure can be carried out in general, it simplifies considerably when the interior solution is fully convective. In these cases, the construction is analogous to the derivation of the Hayashi tracks for protostars. The second step consists of piecing together the local solutions at different radii to obtain a global solution. Here we use the symmetry of the solutions with respect to the defining dimensionless numbers—in a way similar to the use of homology relations in stellar structure theory—to obtain the scaling properties of the various disk quantities with radius.

142

, , , and

We analyze the X-ray spectra of the atoll 4U 1705–44 when the source undergoes the island−banana state transition. We use the RXTE and BeppoSAX observations for this analysis. We demonstrate that the broadband energy spectral distributions for all evolutinary states can be fitted by a model consisting of two Comptonized components. One arises from the seed photons coming from a neutron star (NS) atmosphere at a temperature ${{kT}}_{{\rm{s}}1}\lesssim 1.5$ keV (herein Comptb1), and a second results from the seed photons of ${T}_{{\rm{s}}2}\;\sim $ 1.1–1.3 keV coming from the disk (herein Comptb2). We found that we needed to add a low-temperature blackbody and an iron-line (Gaussian) component to the model in order to obtain high-quality fits. The data analysis using this model indicates that the power-law photon index ${{\rm{\Gamma }}}_{1}$ of our model is always about 2, independently of the spectral state. Another parameter, ${{\rm{\Gamma }}}_{2}$, demonstrates a two-phase behavior depending on the spectral state. ${{\rm{\Gamma }}}_{2}$ is quasi-constant at ${{\rm{\Gamma }}}_{2}\sim 2$ when the electron temperature ${{kT}}_{{\rm{e}}}^{(2)}\lt 80$ keV, and ${{\rm{\Gamma }}}_{2}$ is less than 2, in the range of $1.3\lt {{\rm{\Gamma }}}_{2}\lt 2$, when ${{kT}}_{{\rm{e}}}^{(2)}\gt 80$ keV. This phase is similar to that previously found in the Z-source Sco X-1. We interpret the decreasing index phase using a model in which a super-Eddington radiation pressure from the NS causes an expansion of the Compton cloud similar to that found previously in Sco X-1 during the Flaring branch.

143

, , , , , , , , , et al

The mean production factor, or broadband averaged cross-section, for solar wind charge-exchange (SWCX) with hydrogen producing emission in the ROSAT$\frac{1}{4}$ keV (R12) band is $(3.8\pm 0.2)\times {10}^{-20}$ count degree−2 cm4. The production factor is expected to be temporally variable, and that variation is roughly 15%. These values are derived from a comparison of the long-term (background) enhancements in the ROSAT All-Sky Survey with magnetohysdrodynamic simulations of the magnetosheath. This value is 1.8–4.5 times higher than values derived from limited atomic data, suggesting that those values may be missing a large number of faint lines. This production factor is important for deriving the exact amount of $\frac{1}{4}$ keV band flux that is due to the Local Hot Bubble, for planning future observations in the $\frac{1}{4}$ keV band, and for evaluating proposals for remote sensing of the magnetosheath. The same method cannot be applied to the $\frac{3}{4}$ keV band as that band, being composed primarily of the oxygen lines, is far more sensitive to the detailed abundances and ionization balance in the solar wind. We also show, incidentally, that recent efforts to correlate XMM-Newton observing geometry with magnetosheath SWCX emission in the oxygen lines have been, quite literally, misguided. Simulations of the inner heliosphere show that broader efforts to correlate heliospheric SWCX with local solar wind parameters are unlikely to produce useful results.

144

, , , and

We present an energy dependent X-ray variability study of the 2010 outburst of the black hole X-ray binary MAXI J1659–152 with the Swift X-ray Telescope (XRT). The broadband noise components and the quasi-periodic oscillations (QPO) observed in the power spectra show a strong and varied energy dependence. Combining Swift XRT data with data from the Rossi X-ray Timing Explorer, we report, for the first time, an rms spectrum (fractional rms amplitude as a function of energy) of these components in the 0.5–30 keV energy range. We find that the strength of the low-frequency component (<0.1 Hz) decreases with energy, contrary to the higher frequency components (>0.1 Hz) whose strengths increase with energy. In the context of the propagating fluctuations model for X-ray variability, we suggest that the low-frequency component originates in the accretion disk (which dominates emission below ∼2 keV) and the higher frequency components are formed in the hot flow (which dominates emission above ∼2 keV). As the properties of the QPO suggest that it may have a different driving mechanism, we investigate the Lense–Thirring precession of the hot flow as a candidate model. We also report on the QPO coherence evolution for the first time in the energy band below 2 keV. While there are strong indications that the QPO is less coherent at energies below 2 keV than above 2 keV, the coherence increases with intensity similar to what is observed at energies above 2 keV in other black hole X-ray binaries.

145

, , , and

The Spitzer/Infrared Spectrograph spectra of three spectroscopically anomalous galaxies (IRAS F10398+1455, IRAS F21013–0739, and SDSS J0808+3948) are modeled in terms of a mixture of warm and cold silicate dust, and warm and cold carbon dust. Their unique infrared (IR) emission spectra are characterized by a steep ∼5–8 μm emission continuum, strong emission bands from polycyclic aromatic hydrocarbon (PAH) molecules, and prominent silicate emission. The steep ∼5–8 μm emission continuum and strong PAH emission features suggest the dominance of starbursts, while the silicate emission is indicative of significant heating from active galactic nuclei (AGNs). With warm and cold silicate dust of various compositions ("astronomical silicate," amorphous olivine, or amorphous pyroxene) combined with warm and cold carbon dust (amorphous carbon, or graphite), we are able to closely reproduce the observed IR emission of these galaxies. We find that the dust temperature is the primary cause in regulating the steep ∼5–8 μm continuum and silicate emission, insensitive to the exact silicate or carbon dust mineralogy and grain size a as long as $a\lesssim 1\;\mu {\rm{m}}$. More specifically, the temperature of the ∼5–8 μm continuum emitter (which is essentially carbon dust) of these galaxies is ∼250–400 K, much lower than that of typical quasars, which is ∼640 K. Moreover, it appears that larger dust grains are preferred in quasars. The lower dust temperature and smaller grain sizes inferred for these three galaxies compared with that of quasars could be due to the fact that they may harbor a young/weak AGNs that is not maturely developed yet.

146

, , , , , and

We have used the Karl G. Jansky Very Large Array (VLA) to carry out multi-epoch radio continuum monitoring of the Orion Nebula Cluster (ONC) and the background Orion Molecular Cloud (OMC; 3 epochs at Q band and 11 epochs at Ka band). Our new observations reveal the presence of 19 radio sources, mainly concentrated in the Trapezium Cluster and the Orion Hot Core (OHC) regions. With the exception of the Becklin–Neugebauer object and source C (which we identify here as dust emission associated with a proplyd) the sources all show radio variability between the different epochs. We have found tentative evidence of variability in the emission from the massive object related to source I. Our observations also confirm radio flux density variations of a factor >2 on timescales of hours to days in five sources. One of these flaring sources, OHC-E, has been detected for the first time. We conclude that the radio emission can be attributed to two different components: (i) highly variable (flaring) non-thermal radio gyrosynchrotron emission produced by electrons accelerated in the magnetospheres of pre-main-sequence low-mass stars and (ii) thermal emission due to free–free radiation from ionized gas and/or heated dust around embedded massive objects and proplyds. Combining our sample with other radio monitoring at 8.3 GHz and the X-ray catalog provided by Chandra, we have studied the properties of the entire sample of radio/X-ray stars in the ONC/OMC region (51 sources). We have found several hints of a relation between the X-ray activity and the mechanisms responsible for (at least some fraction of) the radio emission. We have estimated a radio flaring rate of ∼0.14 flares day−1 in the dense stellar cluster embedded in the OHC region. This suggests that radio flares are more common events during the first stages of stellar evolution than previously thought. The advent of improved sensitivity with the new VLA and ALMA will dramatically increase the number of stars in young clusters detected at radio wavelengths, which will help us improve our understanding of the origin and nature of the radio emission.

147

, , and

We study the changes in the sublimation wall structure due to variable illumination of a stellar hot spot on the dusty surroundings of a young star. The model includes the settling of large grains toward the disk midplane and the effect of the vertical density profile on the shaping of the sublimation wall. From a survey of objects in the young cluster IC 348, we extract three objects (LRLL 32, 40, and 63) that present typical variability in the [3.6] and [4.5] IRAC bands. We use the Spitzer photometry and ground-based 2–5 μm spectra for comparison with the models. Even though there is a correlation between accretion luminosity and dust emission based on the observations, we conclude from the modeling that the systems with lower mass accretion rates (LRLL 32 and 63) cannot be explained simply by a variable hot spot illuminating a sublimation wall. The observed variability amplitude for LRLL 40 (the system with the largest value of the mass accretion rate) can be obtained using the mechanism presented here. When considering a wide range of hot spot sizes and temperatures, the models can reproduce the infrared fluctuations seen in recent surveys, but only with accretion rate fluctuations that are orders of magnitude larger than is typically observed. These results highlight the relevance of accretion as a variability mechanism as well as its limitations in producing the full extent of the observed infrared variability.

