Table of contents

Volume 782

Number 2, 2014 February 20

Previous issue Next issue

59

, , , and

We present a detailed chemical abundance study of eight RR Lyrae variable stars of subclass c (RRc). The target RRc stars chosen for study exhibit "Blazhko-effect" period and amplitude modulations to their pulsational cycles. Data for this study were gathered with the echelle spectrograph of the 100 inch du Pont telescope at Las Campanas Observatory. Spectra were obtained throughout each star's pulsation cycle. Atmospheric parameters—effective temperature, surface gravity, microturbulent velocity, and metallicity—were derived at multiple phase points. We found metallicities and element abundance ratios to be constant within observational uncertainties over the pulsational cycles of all stars. Moreover, the α-element and Fe-group abundance ratios with respect to iron are consistent with other horizontal-branch members (RRab, blue and red non-variables). Finally, we have used the [Fe/H] values of these eight RRc stars to anchor the metallicity estimates of a large-sample RRc snapshot spectroscopic study being conducted with the same telescope and instrument combination employed here.

60

and

We present numerical simulations modeling the orbital evolution of very wide binaries, pairs of stars separated by over ∼103 AU. Due to perturbations from other passing stars and the Milky Way's tide, the orbits of very wide binary stars occasionally become extremely eccentric, which forces close encounters between the companion stars. We show that this process causes a stellar collision between very wide binary companion stars once every 1000–7500 yr on average in the Milky Way. One of the main uncertainties in this collision rate is the amount of energy dissipated by dynamic tides during close (but not collisional) periastron passages. This dissipation presents a dynamical barrier to stellar collisions and can instead transform very wide binaries into close or contact binaries. However, for any plausible tidal dissipation model, very wide binary stars are an unrealized, and potentially the dominant, source of stellar collisions in our Galaxy. Such collisions should occur throughout the thin disk of the Milky Way. Stellar collisions within very wide binaries should yield a small population of single, Li-depleted, rapidly rotating massive stars.

61

, , , , , , , , , et al

We have used Sloan Digital Sky Survey-III (SDSS-III) Apache Point Observatory Galactic Evolution Experiment (APOGEE) radial velocity observations in the near-infrared H-band to explore the membership of the nearby (86.7 ± 0.9 pc) open cluster Coma Berenices (Melotte 111), concentrating on the poorly populated low-mass end of the main sequence. Using SDSS-III APOGEE radial velocity measurements, we confirm the membership of eight K/M dwarf members, providing the first confirmed low-mass members of the Coma Berenices cluster. Using R ∼ 2000 spectra from IRTF-SpeX, we confirm the independently luminosity classes of these targets, and find their metallicities to be consistent with the known solar mean metallicity of Coma Berenices and of M dwarfs in the solar neighborhood. In addition, the APOGEE spectra have enabled measurement of vsin i for each target and detection for the first time of the low-mass secondary components of the known binary systems Melotte 111 102 and Melotte 111 120, as well as identification of the previously unknown binary system 2MASS J12214070+2707510. Finally, we use Kilodegree Extremely Little Telescope photometry to measure photometric variability and rotation periods for a subset of the Coma Berenices members.

62

, , and

Protoplanetary "transition" disks have large, mass-depleted central cavities, yet also deliver gas onto their host stars at rates comparable to disks without holes. The paradox of simultaneous transparency and accretion can be explained if gas flows inward at much higher radial speeds inside the cavity than outside the cavity, since surface density (and by extension optical depth) varies inversely with inflow velocity at fixed accretion rate. Radial speeds within the cavity might even have to approach free-fall values to explain the huge surface density contrasts inferred for transition disks. We identify observational diagnostics of fast radial inflow in channel maps made in optically thick spectral lines. Signatures include (1) twisted isophotes in maps made at low systemic velocities and (2) rotation of structures observed between maps made in high-velocity line wings. As a test case, we apply our new diagnostic tools to archival Atacama Large Millimeter Array data on the transition disk HD 142527 and uncover evidence for free-fall radial velocities inside its cavity. Although the observed kinematics are also consistent with a disk warp, the radial inflow scenario is preferred because it predicts low surface densities that appear consistent with recent observations of optically thin CO isotopologues in this disk. How material in the disk cavity sheds its angular momentum wholesale to fall freely onto the star is an unsolved problem; gravitational torques exerted by giant planets or brown dwarfs are briefly discussed as a candidate mechanism.

63

, , and

The formation of water (H2O) in the interstellar medium is intrinsically linked to grain-surface chemistry; thought to involve reactions between atomic (or molecular) hydrogen with atomic oxygen (O), molecular oxygen (O2), and ozone (O3). Laboratory precedent suggests that H2O is produced efficiently when O2 ices are exposed to H atoms (∼100 K). This leads to the sequential generation of the hydroxyperoxyl radical (HO2), then hydrogen peroxide (H2O2), and finally H2O and a hydroxyl radical (OH); despite a barrier of ∼2300 K for the last step. Recent detection of the four involved species toward ρ Oph A supports this general scenario; however, the precise formation mechanism remains undetermined. Here, solid O2 ice held at 12 K is exposed to a monoenergetic beam of 5 keV D+ ions. Products formed during the irradiation period are monitored through FTIR spectroscopy. O3 is observed through seven archetypal absorptions. Three additional bands found at 2583, 2707, and 1195 cm −1 correspond to matrix isolated DO21) and D2O21, ν5), and D2O (ν2), respectively. During subsequent warming, the O2 ice sublimates, revealing a broad band at 2472 cm−1 characteristic of amorphous D2O (ν1, ν3). Sublimating D2, D2O, D2O2, and O3 products were confirmed through their subsequent detection via quadrupole mass spectrometry. Reaction schemes based on both thermally accessible and suprathermally induced chemistries were developed to fit the observed temporal profiles are used to elucidate possible reaction pathways for the formation of D2-water. Several alternative schemes to the hydrogenation pathway (O2→HO2→H2O2→H2O) were identified; their astrophysical implications are briefly discussed.