148

, , , , , , , , , et al

We present atmospheric parameters for 51 nearby F and G dwarf and subgiant stars uniformly distributed over the $-2.60\lt [\mathrm{Fe}/{\rm{H}}]\lt +0.20$ metallicity range that is suitable for the Galactic chemical evolution research. Lines of iron in the two ionization stages, Fe i and Fe ii, were used to derive a homogeneous set of effective temperatures, surface gravities, iron abundances, and microturbulence velocities. Our spectroscopic analyses took advantage of employing high-resolution (R ≥ 60,000) Shane/Hamilton and Canada–France–Hawaii Telescope/ESPaDOnS observed spectra and non-LTE (NLTE) line formation for Fe i and Fe ii in the classical one-dimensional model atmospheres. The spectroscopic method was tested in advance with the 20 benchmark stars, for which there are multiple measurements of the infrared flux method effective temperature and their Hipparcos parallax error is less than 10%. We found NLTE abundances from lines of Fe i and Fe ii to be consistent within 0.06 dex for every benchmark star, when applying a scaling factor of ${S}_{{\rm{H}}}$ = 0.5 to the Drawinian rates of inelastic Fe+H collisions. The obtained atmospheric parameters were checked for each program star by comparing its position in the log g${T}_{\mathrm{eff}}$ plane with the theoretical evolutionary track of given metallicity and α-enhancement in the Yi et al. grid. Our final effective temperatures lie exactly in between the ${T}_{\mathrm{IRFM}}$ scales of Alonso et al. and Casagrande et al., with a mean difference of +46 and −51 K, respectively. NLTE leads to higher surface gravity compared with that for LTE. The shift in log g is smaller than 0.1 dex for stars with [Fe/H] $\geqslant -0.75$, ${T}_{\mathrm{eff}}$ ≤ 5750 K, or log g ≥ 4.20. NLTE analysis is crucial for the very metal-poor turnoff and subgiant stars, for which the shift in log g between NLTE and LTE can be up to 0.5 dex. The obtained accurate atmospheric parameters will be used in the forthcoming papers to determine NLTE abundances of important astrophysical elements from lithium to europium and to improve observational constraints on the chemodynamical models of the Galaxy evolution.

149

, , , , , , and

The yield of Earth-like planets will likely be a primary science metric for future space-based missions that will drive telescope aperture size. Maximizing the exoEarth candidate yield is therefore critical to minimizing the required aperture. Here we describe a method for exoEarth candidate yield maximization that simultaneously optimizes, for the first time, the targets chosen for observation, the number of visits to each target, the delay time between visits, and the exposure time of every observation. This code calculates both the detection time and multi-wavelength spectral characterization time required for planets. We also refine the astrophysical assumptions used as inputs to these calculations, relying on published estimates of planetary occurrence rates as well as theoretical and observational constraints on terrestrial planet sizes and classical habitable zones. Given these astrophysical assumptions, optimistic telescope and instrument assumptions, and our new completeness code that produces the highest yields to date, we suggest lower limits on the aperture size required to detect and characterize a statistically motivated sample of exoEarths.

150

and

We construct models of the structural evolution of super-Earth- and mini-Neptune-type exoplanets with H2–He envelopes, incorporating radiative cooling and XUV-driven mass loss. We conduct a parameter study of these models, focusing on initial mass, radius, and envelope mass fractions, as well as orbital distance, metallicity, and the specific prescription for mass loss. From these calculations, we investigate how the observed masses and radii of exoplanets today relate to the distribution of their initial conditions. Orbital distance and the initial envelope mass fraction are the most important factors determining planetary evolution, particularly radius evolution. Initial mass also becomes important below a "turnoff mass," which varies with orbital distance, with mass–radius curves being approximately flat for higher masses. Initial radius is the least important parameter we study, with very little difference between the hot start and cold start limits after an age of 100 Myr. Model sets with no mass loss fail to produce results consistent with observations, but a plausible range of mass-loss scenarios is allowed. In addition, we present scenarios for the formation of the Kepler-11 planets. Our best fit to observations of Kepler-11b and Kepler-11c involves formation beyond the snow line, after which they moved inward, circularized, and underwent a reduced degree of mass loss.

151

, , , and

We use the Planck full mission temperature maps to examine the stacked thermal Sunyaev–Zel'dovich (tSZ) signal of 188,042 "locally brightest galaxies" (LBGs) selected from the Sloan Digital Sky Survey Data Release 7. Our LBG sample closely matches that of Planck Collaboration XI (PCXI), but our analysis differs in several ways. We work directly in terms of physically observable quantities, requiring minimal assumptions about the gas pressure profile. We explicitly model the dust emission from each LBG and simultaneously measure both the stacked tSZ and dust signals as a function of stellar mass ${M}_{*}$. There is a small residual bias in stacked tSZ measurements; we measure this bias and subtract it from our results, finding that the effects are non-negligible at the lowest masses in the LBG sample. Finally, we compare our measurements with two pressure profile models, finding that the profile from Battaglia et al. provides a better fit to the results than the Arnaud et al. "universal pressure profile." However, within the uncertainties, we find that the data are consistent with a self-similar scaling with mass—more precise measurements are needed to detect the relatively small deviations from self-similarity predicted by these models. Consistent with PCXI, we measure the stacked tSZ signal from LBGs with stellar masses down to ${\mathrm{log}}_{10}({M}_{*}/{M}_{\odot })\;\sim $ 11.1–11.3. For lower stellar masses, however, we do not see evidence for a stacked tSZ signal. We note that the stacked dust emission is comparable to, or larger than, the stacked tSZ signal for ${\mathrm{log}}_{10}({M}_{*}/{M}_{\odot })\lesssim 11.3$. Future tSZ analyses with larger samples and lower noise levels should be able to probe deviations from self-similarity and thus provide constraints on models of feedback and the evolution of hot halo gas over cosmic time.

152

, , and

The Planck satellite, along with several ground-based telescopes, has mapped the cosmic microwave background (CMB) at sufficient resolution and signal-to-noise so as to allow a detection of the subtle distortions due to the gravitational influence of the intervening matter distribution. A natural modeling approach is to write a Bayesian hierarchical model for the lensed CMB in terms of the unlensed CMB and the lensing potential. So far there has been no feasible algorithm for inferring the posterior distribution of the lensing potential from the lensed CMB map. We propose a solution that allows efficient Markov Chain Monte Carlo sampling from the joint posterior of the lensing potential and the unlensed CMB map using the Hamiltonian Monte Carlo technique. The main conceptual step in the solution is a re-parameterization of CMB lensing in terms of the lensed CMB and the "inverse lensing" potential. We demonstrate a fast implementation on simulated data, including noise and a sky cut, that uses a further acceleration based on a very mild approximation of the inverse lensing potential. We find that the resulting Markov Chain has short correlation lengths and excellent convergence properties, making it promising for applications to high-resolution CMB data sets in the future.

153

and

NGC 4013 is a distinctly warped galaxy with evidence of disk–halo activity. Through deep Hi observations and modeling we confirm that the Hi disk is thin (central exponential scale height with an upper limit of 4'' or 280 pc), but flaring. We detect a vertical gradient in rotation velocity (lag), which shallows radially from a value of −35${}_{-28}^{+7}$ km s−1 kpc−1 at 1farcm4 (5.8 kpc), to a value of zero near R25 (11.2 kpc). Over much of this radial range, the lag is relatively steep. Both the steepness and the radial shallowing are consistent with recent determinations for a number of edge-ons, which have been difficult to explain. We briefly consider the lag measured in NGC 4013 in the context of this larger sample and theoretical models, further illuminating disk–halo flows.

154

, , , , , , , , , et al

We present NuSTAR observations of the powerful radio galaxy Cygnus A, focusing on the central absorbed active galactic nucleus (AGN). Cygnus A is embedded in a cool-core galaxy cluster, and hence we also examine archival XMM-Newton data to facilitate the decomposition of the spectrum into the AGN and intracluster medium components. NuSTAR gives a source-dominated spectrum of the AGN out to $\gt 70$ keV. In gross terms, the NuSTAR spectrum of the AGN has the form of a power law (${\rm{\Gamma }}\sim 1.6-1.7$) absorbed by a neutral column density of ${N}_{{\rm{H}}}\sim 1.6\times {10}^{23}\;\;{\mathrm{cm}}^{-2}$. However, we also detect curvature in the hard ($\gt 10$ keV) spectrum resulting from reflection by Compton-thick matter out of our line of sight to the X-ray source. Compton reflection, possibly from the outer accretion disk or obscuring torus, is required even permitting a high-energy cut off in the continuum source; the limit on the cut-off energy is ${E}_{\mathrm{cut}}\gt 111$ keV(90% confidence). Interestingly, the absorbed power law plus reflection model leaves residuals suggesting the absorption/emission from a fast ($15,000-26,000\;\;\mathrm{km}\;\;{{\rm{s}}}^{-1}\;$), high column-density (${N}_{W}\gt 3\times {10}^{23}\;\;{\mathrm{cm}}^{-2}$), highly ionized ($\xi \sim 2500\;\mathrm{erg}\;\mathrm{cm}\;{{\rm{s}}}^{-1}$) wind. A second, even faster ionized wind component is also suggested by these data. We show that the ionized wind likely carries a significant mass and momentum flux, and may carry sufficient kinetic energy to exercise feedback on the host galaxy. If confirmed, the simultaneous presence of a strong wind and powerful jets in Cygnus A demonstrates that feedback from radio-jets and sub-relativistic winds are not mutually exclusive phases of AGN activity but can occur simultaneously.

155

, , , , , and

We report the first high angular resolution imaging (3farcs4 × 3farcs0) of deuterated formaldehyde (HDCO) toward Orion-KL, carried out with the Submillimeter Array. We find that the spatial distribution of the formaldehyde emission systematically differs from that of methanol: while methanol is found toward the inner part of the region, HDCO is found in colder gas that wraps around the methanol emission on four sides. The HDCO/H2CO ratios are determined to be 0.003–0.009 within the region, up to an order of magnitude higher than the D/H measured for methanol. These findings strengthen the previously suggested hypothesis that there are differences in the chemical pathways leading to HDCO (via deuterated gas-phase chemistry) and deuterated methanol (through conversion of formaldehyde into methanol on the surface of icy grain mantles).

156

, , , , , , , , , and

We present initial pulsar results from the first station of the Long Wavelength Array (LWA1) obtained during the commissioning period of LWA1 and in early science results. We present detections of periodic emission from 44 previously known pulsars, including 3 millisecond pulsars. The effects of the interstellar medium (ISM) on pulsar emission are significantly enhanced at the low frequencies of the LWA1 band (10–88 MHz), making LWA1 a very sensitive instrument for characterizing changes in the dispersion measure (DM) and other effects from the ISM. Pulsars also often have significant evolution in their pulse profile at low frequency and a break in their spectral index. We report DM measurements for 44 pulsars, mean flux density measurements for 36 pulsars, and multi-frequency component spacing and widths for 15 pulsars with more than one profile component. For 27 pulsars, we report spectral index measurements within our frequency range. We also introduce the LWA1 Pulsar Data Archive, which stores reduced data products from LWA1 pulsar observations. Reduced data products for the observations presented here can be found in the archive. Reduced data products from future LWA1 pulsar observations will also be made available through the archive.

157

and

Cosmic rays (CR), constrained by scattering on magnetic irregularities, are believed to propagate diffusively. However, a well-known defect of diffusive approximation, whereby some of the particles propagate unrealistically fast, has directed interest toward an alternative CR transport model based on the "telegraph" equation. Though, its derivations often lack rigor and transparency leading to inconsistent results. We apply the classic Chapman–Enskog method to the CR transport problem. We show that no "telegraph" (second order time derivative) term emerges in any order of a proper asymptotic expansion with systematically eliminated short timescales. Nevertheless, this term may formally be converted from the fourth order hyper-diffusive term of the expansion. However, both the telegraph and hyperdiffusive terms may only be important for a short relaxation period associated with either strong pitch-angle anisotropy or spatial inhomogeneity of the initial CR distribution. Beyond this period the system evolves diffusively in both cases. The term conversion, that makes the telegraph and Chapman–Enskog approaches reasonably equivalent, is possible only after this relaxation period. During this period, the telegraph solution is argued to be unphysical. Unlike the hyperdiffusion correction, it is not uniformly valid and introduces implausible singular components to the solution. These dominate the solution during the relaxation period. Because they are shown not to be inherent in the underlying scattering problem, we argue that the telegraph term is involuntarily acquired in an asymptotic reduction of the problem.

158

The structure and dark matter halo core properties of dwarf spheroidal galaxies (dSphs) are investigated. A double-isothermal (DIS) model of an isothermal, non-self-gravitating stellar system embedded in an isothermal dark halo core provides an excellent fit to the various observed stellar surface density distributions. The stellar core scale length a* is sensitive to the central dark matter density ρ0,d. The maximum stellar radius traces the dark halo core radius ${r}_{c,d}$. The concentration c* of the stellar system, determined by a King profile fit, depends on the ratio of the stellar-to-dark-matter velocity dispersion ${\sigma }_{*}/{\sigma }_{d}$. Simple empirical relationships are derived that allow us to calculate the dark halo core parameters ρ0,d, ${r}_{c,d}$, and σd given the observable stellar quantities σ*, a*, and c*. The DIS model is applied to the Milky Way's dSphs. All dSphs closely follow the same universal dark halo scaling relations ${\rho }_{0,d}\times {r}_{c,d}={75}_{-45}^{+85}$M pc−2 that characterize the cores of more massive galaxies over a large range in masses. The dark halo core mass is a strong function of core radius, ${M}_{c,d}\sim {r}_{c,d}^{2}$. Inside a fixed radius of ∼400 pc the total dark matter mass is, however, roughly constant with ${M}_{d}=2.6\pm 1.4\times {10}^{7}$M, although outliers are expected. The dark halo core densities of the Galaxy's dSphs are very high, with ${\rho }_{0,d}\;\approx $ 0.2 M pc−3. dSphs should therefore be tidally undisturbed. Evidence for tidal effects might then provide a serious challenge for the CDM scenario.

159

, , , , , and

We study the relation of active galactic nuclei (AGNs) to star formation in their host galaxies. Our sample includes 205 Type-1 and 85 Type-2 AGNs, 162 detected with Herschel, from fields surrounding 30 galaxy clusters in the Local Cluster Substructure Survey. The sample is identified by optical line widths and ratios after selection to be brighter than 1 mJy at 24 μm. We show that Type-2 AGN [O iii]λ5007 line fluxes at high z can be contaminated by their host galaxies with typical spectrograph entrance apertures (but our sample is not compromised in this way). We use spectral energy distribution (SED) templates to decompose the galaxy SEDs and estimate star formation rates (SFRs), AGN luminosities, and host galaxy stellar masses (described in an accompanying paper). The AGNs arise from massive black holes ($\sim 3\times {10}^{8}{M}_{\odot }$) accreting at ∼10% of the Eddington rate and residing in galaxies with stellar mass $\gt 3\times {10}^{10}{M}_{\odot }$; those detected with Herschel have IR luminosity from star formation in the range of ${L}_{\mathrm{SF},\mathrm{IR}}\sim {10}^{10}-{10}^{12}{L}_{\odot }$. We find that (1) the specific SFRs in the host galaxies are generally consistent with those of normal star-forming (main sequence) galaxies; (2) there is a strong correlation between the luminosities from star formation and the AGN; and (3) the correlation may not result from a causal connection, but could arise because the black hole mass (and hence AGN Eddington luminosity) and star formation are both correlated with the galaxy mass.

160

, , , and

We use Hubble Space Telescope Wide-field Camera 3 rest-frame optical imaging to select a pilot sample of star-forming galaxies in the redshift range z = 2.00–2.65 whose multi-component morphologies are consistent with expectations for major mergers. We follow up this sample of major merger candidates with Keck/NIRSPEC long-slit spectroscopy obtained in excellent seeing conditions (FWHM ∼0.5 arcsec) to obtain Hα-based redshifts of each of the morphological components in order to distinguish spectroscopic pairs from false pairs created by projection along the line of sight. Of the six candidate pairs observed, companions (estimated mass ratios 5:1 and 7:1) are detected for two galaxies down to a $3\sigma $ limiting emission-line flux of $\sim {10}^{-17}$ erg s−1 cm−2. This detection rate is consistent with a ∼50% false-pair fraction at such angular separations (1–2 arcsec) and with recent claims that the star formation rate (SFR) can differ by an order of magnitude between the components in such mergers. The two spectroscopic pairs identified have a total SFR, SFR surface densities, and stellar masses consistent on average with the overall $z\sim 2$ star-forming galaxy population.