64

, , , , , , , , , et al

We have performed two-dimensional multicomponent decomposition of 144 local barred spiral galaxies using 3.6 μm images from the Spitzer Survey of Stellar Structure in Galaxies. Our model fit includes up to four components (bulge, disk, bar, and a point source) and, most importantly, takes into account disk breaks. We find that ignoring the disk break and using a single disk scale length in the model fit for Type II (down-bending) disk galaxies can lead to differences of 40% in the disk scale length, 10% in bulge-to-total luminosity ratio (B/T), and 25% in bar-to-total luminosity ratios. We find that for galaxies with B/T ⩾ 0.1, the break radius to bar radius, rbr/Rbar, varies between 1 and 3, but as a function of B/T the ratio remains roughly constant. This suggests that in bulge-dominated galaxies the disk break is likely related to the outer Lindblad resonance of the bar and thus moves outward as the bar grows. For galaxies with small bulges, B/T < 0.1, rbr/Rbar spans a wide range from 1 to 6. This suggests that the mechanism that produces the break in these galaxies may be different from that in galaxies with more massive bulges. Consistent with previous studies, we conclude that disk breaks in galaxies with small bulges may originate from bar resonances that may be also coupled with the spiral arms, or be related to star formation thresholds.

65

, , , and

In the core-accretion model, the nominal runaway gas-accretion phase brings most planets to multiple Jupiter masses. However, known giant planets are predominantly Jupiter mass bodies. Obtaining longer timescales for gas accretion may require using realistic equations of states, or accounting for the dynamics of the circumplanetary disk (CPD) in the low-viscosity regime, or both. Here we explore the second way by using global, three-dimensional isothermal hydrodynamical simulations with eight levels of nested grids around the planet. In our simulations, the vertical inflow from the circumstellar disk (CSD) to the CPD determines the shape of the CPD and its accretion rate. Even without a prescribed viscosity, Jupiter's mass-doubling time is ∼104 yr, assuming the planet at 5.2 AU and a Minimum Mass Solar Nebula. However, we show that this high accretion rate is due to resolution-dependent numerical viscosity. Furthermore, we consider the scenario of a layered CSD, viscous only in its surface layer, and an inviscid CPD. We identify two planet-accretion mechanisms that are independent of the viscosity in the CPD: (1) the polar inflow—defined as a part of the vertical inflow with a centrifugal radius smaller than two Jupiter radii and (2) the torque exerted by the star on the CPD. In the limit of zero effective viscosity, these two mechanisms would produce an accretion rate 40 times smaller than in the simulation.

66

, , , , , , , , , et al

A number of experiments are currently working toward a measurement of the 21 cm signal from the epoch of reionization (EoR). Whether or not these experiments deliver a detection of cosmological emission, their limited sensitivity will prevent them from providing detailed information about the astrophysics of reionization. In this work, we consider what types of measurements will be enabled by the next generation of larger 21 cm EoR telescopes. To calculate the type of constraints that will be possible with such arrays, we use simple models for the instrument, foreground emission, and the reionization history. We focus primarily on an instrument modeled after the ∼0.1 km2 collecting area Hydrogen Epoch of Reionization Array concept design and parameterize the uncertainties with regard to foreground emission by considering different limits to the recently described "wedge" footprint in k space. Uncertainties in the reionization history are accounted for using a series of simulations that vary the ionizing efficiency and minimum virial temperature of the galaxies responsible for reionization, as well as the mean free path of ionizing photons through the intergalactic medium. Given various combinations of models, we consider the significance of the possible power spectrum detections, the ability to trace the power spectrum evolution versus redshift, the detectability of salient power spectrum features, and the achievable level of quantitative constraints on astrophysical parameters. Ultimately, we find that 0.1 km2 of collecting area is enough to ensure a very high significance (≳ 30σ) detection of the reionization power spectrum in even the most pessimistic scenarios. This sensitivity should allow for meaningful constraints on the reionization history and astrophysical parameters, especially if foreground subtraction techniques can be improved and successfully implemented.

67

, , , , , , and

Kink instability is a possible mechanism for solar filament eruption. However, it is very difficult to directly measure the twist of the solar filament from observation. In this paper, we measured the twist of a solar filament by analyzing its leg rotation. An inverse S-shaped filament in the active region NOAA 11485 was observed by the Atmospheric Imaging Assembly of the Solar Dynamics Observatory on 2012 May 22. During its eruption, the leg of the filament exhibited a significant rotation motion. The 304 Å images were used to uncurl the circles, the centers of which are the axis of the filament's leg. The result shows that the leg of the filament rotated up to about 510° (about 2.83π) around the axis of the filament within 23 minutes. The maximal rotation speed reached 100 degrees/minute (about 379.9 km s−1 at radius 18''), which is the fastest rotation speed reported. We also calculated the decay index along the polarity inversion line in this active region and found that the decline of the overlying field with height is not fast enough to trigger the torus instability. According to the kink instability condition, this indicates that the kink instability is the trigger mechanism for the solar filament eruption.

68

, , , , , , , , , et al

Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1–2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts. With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3–6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is $42^{+40}_{-29}$ Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.

69

, , , , , , , and

We exploit the recent, wide samples of far-infrared (FIR) selected galaxies followed up in X-rays and of X-ray/optically selected active galactic nuclei (AGNs) followed up in the FIR band, along with the classic data on AGNs and stellar luminosity functions at high redshift z ≳ 1.5, to probe different stages in the coevolution of supermassive black holes (BHs) and host galaxies. The results of our analysis indicate the following scenario: (1) the star formation in the host galaxy proceeds within a heavily dust-enshrouded medium at an almost constant rate over a timescale ≲ 0.5–1 Gyr and then abruptly declines due to quasar feedback, over the same timescale; (2) part of the interstellar medium loses angular momentum, reaches the circum-nuclear regions at a rate proportional to the star formation, and is temporarily stored in a massive reservoir/proto-torus wherefrom it can be promptly accreted; (3) the BH grows by accretion in a self-regulated regime with radiative power that can slightly exceed the Eddington limit L/LEdd ≲ 4, particularly at the highest redshifts; (4) for massive BHs, the ensuing energy feedback at its maximum exceeds the stellar one and removes the interstellar gas, thus stopping the star formation and the fueling of the reservoir; (5) afterward, if the latter has retained enough gas, a phase of supply-limited accretion follows, exponentially declining with a timescale of about two e-folding times. We also discuss how the detailed properties and the specific evolution of the reservoir can be investigated via coordinated, high-resolution observations of star-forming, strongly lensed galaxies in the (sub-)mm band with ALMA and in the X-ray band with Chandra and the next-generation X-ray instruments.