161

, , , , , , , , , et al

We investigate the stellar population properties of a sample of 24 massive quenched galaxies at $1.25\lt {z}_{\mathrm{spec}}\lt 2.09$ identified in the COSMOS field with our Subaru/Multi-object Infrared Camera and Spectrograph near-IR spectroscopic observations. Tracing the stellar population properties as close to their major formation epoch as possible, we try to put constraints on the star formation history, post-quenching evolution, and possible progenitor star-forming populations for such massive quenched galaxies. By using a set of Lick absorption line indices on a rest-frame optical composite spectrum, the average age, metallicity [Z/H], and α-to-iron element abundance ratio [α/Fe] are derived as $\mathrm{log}(\mathrm{age}/\mathrm{Gyr})={0.04}_{-0.08}^{+0.10}$, $[{\rm{Z}}/{\rm{H}}]={0.24}_{-0.14}^{+0.20}$, and $[\alpha /\mathrm{Fe}]={0.31}_{-0.12}^{+0.12}$, respectively. If our sample of quenched galaxies at $\langle z\rangle =1.6$ is evolved passively to z = 0, their stellar population properties will align in excellent agreement with local counterparts at similar stellar velocity dispersions, which qualifies them as progenitors of local massive early-type galaxies. Redshift evolution of stellar population ages in quenched galaxies combined with low redshift measurements from the literature suggests a formation redshift of ${z}_{{\rm{f}}}\sim 2.3$, around which the bulk of stars in these galaxies have been formed. The measured [α/Fe] value indicates a star formation timescale of $\lesssim 1$ Gyr, which can be translated into a specific star formation rate of $\simeq 1\;{\mathrm{Gyr}}^{-1}$ prior to quenching. Based on these findings, we discuss identifying possible progenitor star-forming galaxies at $z\simeq 2.3$. We identify normal star-forming galaxies, i.e., those on the star-forming main sequence, followed by a rapid quenching event, as likely precursors of the quenched galaxies at $\langle z\rangle =1.6$ presented here.

162

, , , , , , , , and

We present the analysis of the radio jet evolution of the radio galaxy 3C 120 during a period of prolonged γ-ray activity detected by the Fermi satellite between 2012 December and 2014 October. We find a clear connection between the γ-ray and radio emission, such that every period of γ-ray activity is accompanied by the flaring of the millimeter very long baseline interferometry (VLBI) core and subsequent ejection of a new superluminal component. However, not all ejections of components are associated with γ-ray events detectable by Fermi. Clear γ-ray detections are obtained only when components are moving in a direction closer to our line of sight. This suggests that the observed γ-ray emission depends not only on the interaction of moving components with the millimeter VLBI core, but also on their orientation with respect to the observer. Timing of the γ-ray detections and ejection of superluminal components locate the γ-ray production to within ∼0.13 pc from the millimeter VLBI core, which was previously estimated to lie about 0.24 pc from the central black hole. This corresponds to about twice the estimated extension of the broad line region, limiting the external photon field and therefore suggesting synchrotron self Compton as the most probable mechanism for the production of the γ-ray emission. Alternatively, the interaction of components with the jet sheath can provide the necessary photon field to produced the observed γ-rays by Compton scattering.

163

, , , , and

Recent studies of active galactic nuclei (AGNs) found a statistically inverse linear scaling between the X-ray normalized excess variance ${\sigma }_{\mathrm{rms}}^{2}$ (variability amplitude) and the black hole (BH) mass spanning over ${M}_{\mathrm{BH}}={10}^{6}-{10}^{9}\ {M}_{\odot }$. Suggested as having a small scatter, this scaling relation may provide a novel method to estimate the BH mass of AGNs. However, a question arises as to whether this relation can be extended to the low-mass regime below $\sim {10}^{6}\ {M}_{\odot }$. If confirmed, it would provide an efficient tool to search for AGNs with low-mass BHs using X-ray variability. This paper presents a study of the X-ray excess variances for a sample of AGNs with BH masses in the range of ${10}^{5}-{10}^{6}\ {M}_{\odot }$ observed with XMM-Newton and ROSAT, including data both from the archives and from newly preformed observations. It is found that the relation is no longer a simple extrapolation of the linear scaling; instead, the relation starts to flatten at $\sim {10}^{6}\ {M}_{\odot }$ toward lower masses. Our result is consistent with the recent finding of Ludlam et al. Such a flattening of the ${M}_{\mathrm{BH}}-{\sigma }_{\mathrm{rms}}^{2}$ relation is actually expected from the shape of the power spectrum density of AGNs, for which the break frequency is inversely scaled with the mass of BHs.

164

, , , , , , , and

Matter mixing is one important topic in the study of core-collapse supernova (CCSN) explosions. In this paper, we perform two-dimensional hydrodynamic simulations to reproduce the high velocity 56Ni clumps observed in SN 1987A. This is the first time that large density perturbation is proposed in the CCSN progenitor to generate Rayleigh–Taylor (RT) instability and make the effective matter mixing. In the case of a spherical explosion, RT instability is efficient at both C+O/He and He/H interfaces of the SN progenitor. Radial coherent structures shown in perturbation patterns are important for obtaining high velocity 56Ni clumps. We can also obtain matter mixing features and high velocity 56Ni clumps in some cases of aspherical explosion. We find that one of the most favorable models in our work has a combination of bipolar and equatorially asymmetric explosions in which at least 25% of density perturbation is introduced at different composition interfaces of the CCSN progenitor. These simulation results are comparable to the observational findings of SN 1987A.

165

We present various infrared two-color diagrams (2CDs) for asymptotic giant branch (AGB) stars, post-AGB stars, and Planetary Nebulae (PNe) and investigate possible evolutionary tracks. We use catalogs from the available literature for the sample of 4903 AGB stars (3373 O-rich; 1168 C-rich; 362 S-type), 660 post-AGB stars (326 post-AGB; 334 pre-PN), and 1510 PNe in our Galaxy. For each object in the catalog, we cross-identify the IRAS, AKARI, Midcourse Space Experiment, and 2MASS counterparts. The IR 2CDs can provide useful information about the structure and evolution of the dust envelopes as well as the central stars. To find possible evolutionary tracks from AGB stars to PNe on the 2CDs, we investigate spectral evolution of post-AGB stars by making simple but reasonable assumptions on the evolution of the central star and dust shell. We perform radiative transfer model calculations for the detached dust shells around evolving central stars in the post-AGB phase. We find that the theoretical dust shell model tracks using dust opacity functions of amorphous silicate and amorphous carbon roughly coincide with the densely populated observed points of AGB stars, post-AGB stars, and PNe on various IR 2CDs. Even though some discrepancies are inevitable, the end points of the theoretical post-AGB model tracks generally converge in the region of the observed points of PNe on most 2CDs.

166

and

We present multi-epoch spectroscopy of "heartbeat stars," eccentric binaries with dynamic tidal distortions and tidally induced pulsations originally discovered with the Kepler satellite. Optical spectra of six known heartbeat stars using the Wyoming Infrared Observatory 2.3 m telescope allow measurement of stellar effective temperatures and radial velocities from which we determine orbital parameters including the periods, eccentricities, approximate mass ratios, and component masses. These spectroscopic solutions confirm that the stars are members of eccentric binary systems with eccentricities e > 0.34 and periods P = 7–20 days, strengthening conclusions from prior works that utilized purely photometric methods. Heartbeat stars in this sample have A- or F-type primary components. Constraints on orbital inclinations indicate that four of the six systems have minimum mass ratios q = 0.3–0.5, implying that most secondaries are probable M dwarfs or earlier. One system is an eclipsing, double-lined spectroscopic binary with roughly equal-mass mid-A components (q = 0.95), while another shows double-lined behavior only near periastron, indicating that the F0V primary has a G1V secondary (q = 0.65). This work constitutes the first measurements of the masses of secondaries in a statistical sample of heartbeat stars. The good agreement between our spectroscopic orbital elements and those derived using a photometric model support the idea that photometric data are sufficient to derive reliable orbital parameters for heartbeat stars.

167

, , , , , , , and

We analyze spectra obtained with the Spitzer Infrared Spectrograph (IRS) of 110 B-, A-, F-, and G-type stars with optically thin infrared excess in the Scorpius–Centaurus OB association. The ages of these stars range from 11 to 17 Myr. We fit the infrared excesses observed in these sources by Spitzer IRS and the Multiband Imaging Photometer for Spitzer (MIPS) to simple dust models according to Mie theory. We find that nearly all of the objects in our study can be fit by one or two belts of dust. Dust around lower mass stars appears to be closer in than around higher mass stars, particularly for the warm dust component in the two-belt systems, suggesting a mass-dependent evolution of debris disks around young stars. For those objects with stellar companions, all dust distances are consistent with truncation of the debris disk by the binary companion. The gaps between several of the two-belt systems can place limits on the planets that might lie between the belts, potentially constraining the mass and locations of planets that may be forming around these stars.

168

, , , , , , and

Aiming to distinguish two types of progenitors of core-collapse supernovae, i.e., one with a core composed mainly of oxygen and neon (abbreviated as ONe core) and the other with an iron core (or Fe core), we calculated the luminosities and spectra of neutrinos emitted from these cores prior to gravitational collapse, taking neutrino oscillation into account. We found that the total energies emitted as ${\bar{\nu }}_{{\rm{e}}}$ from the ONe core are $\lesssim {10}^{46}\;\mathrm{erg}$, which is much smaller than $\sim {10}^{47}\;\mathrm{erg}$ for Fe cores. The average energy, on the other hand, is twice as large for the ONe core as those for the Fe cores. The neutrinos produced by the plasmon decays in the ONe core are more numerous than those from the electron–positron annihilation in both cores, but they have much lower average energies $\lesssim 1\;\mathrm{MeV}$. Although it is difficult to detect the pre-supernova neutrinos from the ONe core even if it is located within 200 pc from Earth, we expect ∼9–43 and ∼7–61 events for Fe cores at KamLAND and Super-Kamiokande, respectively, depending on the progenitor mass and neutrino-mass hierarchy. These numbers might be increased by an order of magnitude if we envisage next-generation detectors such as JUNO. We will hence be able to distinguish the two types of progenitors by the detection or nondetection of the pre-supernova neutrinos if they are close enough ($\lesssim 1\;\mathrm{kpc}$).