70

, , , , and

We explore the generation and possibility for the detection of heavy-meson synchrotron emission due to the acceleration of ultra-relativistic protons (and possibly nuclei) in the presence of strong magnetic fields (H ≳ 1015 G) in transient astrophysical environments such as magnetar flares. We show that, in addition to the well-known pion synchrotron emission, heavy vector mesons like ρ, DS, J/Ψ, and ϒ could be generated. For high enough energies and magnetic field strengths, such heavy vector mesons can be formed with high intensity (∼103 times the photon intensity) through strong couplings to the ultra-relativistic nucleons. We examine in particular the synchrotron emission and subsequent cooling and decay of the heavy ρ0 and ϒ(1S) mesons, e.g., via pp' + ϒ(1S), ϒ(1S) → τ+ + τ, $\tau ^- \rightarrow \mu ^- + \bar{\nu }_\mu + \nu _\tau$ and $e^- +\bar{\nu }_e + \nu _\tau$. We evaluate the spectra of escaping νe, νμ, and ντ due to the decay of short-lived τ mesons. We deduce the possible event rate in a terrestrial TeV neutrino detector. We estimate that neutrinos produced from the heavy vector-meson synchrotron radiation from a strong magnetar soft gamma repeater burst will only be detectable with the current generation of detectors if the source is very nearby (<30 pc). Nevertheless, if ever detected, the existence of heavy meson synchrotron emission might be identifiable by the unique signature of energetic tau neutrinos emanating from the source.

71

, , , and

The modeling technique of Mackay et al. is applied to simulate the coronal magnetic field of NOAA active region AR10977 over a seven day period (2007 December 2–10). The simulation is driven with a sequence of line-of-sight component magnetograms from SOHO/MDI and evolves the coronal magnetic field though a continuous series of non-linear force-free states. Upon comparison with Hinode/XRT observations, results show that the simulation reproduces many features of the active region's evolution. In particular, it describes the formation of a flux rope across the polarity inversion line during flux cancellation. The flux rope forms at the same location as an observed X-ray sigmoid. After five days of evolution, the free magnetic energy contained within the flux rope was found to be 3.9 × 1030 erg. This value is more than sufficient to account for the B1.4 GOES flare observed from the active region on 2007 December 7. At the time of the observed eruption, the flux rope was found to contain 20% of the active region flux. We conclude that the modeling technique proposed in Mackay et al.—which directly uses observed magnetograms to energize the coronal field—is a viable method to simulate the evolution of the coronal magnetic field.

72

, , , , , , , , and

We present spectral line images of [C i] 809 GHz, CO J = 1–0 115 GHz and H i 1.4 GHz line emission, and calculate the corresponding C, CO and H column densities, for a sinuous, quiescent giant molecular cloud about 5 kpc distant along the l = 328° sightline (hereafter G328) in our Galaxy. The [C i] data comes from the High Elevation Antarctic Terahertz telescope, a new facility on the summit of the Antarctic plateau where the precipitable water vapor falls to the lowest values found on the surface of the Earth. The CO and H i data sets come from the Mopra and Parkes/ATCA telescopes, respectively. We identify a filamentary molecular cloud, ∼75 × 5 pc long with mass ∼4 × 104M and a narrow velocity emission range of just 4 km  s−1. The morphology and kinematics of this filament are similar in CO, [C i], and H i, though in the latter appears as self-absorption. We calculate line fluxes and column densities for the three emitting species, which are broadly consistent with a photodissociation region model for a GMC exposed to the average interstellar radiation field. The [C/CO] abundance ratio averaged through the filament is found to be approximately unity. The G328 filament is constrained to be cold (TDust < 20 K) by the lack of far-IR emission, to show no clear signs of star formation, and to only be mildly turbulent from the narrow line width. We suggest that it may represent a GMC shortly after formation, or perhaps still in the process of formation.

73

, , and

The main focus of this paper is to explore the possibility of finding two deuterated isotopomers of H2Cl+ (chloronium) in and around the interstellar medium. The presence of a chloronium ion has recently been confirmed by the Herschel SpaceObservatory's Heterodyne Instrument for the far-infrared. It observed para-chloronium toward six sources in the Galaxy. To date the existence of its deuterated isotopomers (HDCl+ and D2Cl+) have not been discussed in the literature. We find that these deuterated gas phase ions could be destroyed by various ion–molecular reactions, dissociative recombination (DR), and cosmic rays (CRs). We compute all of the ion–molecular (polar) reaction rates by using the parameterized trajectory theory and the ion–molecular (non-polar) reaction rates by using the Langevin theory. For DR- and CR-induced reactions, we adopt two well-behaved rate formulas. We also include these rate coefficients in our large gas–grain chemical network to study the chemical evolution of these species around the outer edge of the cold, dense cloud. In order to study spectral properties of the chloronium ion and its two deuterated isotopomers, we have carried out quantum chemical simulations. We calculated ground-state properties of these species by employing second-order Moller–Plesset perturbation theory (MP2) along with quadruple-zeta correlation consistent (aug-cc-pVQZ) basis set. Infrared and electronic absorption spectra of these species are calculated by using the same level of theory. The MP2/aug-cc-pVQZ level of theory is used to report the different spectroscopic constants of these gas phase species. These spectroscopic constants are essential to predict the rotational transitions of these species. Our predicted column densities of D2Cl+, HDCl+, along with spectral information may enable their future identification around outer edges of cold, dark clouds.