169

, , , , , , , , , et al

We present Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) observations of the source and lens stars for planetary microlensing event OGLE-2005-BLG-169, which confirm the relative proper motion prediction due to the planetary light curve signal observed for this event. This (and the companion Keck result) provide the first confirmation of a planetary microlensing signal, for which the deviation was only 2%. The follow-up observations determine the flux of the planetary host star in multiple passbands and remove light curve model ambiguity caused by sparse sampling of part of the light curve. This leads to a precise determination of the properties of the OGLE-2005-BLG-169Lb planetary system. Combining the constraints from the microlensing light curve with the photometry and astrometry of the HST/WFC3 data, we find star and planet masses of ${M}_{*}=0.69\pm 0.02{M}_{\odot }$ and ${m}_{{\rm{p}}}=14.1\pm 0.9{M}_{\oplus }$. The planetary microlens system is located toward the Galactic bulge at a distance of ${D}_{L}=4.1\pm 0.4$ kpc and the projected star–planet separation is ${a}_{\perp }=3.5\pm 0.3$ AU, corresponding to a semimajor axis of $a={4.0}_{-0.6}^{+2.2}$ AU.

170

, , , , , , and

We present Keck NIRC2 high angular resolution adaptive optics observations of the microlensing event OGLE-2005-BLG-169Lb, taken 8.21 years after the discovery of this planetary system. For the first time for a microlensing planetary event, the source and the lens are completely resolved, providing a precise measurement of their heliocentric relative proper motion, ${\mu }_{\mathrm{rel},\mathrm{helio}}=7.44\pm 0.17$ mas yr−1. This confirms and refines the initial model presented in the discovery paper and rules out a range of solutions that were allowed by the microlensing light curve. This is also the first time that parameters derived from a microlensing planetary signal are confirmed, both with the Keck measurements, presented in this paper, and independent measurements obtained with the Hubble Space Telescope in $I,V$ and bands, presented in a companion paper. Hence, this new measurement of ${\mu }_{\mathrm{rel},\mathrm{helio}}$, as well as the measured brightness of the lens in H band, enabled the mass and distance of the system to be updated: a Uranus-mass planet (${m}_{{\rm{p}}}=13.2\pm 1.3{M}_{\oplus }$) orbiting a K5-type main sequence star (${M}_{*}=0.65\pm 0.05{M}_{\odot }$) separated by ${a}_{\perp }=3.4\pm 0.3$ AU, at the distance ${D}_{{\rm{L}}}=4.0\pm 0.4$ kpc from us.

171

, , , and

The HARPS spectrograph is showing an extreme stability, close to the m s−1 level, over more than 10 years of data. However, the radial velocities of some stars are contaminated by a spurious one-year signal with an amplitude that can be as high as a few m s−1. This signal is in opposition of phase with the revolution of Earth around the Sun and can be explained by the deformation of spectral lines crossing block stitchings of the CCD when the spectrum of an observed star is alternatively blueshifted and redshifted due to the motion of Earth around the Sun. This annual perturbation can be suppressed by either removing those affected spectral lines from the correlation mask used by the cross-correlation technique to derive precise radial velocities, or by simply fitting a yearly sinusoid to the radial velocity data. This is mandatory if we want to detect long-period low-amplitude signals in the HARPS radial velocities of quiet solar-type stars.

172

and

Motivated by the possibility that a coronagraph will be put on the Wide-field Infrared Survey Telescope (WFIRST)/Astrophysics Focused Telescope Assets (AFTA), we explore the direct detectability of extrasolar giant planets (EGPs) in the optical. We quantify a planet's detectability by the fraction of its orbit for which it is in an observable configuration (${f}_{\mathrm{obs}}$). Using a suite of Monte Carlo experiments, we study the dependence of ${f}_{\mathrm{obs}}$ upon the inner working angle (IWA) and minimum achievable contrast (${C}_{\mathrm{min}}$) of the direct-imaging observatory; the planet's phase function, geometric albedo, single-scattering albedo, radius, and distance from Earth; and the semimajor axis distribution of EGPs. We calculate phase functions for a given geometric or single-scattering albedo, assuming various scattering mechanisms. We find that the Lambertian phase function can predict significantly larger ${f}_{\mathrm{obs}}$s with respect to the more realistic Rayleigh phase function. For observations made with WFIRST/AFTA's baseline capabilities (${C}_{\mathrm{min}}\sim {10}^{-9}$, $\mathrm{IWA}\sim 0\buildrel{\prime\prime}\over{.} 2$), Jupiter-like planets orbiting stars within 10, 30, and 50 pc of Earth have volume-averaged observability fractions of ∼12%, 3%, and 0.5%, respectively. At 10 pc, such observations yield ${f}_{\mathrm{obs}}\gt 1\%$ for low- to modest-eccentricity planets with semimajor axes in the range ∼2–10 AU. If ${C}_{\mathrm{min}}={10}^{-10}$, this range extends to ∼35 AU. We find that, in all but the most optimistic configurations, the probability for detection in a blind search is low (< 5%). However, with orbital parameter constraints from long-term radial-velocity campaigns and Gaia astrometry, the tools we develop in this work can be used to determine both the most promising systems to target and when to observe them.

173

, , , and

Ionizing stellar photons heat the upper regions of planetary atmospheres, driving atmospheric mass loss. Gas escaping from several hot, hydrogen-rich planets has been detected using UV and X-ray transmission spectroscopy. Because these planets are tidally locked, and thus asymmetrically irradiated, escaping gas is unlikely to be spherically symmetric. In this paper, we focus on the effects of asymmetric heating on local outflow structure. We use the Athena code for hydrodynamics to produce 3D simulations of hot Jupiter mass loss that jointly model wind launching and stellar heating via photoionization. Our fiducial planet is an inflated, hot Jupiter with radius ${R}_{{\rm{p}}}=2.14{R}_{\mathrm{Jup}}$ and mass ${M}_{{\rm{p}}}=0.53{M}_{\mathrm{Jup}}$. We irradiate the initially neutral, atomic hydrogen atmosphere with 13.6 eV photons and compute the outflow's ionization structure. There are clear asymmetries in the atmospheric outflow, including a neutral shadow on the planet's nightside. Given an incident ionizing UV flux comparable to that of the Sun, we find a steady-state mass loss rate of $\sim 2\times {10}^{10}$ g s−1. The total mass loss rate and the outflow substructure along the substellar ray show good agreement with earlier 1D models, for two different fluxes. Our 3D data cube can be used to generate the outflow's extinction spectrum during transit. As a proof of concept, we find absorption of stellar Lyα at Doppler-shifted velocities of up to ±50 km s−1. Our work provides a starting point for further 3D models that can be used to predict observable signatures of hot Jupiter mass loss.

174

, , , , , , and

We present extensive calculations of radiative transition rates and electron impact collision strengths for Fe ii. The data sets involve 52 levels from the 3d7, 3d64s, and $3{d}^{5}4{s}^{2}$ configurations. Computations of A-values are carried out with a combination of state-of-the-art multiconfiguration approaches, namely the relativistic Hartree–Fock, Thomas–Fermi–Dirac potential, and Dirac–Fock methods, while the R-matrix plus intermediate coupling frame transformation, Breit–Pauli R-matrix, and Dirac R-matrix packages are used to obtain collision strengths. We examine the advantages and shortcomings of each of these methods, and estimate rate uncertainties from the resulting data dispersion. We proceed to construct excitation balance spectral models, and compare the predictions from each data set with observed spectra from various astronomical objects. We are thus able to establish benchmarks in the spectral modeling of [Fe ii] emission in the IR and optical regions as well as in the UV Fe ii absorption spectra. Finally, we provide diagnostic line ratios and line emissivities for emission spectroscopy as well as column densities for absorption spectroscopy. All atomic data and models are available online and through the AtomPy atomic data curation environment.

175

, , , , and

We report pressure broadening (PB) coefficients for the 21 electric–dipole transitions between the eight lowest rotational levels of ortho-H2O and para-H2O molecules by collisions with He at temperatures from 20 to 120 K. These coefficients are derived from recently published experimental state-to-state rate coefficients for H2O:He inelastic collisions, plus an elastic contribution from close coupling calculations. The resulting coefficients are compared to the available experimental data. Mostly due to the elastic contribution, the PB-coefficients differ much from line to line, and increase markedly at low temperature. The present results are meant as a guide for future experiments and astrophysical observations.

176

, , , and

The analysis of X-ray and Sunyaev–Zel'dovich measurements of the intracluster medium (ICM) assumes that electrons are in thermal equilibrium with ions in the plasma. However, in the outskirts of galaxy clusters, the electron–ion equilibration timescale can become comparable to the Hubble time, leading to systematic biases in cluster mass estimates and mass-observable scaling relations. To quantify an upper limit of the impact of non-equilibrium electrons, we use a mass-limited sample of simulated galaxy clusters taken from a cosmological simulation with a two-temperature model that assumes the Spitzer equilibration time for the electrons and ions. We show that the temperature bias is more pronounced in more massive and rapidly accreting clusters. For the most extreme case, we find that the bias is of the order of 10% at half of the cluster virial radius and increases to 40% at the edge of the cluster. Gas in filaments is less susceptible to the non-equilibrium effect, leading to azimuthal variations in the temperature bias at large cluster-centric radii. Using mock Chandra observations of simulated clusters, we show that the bias manifests in ultra-deep X-ray observations of cluster outskirts and quantify the resulting biases in hydrostatic mass and cluster temperature derived from these observations. We provide a mass-dependent fitting function for the temperature bias profile, which can be useful for modeling the effect of electron-ion equilibration in galaxy clusters.

177

, , and

In the standard model of solar flares, energy deposition by a beam of electrons drives strong chromospheric evaporation leading to a significantly denser corona and much brighter emission across the spectrum. Chromospheric evaporation was examined in great detail by Fisher et al., who described a distinction between two different regimes, termed explosive and gentle evaporation. In this work, we examine the importance of electron energy and stopping depths on the two regimes and on the atmospheric response. We find that with explosive evaporation, the atmospheric response does not depend strongly on electron energy. In the case of gentle evaporation, lower energy electrons are significantly more efficient at heating the atmosphere and driving up-flows sooner than higher energy electrons. We also find that the threshold between explosive and gentle evaporation is not fixed at a given beam energy flux, but also depends strongly on the electron energy and duration of heating. Further, at low electron energies, a much weaker beam flux is required to drive explosive evaporation.

178

, , , , , , and

We use deep Swift UV/Optical Telescope (UVOT) near-ultraviolet (1600–4000 Å) imaging of the Chandra Deep Field South to measure the rest-frame far-UV (FUV; 1500 Å) luminosity function (LF) in four redshift bins between z = 0.2 and 1.2. Our sample includes 730 galaxies with u < 24.1 mag. We use two methods to construct and fit the LFs: the traditional Vmax method with bootstrap errors, and a maximum likelihood estimator. We observe luminosity evolution such that M* fades by ∼2 mag from z ∼ 1 to z ∼ 0.3, implying that star formation activity was substantially higher at z ∼ 1 than today. We integrate our LFs to determine the FUV luminosity densities and star formation rate densities (SFRDs) from z = 0.2 to 1.2. We find evolution consistent with an increase proportional to (1 + z)1.9 out to z ∼ 1. Our luminosity densities and star formation rates are consistent with those found in the literature but are, on average, a factor of ∼2 higher than previous FUV measurements. In addition, we combine our UVOT data with the MUSYC survey to model the galaxies' ultraviolet-to-infrared spectral energy distributions and estimate the rest-frame FUV attenuation. We find that accounting for the attenuation increases the SFRDs by ∼1 dex across all four redshift bins.

179

, , , , , , , , , et al

We report the discovery of a new totally eclipsing binary (R.A. = ${06}^{{\rm{h}}}{40}^{{\rm{m}}}{29}^{{\rm{s}}}11$; decl. = +38°56'52''2; J = 2000.0; Rmax = 17.2 mag) with an sdO primary and a strongly irradiated red dwarf companion. It has an orbital period of Porb = 0.187284394(11) day and an optical eclipse depth in excess of 5 mag. We obtained 2 low-resolution classification spectra with GTC/OSIRIS and 10 medium-resolution spectra with WHT/ISIS to constrain the properties of the binary members. The spectra are dominated by H Balmer and He ii absorption lines from the sdO star, and phase-dependent emission lines from the irradiated companion. A combined spectroscopic and light curve analysis implies a hot subdwarf temperature of Teff(spec) = 55,000 ± 3000 K, surface gravity of log g (phot) = 6.2 ± 0.04 (cgs), and a He abundance of $\mathrm{log}(n\mathrm{He}/n{\rm{H}})=-2.24\pm 0.40$. The hot sdO star irradiates the red dwarf companion, heating its substellar point to about 22,500 K. Surface parameters for the companion are difficult to constrain from the currently available data: the most remarkable features are the strong H Balmer and C ii-iii lines in emission. Radial velocity estimates are consistent with the sdO+dM classification. The photometric data do not show any indication of sdO pulsations with amplitudes greater than 7 mmag, and Hα-filter images do not provide evidence for the presence of a planetary nebula associated with the sdO star.

180

, , , , and

Spatially resolved observations of molecular line emission have the potential to yield unique constraints on the nature of turbulence within protoplanetary disks. Using a combination of local non-ideal magnetohydrodynamics (MHD) simulations and radiative transfer calculations, tailored to properties of the disk around HD 163296, we assess the ability of ALMA to detect turbulence driven by the magnetorotational instability (MRI). Our local simulations show that the MRI produces small-scale turbulent velocity fluctuations that increase in strength with height above the mid-plane. For a set of simulations at different disk radii, we fit a Maxwell–Boltzmann distribution to the turbulent velocity and construct a turbulent broadening parameter as a function of radius and height. We input this broadening into radiative transfer calculations to quantify observational signatures of MRI-driven disk turbulence. We find that the ratio of the peak line flux to the flux at line center is a robust diagnostic of turbulence that is only mildly degenerate with systematic uncertainties in disk temperature. For the CO(3–2) line, which we expect to probe the most magnetically active slice of the disk column, variations in the predicted peak-to-trough ratio between our most and least turbulent models span a range of approximately 15%. Additional independent constraints can be derived from the morphology of spatially resolved line profiles, and we estimate the resolution required to detect turbulence on different spatial scales. We discuss the role of lower optical depth molecular tracers, which trace regions closer to the disk mid-plane where velocities in MRI-driven models are systematically lower.

181

, , , , , , and

Increases of ion fluxes in the keV–MeV range are sometimes observed near the heliospheric current sheet (HCS) during periods when other sources are absent. These resemble solar energetic particle events, but the events are weaker and apparently local. Conventional explanations based on either shock acceleration of charged particles or particle acceleration due to magnetic reconnection at interplanetary current sheets (CSs) are not persuasive. We suggest instead that recurrent magnetic reconnection occurs at the HCS and smaller CSs in the solar wind, a consequence of which is particle energization by the dynamically evolving secondary CSs and magnetic islands. The effectiveness of the trapping and acceleration process associated with magnetic islands depends in part on the topology of the HCS. We show that the HCS possesses ripples superimposed on the large-scale flat or wavy structure. We conjecture that the ripples can efficiently confine plasma and provide tokamak-like conditions that are favorable for the appearance of small-scale magnetic islands that merge and/or contract. Particles trapped in the vicinity of merging islands and experiencing multiple small-scale reconnection events are accelerated by the induced electric field and experience first-order Fermi acceleration in contracting magnetic islands according to the transport theory of Zank et al. We present multi-spacecraft observations of magnetic island merging and particle energization in the absence of other sources, providing support for theory and simulations that show particle energization by reconnection related processes of magnetic island merging and contraction.

182

and

We present an ultrafast opacity calculator that we name HELIOS-K. It takes a line list as an input, computes the shape of each spectral line, and provides an option for grouping an enormous number of lines into a manageable number of bins. We implement a combination of Algorithm 916 and Gauss–Hermite quadrature to compute the Voigt profile, write the code in CUDA, and optimize the computation for graphics processing units (GPUs). We restate the theory of the k-distribution method and use it to reduce $\sim {10}^{5}$–108 lines to ∼10–104 wavenumber bins, which may then be used for radiative transfer, atmospheric retrieval and general circulation models. The choice of line-wing cutoff for the Voigt profile is a significant source of error and affects the value of the computed flux by $\sim 10\%$. This is an outstanding physical (rather than computational) problem, due to our incomplete knowledge of pressure broadening of spectral lines in the far line wings. We emphasize that this problem remains regardless of whether one performs line-by-line calculations or uses the k-distribution method and affects all calculations of exoplanetary atmospheres requiring the use of wavelength-dependent opacities. We elucidate the correlated-k approximation and demonstrate that it applies equally to inhomogeneous atmospheres with a single atomic/molecular species or homogeneous atmospheres with multiple species. Using a NVIDIA K20 GPU, HELIOS-K is capable of computing an opacity function with $\sim {10}^{5}$ spectral lines in ∼1 s and is publicly available as part of the Exoclimes Simulation Platform (www.exoclime.org).