74

, , , , , , , , , et al

We explore extensions to the ΛCDM cosmology using measurements of the cosmic microwave background (CMB) from the recent SPT-SZ survey, along with data from WMAP7 and measurements of H0 and baryon acoustic oscillation (BAO). We check for consistency within ΛCDM between these data sets, and find some tension. The CMB alone gives weak support to physics beyond ΛCDM, due to a slight trend relative to ΛCDM of decreasing power toward smaller angular scales. While it may be due to statistical fluctuation, this trend could also be explained by several extensions. We consider running of the primordial spectral index (dns/dln k), as well as two extensions that modify the damping tail power (the primordial helium abundance Yp and the effective number of neutrino species Neff) and one that modifies the large-scale power due to the integrated Sachs–Wolfe effect (the sum of neutrino masses ∑mν). These extensions have similar observational consequences and are partially degenerate when considered simultaneously. Of the six one-parameter extensions considered, we find CMB to have the largest preference for dns/dln k with −0.046 < dns/dln k < −0.003 at 95% confidence, which strengthens to a 2.7σ indication of dns/dln k < 0 from CMB+BAO+H0. Detectable dns/dln k ≠ 0 is difficult to explain in the context of single-field, slow-roll inflation models. We find Neff = 3.62 ± 0.48 for the CMB, which tightens to Neff = 3.71 ± 0.35 from CMB+BAO+H0. Larger values of Neff relieve the mild tension between CMB, BAO, and H0. When the Sunyaev–Zel'dovich selected galaxy cluster abundances (${\rm SPT_{\rm CL}}$) data are also included, we obtain Neff = 3.29 ± 0.31. Allowing for ∑mν gives a 3.0σ detection of ∑mν > 0 from CMB+BAO+H0 +${\rm SPT_{\rm CL}}$. The median value is (0.32 ± 0.11) eV, a factor of six above the lower bound set by neutrino oscillation observations. All data sets except H0 show some preference for massive neutrinos; data combinations including H0 favor nonzero masses only if BAO data are also included. We also constrain the two-parameter extensions Neff + ∑mν and Neff + Yp to explore constraints on additional light species and big bang nucleosynthesis, respectively.

75

, , and

The complete spectrum of methanol (CH3OH) has been characterized over a range of astrophysically significant temperatures in the 560.4–654.0 GHz spectral region. Absolute intensity calibration and analysis of 166 experimental spectra recorded over a slow 248–398 K temperature ramp provide a means for the simulation of the complete spectrum of methanol as a function of temperature. These results include contributions from vt = 3 and other higher states that are difficult to model via quantum mechanical (QM) techniques. They also contain contributions from the 13C isotopologue in terrestrial abundance. In contrast to our earlier work on semi-rigid species, such as ethyl cyanide and vinyl cyanide, significant intensity differences between these experimental values and those calculated by QM methods were found for many of the lines. Analysis of these differences shows the difficulty of the calculation of dipole matrix elements in the context of the internal rotation of the methanol molecule. These results are used to both provide catalogs in the usual line frequency, linestrength, and lower state energy format, as well as in a frequency point-by-point catalog that is particularly well suited for the characterization of blended lines.

76

, , , , , , , , , et al

X-ray reflection models are used to constrain the properties of the accretion disk, such as the degree of ionization of the gas and the elemental abundances. In combination with general relativistic ray tracing codes, additional parameters like the spin of the black hole and the inclination to the system can be determined. However, current reflection models used for such studies only provide angle-averaged solutions for the flux reflected at the surface of the disk. Moreover, the emission angle of the photons changes over the disk due to relativistic light bending. To overcome this simplification, we have constructed an angle-dependent reflection model with the xillver code and self-consistently connected it with the relativistic blurring code relline. The new model, relxill, calculates the proper emission angle of the radiation at each point on the accretion disk and then takes the corresponding reflection spectrum into account. We show that the reflected spectra from illuminated disks follow a limb-brightening law highly dependent on the ionization of disk and yet different from the commonly assumed form I∝ln (1 + 1/μ). A detailed comparison with the angle-averaged model is carried out in order to determine the bias in the parameters obtained by fitting a typical relativistic reflection spectrum. These simulations reveal that although the spin and inclination are mildly affected, the Fe abundance can be overestimated by up to a factor of two when derived from angle-averaged models. The fit of the new model to the Suzaku observation of the Seyfert galaxy Ark 120 clearly shows a significant improvement in the constraint of the physical parameters, in particular by enhancing the accuracy in the inclination angle and the spin determinations.

77

, , , , and

Condensate clouds strongly impact the spectra of brown dwarfs and exoplanets. Recent discoveries of variable L/T transition dwarfs argued for patchy clouds in at least some ultracool atmospheres. This study aims to measure the frequency and level of spectral variability in brown dwarfs and to search for correlations with spectral type. We used Hubble Space Telescope/Wide Field Camera 3 to obtain spectroscopic time series for 22 brown dwarfs of spectral types ranging from L5 to T6 at 1.1–1.7 μm for ≈40 minutes per object. Using Bayesian analysis, we find six brown dwarfs with confident (p > 95%) variability in the relative flux in at least one wavelength region at sub-percent precision, and five brown dwarfs with tentative (p > 68%) variability. We derive a minimum variability fraction $f_{{\rm min}}=27^{+11}_{-7}\%$ over all covered spectral types. The fraction of variables is equal within errors for mid-L, late-L, and mid-T spectral types; for early-T dwarfs we do not find any confident variable but the sample is too small to derive meaningful limits. For some objects, the variability occurs primarily in the flux peak in the J or H band, others are variable throughout the spectrum or only in specific absorption regions. Four sources may have broadband peak-to-peak amplitudes exceeding 1%. Our measurements are not sensitive to very long periods, inclinations near pole-on and rotationally symmetric heterogeneity. The detection statistics are consistent with most brown dwarf photospheres being patchy. While multiple-percent near-infrared variability may be rare and confined to the L/T transition, low-level heterogeneities are a frequent characteristic of brown dwarf atmospheres.

78

, , , , , , , , , et al

We present a molecular line scan in the Hubble Deep Field North (HDF-N) that covers the entire 3 mm window (79–115 GHz) using the IRAM Plateau de Bure Interferometer. Our CO redshift coverage spans z ≲ 0.45, 1 ≲ z ≲ 1.9 and all z ≳ 2. We reach a CO detection limit that is deep enough to detect essentially all z > 1 CO lines reported in the literature so far. We have developed and applied different line-searching algorithms, resulting in the discovery of 17 line candidates. We estimate that the rate of false positive line detections is ∼2/17. We identify optical/NIR counterparts from the deep ancillary database of the HDF-N for seven of these candidates and investigate their available spectral energy distributions. Two secure CO detections in our scan are identified with star-forming galaxies at z = 1.784 and at z = 2.047. These galaxies have colors consistent with the "BzK" color selection and they show relatively bright CO emission compared with galaxies of similar dust continuum luminosity. We also detect two spectral lines in the submillimeter galaxy HDF 850.1 at z = 5.183. We consider an additional nine line candidates as high quality. Our observations also provide a deep 3 mm continuum map (1σ noise level = 8.6 μJy beam−1). Via a stacking approach, we find that optical/MIR bright galaxies contribute only to <50% of the star formation rate density at 1 < z < 3, unless high dust temperatures are invoked. The present study represents a first, fundamental step toward an unbiased census of molecular gas in "normal" galaxies at high-z, a crucial goal of extragalactic astronomy in the ALMA era.