183

, , , , , , and

Located in the Perseus cluster, NGC 1271 is an early-type galaxy with a small effective radius of 2.2 kpc and a large bulge stellar velocity dispersion of 276 km s−1 for its K-band luminosity of $8.9\times {10}^{10}\ {L}_{\odot }$. We present a mass measurement for the black hole in this compact, high-dispersion galaxy using observations from the Near-infrared Integral Field Spectrometer on the Gemini North telescope assisted by laser guide star adaptive optics, large-scale integral field unit observations with PPAK at the Calar Alto Observatory, and Hubble Space Telescope WFC3 imaging observations. We are able to map out the stellar kinematics both on small spatial scales, within the black hole sphere of influence, and on large scales that extend out to four times the galaxy's effective radius. We find that the galaxy is rapidly rotating and exhibits a sharp rise in the velocity dispersion. Through the use of orbit-based stellar dynamical models, we determine that the black hole has a mass of $({3.0}_{-1.1}^{+1.0})\times {10}^{9}\ {M}_{\odot }$ and the H-band stellar mass-to-light ratio is ${1.40}_{-0.11}^{+0.13}\ {\Upsilon }_{\odot }$ ($1\sigma $ uncertainties). NGC 1271 occupies the sparsely populated upper end of the black hole mass distribution but is very different from the brightest cluster galaxies (BCGs) and giant elliptical galaxies that are expected to host the most massive black holes. Interestingly, the black hole mass is an order of magnitude larger than expectations based on the galaxy's bulge luminosity but is consistent with the mass predicted using the galaxy's bulge stellar velocity dispersion. More compact, high-dispersion galaxies need to be studied using high spatial resolution observations to securely determine black hole masses, as there could be systematic differences in the black hole scaling relations between these types of galaxies and the BCGs/giant ellipticals, thereby implying different pathways for black hole and galaxy growth.

184

, , , , , , , , , et al

We present the initial results and the source catalog from the Nuclear Spectroscopic Telescope Array (NuSTAR) survey of the Extended Chandra Deep Field South (hereafter, ECDFS)—currently the deepest contiguous component of the NuSTAR extragalactic survey program. The survey covers the full ≈30' × 30' area of this field to a maximum depth of ≈360 ks ($\approx 220$ ks when corrected for vignetting at 3–24 keV), reaching sensitivity limits of $\approx 1.3\times {10}^{-14}\;\mathrm{erg}\;{{\rm{s}}}^{-1}\;{\mathrm{cm}}^{-2}$ (3–8 keV), $\approx 3.4\times {10}^{-14}\;\mathrm{erg}\;{{\rm{s}}}^{-1}\;{\mathrm{cm}}^{-2}$ (8–24 keV), and $\approx 3.0\times {10}^{-14}\;\mathrm{erg}\;{{\rm{s}}}^{-1}\;{\mathrm{cm}}^{-2}$ (3–24 keV). A total of 54 sources are detected over the full field, although five of these are found to lie below our significance threshold once contaminating flux from neighboring (i.e., blended) sources is taken into account. Of the remaining 49 that are significant, 19 are detected in the 8–24 keV band. The 8–24 to 3–8 keV band ratios of the 12 sources that are detected in both bands span the range 0.39–1.7, corresponding to a photon index range of ${\rm{\Gamma }}\approx 0.5-2.3$, with a median photon index of $\bar{{\rm{\Gamma }}}=1.70\pm 0.52$. The redshifts of the 49 sources in our main sample span the range $z=0.21-2.7$, and their rest-frame 10–40 keV luminosities (derived from the observed 8–24 keV fluxes) span the range ${L}_{10-40\;\mathrm{keV}}\approx (0.7-300)\times {10}^{43}\;\mathrm{erg}\;{{\rm{s}}}^{-1}$, sampling below the "knee" of the X-ray luminosity function out to $z\sim 0.8-1$. Finally, we identify one NuSTAR source that has neither a Chandra nor an XMM-Newton counterpart, but that shows evidence of nuclear activity at infrared wavelengths and thus may represent a genuine, new X-ray source detected by NuSTAR in the ECDFS.

185

, , , , , , , , , et al

To provide the census of the sources contributing to the X-ray background peak above 10 keV, Nuclear Spectroscopic Telescope Array (NuSTAR) is performing extragalactic surveys using a three-tier "wedding cake" approach. We present the NuSTAR survey of the COSMOS field, the medium sensitivity, and medium area tier, covering 1.7 deg2 and overlapping with both Chandra and XMM-Newton data. This survey consists of 121 observations for a total exposure of ∼3 Ms. To fully exploit these data, we developed a new detection strategy, carefully tested through extensive simulations. The survey sensitivity at 20% completeness is 5.9, 2.9, and 6.4 × 10−14$\mathrm{erg}\;{\mathrm{cm}}^{-2}\;{{\rm{s}}}^{-1}$ in the 3–24, 3–8, and 8–24 keV bands, respectively. By combining detections in 3 bands, we have a sample of 91 NuSTAR sources with 1042–1045.5$\mathrm{erg}\;{{\rm{s}}}^{-1}$ luminosities and redshift z = 0.04–2.5. Thirty-two sources are detected in the 8–24 keV band with fluxes ∼100 times fainter than sources detected by Swift-BAT. Of the 91 detections, all but 4 are associated with a Chandra and/or XMM-Newton point-like counterpart. One source is associated with an extended lower energy X-ray source. We present the X-ray (hardness ratio and luminosity) and optical-to-X-ray properties. The observed fraction of candidate Compton-thick active galactic nuclei measured from the hardness ratio is between 13%–20%. We discuss the spectral properties of NuSTAR J100259+0220.6 (ID 330) at z = 0.044, with the highest hardness ratio in the entire sample. The measured column density exceeds 1024 cm−2, implying the source is Compton-thick. This source was not previously recognized as such without the >10 keV data.

186

, , , and

The discovery of two neutron stars with gravitational masses $\approx 2\;{M}_{\odot }$ has placed a strong lower limit on the maximum mass of nonrotating neutron stars, and with it a strong constraint on the properties of cold matter beyond nuclear density. Current upper mass limits are much looser. Here, we note that if most short gamma-ray bursts are produced by the coalescence of two neutron stars, and if the merger remnant collapses quickly, then the upper mass limit is constrained tightly. If the rotation of the merger remnant is limited only by mass-shedding (which seems probable based on numerical studies), then the maximum gravitational mass of a nonrotating neutron star is $\approx 2-2.2\;{M}_{\odot }$ if the masses of neutron stars that coalesce to produce gamma-ray bursts are in the range seen in Galactic double neutron star systems. These limits would be increased by ∼4% in the probably unrealistic case that the remnants rotate at ∼30% below mass-shedding, and by ∼15% in the extreme case that the remnants do not rotate at all. Future coincident detection of short gamma-ray bursts with gravitational waves will strengthen these arguments because they will produce tight bounds on the masses of the components for individual events. If these limits are accurate, then a reasonable fraction of double neutron star mergers might not produce gamma-ray bursts. In that case, or in the case that many short bursts are produced instead by the mergers of neutron stars with black holes, the implied rate of gravitational wave detections will be increased.

187

and

Host star metallicities have been used to infer observational constraints on planet formation throughout the history of the exoplanet field. The giant planet metallicity correlation has now been widely accepted, but questions remain as to whether the metallicity correlation extends to the small terrestrial-sized planets. Here, we report metallicities for a sample of 518 stars in the Kepler field that have no detected transiting planets and compare their metallicity distribution to a sample of stars that hosts small planets (${R}_{p}\lt 1.7\;{R}_{\oplus }$). Importantly, both samples have been analyzed in a homogeneous manner using the same set of tools (Stellar Parameters Classification tool). We find the average metallicity of the sample of stars without detected transiting planets to be ${[{\rm{m}}/{\rm{H}}]}_{\mathrm{SNTP},\mathrm{dwarf}}=-0.02\pm 0.02\;\mathrm{dex}$ and the sample of stars hosting small planets to be ${[{\rm{m}}/{\rm{H}}]}_{\mathrm{STP}}=-0.02\pm 0.02\;\mathrm{dex}$. The average metallicities of the two samples are indistinguishable within the uncertainties, and the two-sample Kolmogorov–Smirnov test yields a p-value of 0.68 (0.41σ), indicating a failure to reject the null hypothesis that the two samples are drawn from the same parent population. We conclude that the homogeneous analysis of the data presented here supports the hypothesis that stars hosting small planets have a metallicity similar to stars with no known transiting planets in the same area of the sky.

188

, , , , and

Neutrino oscillations, especially to light sterile states, can affect nucleosynthesis yields because of their possible feedback effect on the electron fraction (Ye). For the first time, we perform nucleosynthesis calculations for neutrino-driven wind trajectories from the neutrino-cooling phase of an 8.8 ${M}_{\odot }$ electron-capture supernova (SN), whose hydrodynamic evolution was computed in spherical symmetry with sophisticated neutrino transport and whose Ye evolution was post-processed by including neutrino oscillations between both active and active–sterile flavors. We also take into account the α-effect as well as weak magnetism and recoil corrections in the neutrino absorption and emission processes. We observe effects on the Ye evolution that depend in a subtle way on the relative radial positions of the sterile Mikheyev–Smirnov–Wolfenstein resonances, on collective flavor transformations, and on the formation of α particles. For the adopted SN progenitor, we find that neutrino oscillations, also to a sterile state with eV mass, do not significantly affect the element formation and in particular cannot make the post-explosion wind outflow neutron-rich enough to activate a strong r-process. Our conclusions become even more robust when, in order to mimic equation-of-state-dependent corrections due to nucleon potential effects in the dense-medium neutrino opacities, six cases with reduced Ye in the wind are considered. In these cases, despite the conversion of active neutrinos to sterile neutrinos, Ye increases or is not significantly lowered compared to the values obtained without oscillations and active flavor transformations. This is a consequence of a complicated interplay between sterile-neutrino production, neutrino–neutrino interactions, and α-effect.