79

, , , , , , , , , et al

We present direct constraints on the CO luminosity function at high redshift and the resulting cosmic evolution of the molecular gas density, $\rho _{\rm H_2}$(z), based on a blind molecular line scan in the Hubble Deep Field North (HDF-N) using the IRAM Plateau de Bure Interferometer. Our line scan of the entire 3 mm window (79–115 GHz) covers a cosmic volume of ∼7000 Mpc3, and redshift ranges z < 0.45, 1.01 < z < 1.89 and z > 2. We use the rich multiwavelength and spectroscopic database of the HDF-N to derive some of the best constraints on CO luminosities in high redshift galaxies to date. We combine the blind CO detections in our molecular line scan (presented in a companion paper) with stacked CO limits from galaxies with available spectroscopic redshifts (slit or mask spectroscopy from Keck and grism spectroscopy from the Hubble Space Telescope) to give first blind constraints on high-z CO luminosity functions and the cosmic evolution of the H2 mass density $\rho _{\rm H_2}$(z) out to redshifts z ∼ 3. A comparison to empirical predictions of $\rho _{\rm H_2}$(z) shows that the securely detected sources in our molecular line scan already provide significant contributions to the predicted $\rho _{\rm H_2}$(z) in the redshift bins 〈z〉 ∼ 1.5 and 〈z〉 ∼ 2.7. Accounting for galaxies with CO luminosities that are not probed by our observations results in cosmic molecular gas densities $\rho _{\rm H_2}$(z) that are higher than current predictions. We note, however, that the current uncertainties (in particular the luminosity limits, number of detections, as well as cosmic volume probed) are significant, a situation that is about to change with the emerging ALMA observatory.

80

, , , , and

Non-local thermodynamic equilibrium (NLTE) line formation for neutral copper in the one-dimensional solar atmospheres is presented for the atomic model, including 96 terms of Cu i and the ground state of Cu ii. The accurate oscillator strengths for all the line transitions in model atom and photoionization cross sections were calculated using the R-matrix method in the Russell–Saunders coupling scheme. The main NLTE mechanism for Cu i is the ultraviolet overionization. We find that NLTE leads to systematically depleted total absorption in the Cu i lines and, accordingly, positive abundance corrections. Inelastic collisions with neutral hydrogen atoms produce minor effects on the statistical equilibrium of Cu i in the solar atmosphere. For the solar Cu i lines, the departures from LTE are found to be small, the mean NLTE abundance correction of ∼0.01 dex. It was found that the six low-excitation lines, with excitation energy of the lower level Eexc ⩽ 1.64 eV, give a 0.14 dex lower mean solar abundance compared to that from the six Eexc > 3.7 eV lines, when applying experimental gf-values of Kock & Richter. Without the two strong resonance transitions, the solar mean NLTE abundance from 10 lines of Cu i is log  ε(Cu) = 4.19 ± 0.10, which is consistent within the error bars with the meteoritic value 4.25 ± 0.05 of Lodders et al. The discrepancy between Eexc = 1.39–1.64 eV and Eexc > 3.7 eV lines can be removed when the calculated gf-values are adopted and a mean solar abundance of log  ε(Cu) = 4.24 ± 0.08 is derived.

81

, , , , , , and

We present a new version of the Alfvén wave solar model, a global model from the upper chromosphere to the corona and the heliosphere. The coronal heating and solar wind acceleration are addressed with low-frequency Alfvén wave turbulence. The injection of Alfvén wave energy at the inner boundary is such that the Poynting flux is proportional to the magnetic field strength. The three-dimensional magnetic field topology is simulated using data from photospheric magnetic field measurements. This model does not impose open-closed magnetic field boundaries; those develop self-consistently. The physics include the following. (1) The model employs three different temperatures, namely the isotropic electron temperature and the parallel and perpendicular ion temperatures. The firehose, mirror, and ion–cyclotron instabilities due to the developing ion temperature anisotropy are accounted for. (2) The Alfvén waves are partially reflected by the Alfvén speed gradient and the vorticity along the field lines. The resulting counter-propagating waves are responsible for the nonlinear turbulent cascade. The balanced turbulence due to uncorrelated waves near the apex of the closed field lines and the resulting elevated temperatures are addressed. (3) To apportion the wave dissipation to the three temperatures, we employ the results of the theories of linear wave damping and nonlinear stochastic heating. (4) We have incorporated the collisional and collisionless electron heat conduction. We compare the simulated multi-wavelength extreme ultraviolet images of CR2107 with the observations from STEREO/EUVI and the Solar Dynamics Observatory/AIA instruments. We demonstrate that the reflection due to strong magnetic fields in the proximity of active regions sufficiently intensifies the dissipation and observable emission.

82

, , , , and

Blazar spectral models generally have numerous unconstrained parameters, leading to ambiguous values for physical properties like Doppler factor δD or fluid magnetic field B'. To help remedy this problem, a few modifications of the standard leptonic blazar jet scenario are considered. First, a log-parabola function for the electron distribution is used. Second, analytic expressions relating energy loss and kinematics to blazar luminosity and variability, written in terms of equipartition parameters, imply δD, B', and the peak electron Lorentz factor $\gamma _{{\rm pk}}^\prime$. The external radiation field in a blazar is approximated by Lyα radiation from the broad-line region (BLR) and ≈0.1 eV infrared radiation from a dusty torus. When used to model 3C 279 spectral energy distributions from 2008 and 2009 reported by Hayashida et al., we derive δD ∼ 20–30, B' ∼ few G, and total (IR + BLR) external radiation field energy densities u ∼ 10−2–10−3 erg cm−3, implying an origin of the γ-ray emission site in 3C 279 at the outer edges of the BLR. This is consistent with the γ-ray emission site being located at a distance R ≲ Γ2ctvar ∼ 0.1(Γ/30)2(tvar/104 s) pc from the black hole powering 3C 279's jets, where tvar is the variability timescale of the radiation in the source frame, and at farther distances for narrow-jet and magnetic-reconnection models. Excess ≳ 5 GeV γ-ray emission observed with Fermi LAT from 3C 279 challenges the model, opening the possibility of a second leptonic component or a hadronic origin of the emission. For low hadronic content, absolute jet powers of ≈10% of the Eddington luminosity are calculated.

83

and

We present the first detection of para-ammonia masers in NGC 7538: multiple epochs of observation of the 14NH3 (J, K) = (10, 8) and (9,8) lines. We detect both thermal absorption and nonthermal emission in the (10,8) and (9,8) transitions and the absence of a maser in the (11,8) transition. The (9,8) maser is observed to increase in intensity by 40% over six months. Using interferometric observations with a synthesized beam of 0farcs25, we find that the (10,8) and (9,8) masers originate at the same sky position near IRS 1. With strong evidence that the (10,8) and (9,8) masers arise in the same volume, we discuss the application of pumping models for the simultaneous excitation of nonmetastable (J > K) para-ammonia states having the same value of K and consecutive values of J. We also present detections of thermal absorption in rotational states ranging in energy from E/kB ∼ 200 K to 2000 K, and several non-detections in higher-energy states. In particular, we describe the populations in eight adjacent rotational states with K = 6, including two maser transitions, along with the implications for ortho-ammonia pumping models. An existing torus model for molecular gas in the environment of IRS 1 has been applied to the masers; a variety of maser species are shown to agree with the model. Historical and new interferometric observations of 15NH3 (3,3) masers in the region indicate a precession of the rotating torus at a rate comparable to continuum-emission-based models of the region. We discuss the general necessity of interferometric observations for diagnosing the excitation state of the masers and for determining the geometry of the molecular environment.

84

, , , and

We use high-resolution cosmological zoom simulations with ∼200 pc resolution at z = 2 and various prescriptions for galactic outflows in order to explore the impact of winds on the morphological, dynamical, and structural properties of eight individual galaxies with halo masses ∼1011–2 × 1012 M at z = 2. We present a detailed comparison to spatially and spectrally resolved Hα and other observations of z ≈ 2 galaxies. We find that simulations without winds produce massive, compact galaxies with low gas fractions, super-solar metallicities, high bulge fractions, and much of the star formation concentrated within the inner kiloparsec. Strong winds are required to maintain high gas fractions, redistribute star-forming gas over larger scales, and increase the velocity dispersion of simulated galaxies, more in agreement with the large, extended, turbulent disks typical of high-redshift star-forming galaxies. Winds also suppress early star formation to produce high-redshift cosmic star formation efficiencies in better agreement with observations. Sizes, rotation velocities, and velocity dispersions all scale with stellar mass in accord with observations. Our simulations produce a diversity of morphological characteristics—among our three most massive galaxies, we find a quiescent grand-design spiral, a very compact star-forming galaxy, and a clumpy disk undergoing a minor merger; the clumps are evident in Hα but not in the stars. Rotation curves are generally slowly rising, particularly when calculated using azimuthal velocities rather than enclosed mass. Our results are broadly resolution-converged. These results show that cosmological simulations including outflows can produce disk galaxies similar to those observed during the peak epoch of cosmic galaxy growth.

85

, , , , and

Recent pieces of evidence have revealed that most, and possibly all, globular star clusters are composed of groups of stars that formed in multiple episodes with different chemical compositions. In this sense, it has also been argued that variations in the initial helium abundance (Y) from one population to the next are also the rule, rather than the exception. In the case of the metal-intermediate globular cluster M4 (NGC 6121), recent high-resolution spectroscopic observations of blue horizontal branch (HB) stars (i.e., HB stars hotter than the RR Lyrae instability strip) suggest that a large fraction of blue HB stars are second-generation stars formed with high helium abundances. In this paper, we test this scenario by using recent photometric and spectroscopic data together with theoretical evolutionary computations for different Y values. Comparing the photometric data with the theoretically derived color–magnitude diagrams, we find that the bulk of the blue HB stars in M4 have ΔY ≲ 0.01 with respect to the cluster's red HB stars (i.e., HB stars cooler than the RR Lyrae strip)—a result which is corroborated by comparison with spectroscopically derived gravities and temperatures, which also favor little He enhancement. However, the possible existence of a minority population on the blue HB of the cluster with a significant He enhancement level is also discussed.

86

, , , , and

While the shape of the extinction curve in the infrared is considered to be set and the extinction ratios between infrared bands are usually taken to be approximately constant, a number of recent studies point to either a spatially variable behavior of the exponent of the power law or a different extinction law altogether. In this paper, we propose a method to analyze the overall behavior of the interstellar extinction by means of the red-clump population, and we apply it to those areas of the Milky Way where the presence of interstellar matter is heavily felt: areas located in 5° < l < 30° and b = 0°. We show that the extinction ratios traditionally used for the near infrared could be inappropriate for the inner Galaxy and we analyze the behavior of the extinction law from 1 μm to 8 μm.

87

, , , , , and

This work examines in-falling matter following an enormous coronal mass ejection on 2011 June 7. The material formed discrete concentrations, or blobs, in the corona and fell back to the surface, appearing as dark clouds against the bright corona. In this work we examined the density and dynamic evolution of these blobs in order to formally assess the intriguing morphology displayed throughout their descent. The blobs were studied in five wavelengths (94, 131, 171, 193, and 211 Å) using the Solar Dynamics Observatory Atmospheric Imaging Assembly, comparing background emission to attenuated emission as a function of wavelength to calculate column densities across the descent of four separate blobs. We found the material to have a column density of hydrogen of approximately 2 × 1019 cm−2, which is comparable with typical pre-eruption filament column densities. Repeated splitting of the returning material is seen in a manner consistent with the Rayleigh–Taylor instability. Furthermore, the observed distribution of density and its evolution is also a signature of this instability. By approximating the three-dimensional geometry (with data from STEREO-A), volumetric densities were found to be approximately 2 × 10−14 g cm−3, and this, along with observed dominant length scales of the instability, was used to infer a magnetic field of the order 1 G associated with the descending blobs.

88

, , and

Gap clearing by giant planets has been proposed to explain the optically thin cavities observed in many protoplanetary disks. How much material remains in the gap determines not only how detectable young planets are in their birth environments, but also how strong co-rotation torques are, which impacts how planets can survive fast orbital migration. We determine numerically how the average surface density inside the gap, Σgap, depends on planet-to-star mass ratio q, Shakura–Sunyaev viscosity parameter α, and disk height-to-radius aspect ratio h/r. Our results are derived from our new graphics processing unit accelerated Lagrangian hydrodynamical code PEnGUIn and are verified by independent simulations with ZEUS90. For Jupiter-like planets, we find Σgapq−2.2α1.4(h/r)6.6, and for near brown dwarf masses, Σgapq−1α1.3(h/r)6.1. Surface density contrasts inside and outside gaps can be as large as 104, even when the planet does not accrete. We derive a simple analytic scaling, Σgapq−2α1(h/r)5, that compares reasonably well to empirical results, especially at low Neptune-like masses, and use discrepancies to highlight areas for progress.