189

and

Periodic radio bursts from very low mass stars and brown dwarfs simultaneously probe their magnetic and rotational properties. The brown dwarf 2MASSI J1047539+212423 (2M 1047+21) is currently the only T dwarf (T6.5) detected at radio wavelengths. Previous observations of this source with the Arecibo observatory revealed intermittent, 100%-polarized radio pulses similar to those detected from other brown dwarfs, but were unable to constrain a pulse periodicity; previous Very Large Array (VLA) observations detected quiescent emission a factor of ∼100 times fainter than the Arecibo pulses but no additional events. Here we present 14 hr of VLA observations of this object that reveal a series of pulses at ∼6 GHz with highly variable profiles, showing that the pulsing behavior evolves on time scales that are both long and short compared to the rotation period. We measure a periodicity of ∼1.77 hr and identify it with the rotation period. This is just the sixth rotation period measurement in a late T dwarf, and the first obtained in the radio. We detect a pulse at 10 GHz as well, suggesting that the magnetic field strength of 2 M 1047+21 reaches at least 3.6 kG. Although this object is the coolest and most rapidly rotating radio-detected brown dwarf to date, its properties appear continuous with those of other such objects, suggesting that the generation of strong magnetic fields and radio emission may continue to even cooler objects. Further studies of this kind will help to clarify the relationships between mass, age, rotation, and magnetic activity at and beyond the end of the main sequence, where both theories and observational data are currently scarce.

190

, , , , , , , , , et al

We show the existence of two families of short gamma-ray bursts (GRBs), both originating from the merger of binary neutron stars (NSs): family-1 with ${E}_{\mathrm{iso}}\lt {10}^{52}$ erg, leading to a massive NS as the merged core, and family-2 with ${E}_{\mathrm{iso}}\gt {10}^{52}$ erg, leading to a black hole (BH). Following the identification of the prototype GRB 090227B, we present the details of a new example of family-2 short burst: GRB 140619B. From the spectral analysis of the early ∼0.2 s, we infer an observed temperature ${kT}=(324\pm 33)$ keV of the ${{\rm{e}}}^{+}{{\rm{e}}}^{-}$-plasma at transparency (P-GRB), a theoretically derived redshift $z=2.67\pm 0.37$, a total burst energy ${E}_{{{\rm{e}}}^{+}{{\rm{e}}}^{-}}^{\mathrm{tot}}=(6.03\pm 0.79)\times {10}^{52}$ erg, a rest-frame peak energy ${E}_{p,i}=4.7$ MeV, and a baryon load $B=(5.52\pm 0.73)\times {10}^{-5}$. We also estimate the corresponding emission of gravitational waves. Two additional examples of family-2 short bursts are identified: GRB 081024B and GRB 090510, remarkable for its well determined cosmological distance. We show that marked differences exist in the nature of the afterglows of these two families of short bursts: family-2 bursts, leading to BH formation, consistently exhibit high energy emission following the proper-GRB emission; family-1 bursts, leading to the formation of a massive NS, should never exhibit high energy emission. We also show that both the families fulfill an ${E}_{p,i}$Eiso relation with slope $\gamma =0.59\pm 0.07$ and a normalization constant incompatible with the one for long GRBs. The observed rate of such family-2 events is ${\rho }_{0}=\left({2.1}_{-1.4}^{+2.8}\right)\times {10}^{-4}$ Gpc−3 yr−1.

191

, , , , , , and

Solar micro-type III radio bursts are elements of the so-called type III storms and are characterized by short-lived, continuous, and weak emissions. Their frequency of occurrence with respect to radiation power is quite different from that of ordinary type III bursts, suggesting that the generation process is not flare-related, but due to some recurrent acceleration processes around the active region. We examine the relationship of micro-type III radio bursts with coronal streamers. We also explore the propagation channel of bursts in the outer corona, the acceleration process, and the escape route of electron beams. It is observationally confirmed that micro-type III bursts occur near the edge of coronal streamers. The magnetic field line of the escaping electron beams is tracked on the basis of the frequency drift rate of micro-type III bursts and the electron density distribution model. The results demonstrate that electron beams are trapped along closed dipolar field lines in the outer coronal region, which arise from the interface region between the active region and the coronal hole. A 22 year statistical study reveals that the apex altitude of the magnetic loop ranges from 15 to 50 RS. The distribution of the apex altitude has a sharp upper limit around 50 RS suggesting that an unknown but universal condition regulates the upper boundary of the streamer dipolar field.

192

and

Solar irradiance variations over solar rotational timescales are largely determined by the passage of magnetic structures across the visible solar disk. Variations on solar cycle timescales are thought to be similarly due to changes in surface magnetism with activity. Understanding the contribution of magnetic structures to total solar irradiance and solar spectral irradiance requires assessing their contributions as a function of disk position. Since only relative photometry is possible from the ground, the contrasts of image pixels are measured with respect to a center-to-limb intensity profile. Using nine years of full-disk red and blue continuum images from the Precision Solar Photometric Telescope at the Mauna Loa Solar Observatory, we examine the sensitivity of continuum contrast measurements to the center-to-limb profile definition. Profiles which differ only by the amount of magnetic activity allowed in the pixels used to determine them yield oppositely signed solar cycle length continuum contrast trends, either agreeing with previous results and showing negative correlation with solar cycle or disagreeing and showing positive correlation with solar cycle. Changes in the center-to-limb profile shape over the solar cycle are responsible for the contradictory contrast results, and we demonstrate that the lowest contrast structures, internetwork and network, are most sensitive to these. Thus the strengths of the full-disk, internetwork, and network photometric trends depend critically on the magnetic flux density used in the quiet-Sun definition. We conclude that the contributions of low contrast magnetic structures to variations in the solar continuum output, particularly to long-term variations, are difficult, if not impossible, to determine without the use of radiometric imaging.

193

and

The WMAP team subtracted template-based foreground models to produce foreground-reduced maps, and masked point sources and uncertain sky regions directly; however, whether foreground residuals exist in the WMAP foreground-reduced maps is still an open question. Here, we use Pearson correlation coefficient analysis with AS-γ TeV cosmic ray (CR) data to probe possible foreground residuals in the WMAP nine-year data. The correlation results between the CR and foreground-contained maps (WMAP foreground-unreduced maps, WMAP template-based, and Maximum Entropy Method foreground models) suggest that: (1) CRs can trace foregrounds in the WMAP data; (2) at least some TeV CRs originate from the Milky Way; (3) foregrounds may be related to the existence of CR anisotropy (loss-cone and tail-in structures); (4) there exist differences among different types of foregrounds in the decl. range of <15°. Then, we generate 10,000 mock cosmic microwave background (CMB) sky maps to describe the cosmic variance, which is used to measure the effect of the fluctuations of all possible CMB maps to the correlations between CR and CMB maps. Finally, we do correlation analysis between the CR and WMAP foreground-reduced maps, and find that: (1) there are significant anticorrelations; and (2) the WMAP foreground-reduced maps are credible. However, the significant anticorrelations may be accidental, and the higher signal-to-noise ratio Planck SMICA map cannot reject the hypothesis of accidental correlations. We therefore can only conclude that the foreground residuals exist with ∼95% probability.

194

, , , , and

We present an analytic model to estimate the capabilities of space missions dedicated to the search for biosignatures in the atmosphere of rocky planets located in the habitable zone of nearby stars. Relations between performance and mission parameters, such as mirror diameter, distance to targets, and radius of planets, are obtained. Two types of instruments are considered: coronagraphs observing in the visible, and nulling interferometers in the thermal infrared. Missions considered are: single-pupil coronagraphs with a 2.4 m primary mirror, and formation-flying interferometers with 4 × 0.75 m collecting mirrors. The numbers of accessible planets are calculated as a function of ηEarth. When Kepler gives its final estimation for ηEarth, the model will permit a precise assessment of the potential of each instrument. Based on current estimations, ηEarth = 10% around FGK stars and 50% around M stars, the coronagraph could study in spectroscopy only ∼1.5 relevant planets, and the interferometer ∼14.0. These numbers are obtained under the major hypothesis that the exozodiacal light around the target stars is low enough for each instrument. In both cases, a prior detection of planets is assumed and a target list established. For the long-term future, building both types of spectroscopic instruments, and using them on the same targets, will be the optimal solution because they provide complementary information. But as a first affordable space mission, the interferometer looks the more promising in terms of biosignature harvest.