89

, , , and

We have found that Proxima Centauri, the star closest to our Sun, will pass close to a pair of faint background stars in the next few years. Using Hubble Space Telescope (HST) images obtained in 2012 October, we determine that the passage close to a mag 20 star will occur in 2014 October (impact parameter 1farcs6), and to a mag 19.5 star in 2016 February (impact parameter 0farcs5). As Proxima passes in front of these stars, the relativistic deflection of light will cause shifts in the positions of the background stars of ∼0.5 and 1.5 mas, respectively, readily detectable by HST imaging, and possibly by Gaia and ground-based facilities such as the Very Large Telescope. Measurement of these astrometric shifts offers a unique and direct method to measure the mass of Proxima. Moreover, if Proxima has a planetary system, the planets may be detectable through their additional microlensing signals, although the probability of such detections is small. With astrometric accuracies of 0.03 mas (achievable with HST spatial scanning), centroid shifts caused by Jovian planets are detectable at separations of up to 2farcs0 (corresponding to 2.6 AU at the distance of Proxima), and centroid shifts by Earth-mass planets are detectable within a small band of 8 mas (corresponding to 0.01 AU) around the source trajectories. Jovian planets within a band of about 28 mas (corresponding to 0.036 AU) around the source trajectories would produce a brightening of the source by >0.01 mag and could hence be detectable. Estimated timescales of the astrometric and photometric microlensing events due to a planet range from a few hours to a few days, and both methods would provide direct measurements of the planetary mass.

90

, , , , , , , , , et al

The Galaxy And Mass Assembly (GAMA) survey furnishes a deep redshift catalog that, when combined with the Wide-field Infrared Survey Explorer (WISE), allows us to explore for the first time the mid-infrared properties of >110, 000 galaxies over 120 deg2 to z ≃ 0.5. In this paper we detail the procedure for producing the matched GAMA-WISE catalog for the G12 and G15 fields, in particular characterizing and measuring resolved sources; the complete catalogs for all three GAMA equatorial fields will be made available through the GAMA public releases. The wealth of multiwavelength photometry and optical spectroscopy allows us to explore empirical relations between optically determined stellar mass (derived from synthetic stellar population models) and 3.4 μm and 4.6 μm WISE measurements. Similarly dust-corrected Hα-derived star formation rates can be compared to 12 μm and 22 μm luminosities to quantify correlations that can be applied to large samples to z < 0.5. To illustrate the applications of these relations, we use the 12 μm star formation prescription to investigate the behavior of specific star formation within the GAMA-WISE sample and underscore the ability of WISE to detect star-forming systems at z ∼ 0.5. Within galaxy groups (determined by a sophisticated friends-of-friends scheme), results suggest that galaxies with a neighbor within 100 h−1 kpc have, on average, lower specific star formation rates than typical GAMA galaxies with the same stellar mass.

91

, , , and

We revisit potential impacts of nuclear burning on the onset of the neutrino-driven explosions of core-collapse supernovae. By changing the neutrino luminosity and its decay time to obtain parametric explosions in one- and two-dimensional (1D and 2D, respectively) models with or without a 13 isotope α network, we study how the inclusion of nuclear burning could affect the postbounce dynamics for 4 progenitor models; 3 for 15.0 M stars and 1 for an 11.2 M star. We find that the energy supply due to the nuclear burning of infalling material behind the shock can energize the shock expansion, especially for models that produce only marginal explosions in the absence of nuclear burning. These models are energized by nuclear energy deposition when the shock front passes through the silicon-rich layer and/or later as it touches the oxygen-rich layer. Depending on the neutrino luminosity and its decay time, the diagnostic energy of the explosion increases up to a few times 1050 erg for models with nuclear burning compared to the corresponding models without. We point out that these features are most remarkable for the Limongi–Chieffi progenitor in both 1D and 2D because the progenitor model possesses a massive oxygen layer, with an inner-edge radius that is smallest among the employed progenitors, which means that the shock can touch the rich fuel on a shorter timescale after bounce. The energy difference is generally smaller (∼0.1–0.2 × 1051 erg) in 2D than in 1D (at most ∼0.6 × 1051 erg). This is because neutrino-driven convection and the shock instability in 2D models enhance the neutrino heating efficiency, which makes the contribution of nuclear burning relatively smaller compared to 1D models. Considering uncertainties in progenitor models, our results indicate that nuclear burning should remain one of the important ingredients to foster the onset of neutrino-driven explosions.

92

and

In this paper, we simulate the prompt emission light curves of gamma-ray bursts (GRBs) within the framework of the Internal-Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model. This model applies to GRBs with a moderately high magnetization parameter σ in the emission region. We show that this model can produce highly variable light curves with both fast and slow components. The rapid variability is caused by many locally Doppler-boosted mini-emitters due to turbulent magnetic reconnection in a moderately high σ flow. The runaway growth and subsequent depletion of these mini-emitters as a function of time define a broad slow component for each ICMART event. A GRB light curve is usually composed of multiple ICMART events that are fundamentally driven by the erratic GRB central engine activity. Allowing variations of the model parameters, one is able to reproduce a variety of light curves and the power density spectra as observed.

93

, , and

The solar activity cycle is successfully modeled by the flux transport dynamo, in which the meridional circulation of the Sun plays an important role. Most of the kinematic dynamo simulations assume a one-cell structure of the meridional circulation within the convection zone, with the equatorward return flow at its bottom. In view of the recent claims that the return flow occurs at a much shallower depth, we explore whether a meridional circulation with such a shallow return flow can still retain the attractive features of the flux transport dynamo (such as a proper butterfly diagram, the proper phase relation between the toroidal and poloidal fields). We consider additional cells of the meridional circulation below the shallow return flow—both the case of multiple cells radially stacked above one another and the case of more complicated cell patterns. As long as there is an equatorward flow in low latitudes at the bottom of the convection zone, we find that the solar behavior is approximately reproduced. However, if there is either no flow or a poleward flow at the bottom of the convection zone, then we cannot reproduce solar behavior. On making the turbulent diffusivity low, we still find periodic behavior, although the period of the cycle becomes unrealistically large. In addition, with a low diffusivity, we do not get the observed correlation between the polar field at the sunspot minimum and the strength of the next cycle, which is reproduced when diffusivity is high. On introducing radially downward pumping, we get a more reasonable period and more solar-like behavior even with low diffusivity.

94

, , , , , , and

A jet is a considerable amount of plasma being ejected from the chromosphere or lower corona into the higher corona and is a common phenomenon. Usually, a jet is triggered by a brightening or a flare, which provides the first driving force to push plasma upward. In this process, magnetic reconnection is thought to be the mechanism to convert magnetic energy into thermal, nonthermal, and kinetic energies. However, most jets could reach an unusual high altitude and end much later than the end of its associated flare. This fact implies that there is another way to continuously transfer magnetic energy into kinetic energy even after the reconnection. The picture described above is well known in the community, but how and how much magnetic energy is released through a way other than reconnection is still unclear. By studying a prominence-like jet observed by SDO/AIA and STEREO-A/EUVI, we find that the continuous relaxation of the post-reconnection magnetic field structure is an important process for a jet to climb up higher than it could through only reconnection. The kinetic energy of the jet gained through the relaxation is 1.6 times that gained from the reconnection. The resultant energy flux is hundreds of times larger than the flux required for the local coronal heating, suggesting that such jets are a possible source to keep the corona hot. Furthermore, rotational motions appear all the time during the jet. Our analysis suggests that torsional Alfvén waves induced during reconnection could not be the only mechanism to release magnetic energy and drive jets.

95

, , and

We investigate the impact of dust-induced gas fragmentation on the formation of the first low-mass, metal-poor stars (<1 M) in the early universe. Previous work has shown the existence of a critical dust-to-gas ratio, below which dust thermal cooling cannot cause gas fragmentation. Assuming that the first dust is silicon-based, we compute critical dust-to-gas ratios and associated critical silicon abundances ([Si/H]crit). At the density and temperature associated with protostellar disks, we find that a standard Milky Way grain size distribution gives [Si/H]crit = −4.5 ± 0.1, while smaller grain sizes created in a supernova reverse shock give [Si/H]crit = −5.3 ± 0.1. Other environments are not dense enough to be influenced by dust cooling. We test the silicate dust cooling theory by comparing to silicon abundances observed in the most iron-poor stars ([Fe/H] < -4.0). Several stars have silicon abundances low enough to rule out dust-induced gas fragmentation with a standard grain size distribution. Moreover, two of these stars have such low silicon abundances that even dust with a shocked grain size distribution cannot explain their formation. Adding small amounts of carbon dust does not significantly change these conclusions. Additionally, we find that these stars exhibit either high carbon with low silicon abundances or the reverse. A silicate dust scenario thus suggests that the earliest low-mass star formation in the most metal-poor regime may have proceeded through two distinct cooling pathways: fine-structure line cooling and dust cooling. This naturally explains both the carbon-rich and carbon-normal stars at extremely low [Fe/H].

96

, , , , and

Massive stars in binary systems (such as WR 140, WR 147, or η Carinae) have long been regarded as potential sources of high-energy γ-rays. The emission is thought to arise in the region where the stellar winds collide and produce relativistic particles that subsequently might be able to emit γ-rays. Detailed numerical hydrodynamic simulations have already offered insight into the complex dynamics of the wind collision region (WCR), while independent analytical studies, albeit with simplified descriptions of the WCR, have shed light on the spectra of charged particles. In this paper, we describe a combination of these two approaches. We present a three-dimensional hydrodynamical model for colliding stellar winds and compute spectral energy distributions of relativistic particles for the resulting structure of the WCR. The hydrodynamic part of our model incorporates the line-driven acceleration of the winds, gravity, orbital motion, and the radiative cooling of the shocked plasma. In our treatment of charged particles, we consider diffusive shock acceleration in the WCR and the subsequent cooling via inverse Compton losses (including Klein–Nishina effects), bremsstrahlung, collisions, and other energy loss mechanisms.

97

, , , , and

Interacting galaxies often have complexes of hundreds of young stellar clusters of individual masses ∼104–106M in regions that are a few hundred parsecs across. These cluster complexes interact dynamically, and their coalescence is a candidate for the origin of some ultracompact dwarf galaxies. Individual clusters with short relaxation times are candidates for the production of intermediate-mass black holes of a few hundred solar masses, via runaway stellar collisions prior to the first supernovae in a cluster. It is therefore possible that a cluster complex hosts multiple intermediate-mass black holes that may be ejected from their individual clusters due to mergers or binary processes, but bound to the complex as a whole. Here we explore the dynamical interaction between initially free-flying massive black holes and clusters in an evolving cluster complex. We find that, after hitting some clusters, it is plausible that the massive black hole will be captured in an ultracompact dwarf forming near the center of the complex. In the process, the hole typically triggers electromagnetic flares via stellar disruptions, and is also likely to be a prominent source of gravitational radiation for the advanced ground-based detectors LIGO and VIRGO. We also discuss other implications of this scenario, notably that the central black hole could be considerably larger than expected in other formation scenarios for ultracompact dwarfs.

98

and

Type IIP supernovae (SNe) are recognized as independent extragalactic distance indicators; however, keeping in mind the diverse nature of their observed properties as well as the availability of good quality data, more and newer events need to be tested for their applicability as reliable distance indicators. We use early photometric and spectroscopic data of eight Type IIP SNe to derive distances to their host galaxies by using the expanding photosphere method (EPM). For five of these, the EPM is applied for the first time. In this work, we improved EPM application by using SYNOW estimated velocities and by semi-deconvolving the broadband filter responses while deriving color temperatures and blackbody angular radii. We find that the derived EPM distances are consistent with that derived using other redshift-independent methods.

99

The hydrostatic equilibrium of multi-layer bodies lacks a satisfactory theoretical treatment despite its wide range of applicability. Here we show that by using the exact analytical potential of homogeneous ellipsoids we can obtain recursive analytical solutions and an exact numerical method for the hydrostatic equilibrium shape problem of multi-layer planets and synchronous moons. The recursive solutions rely on the series expansion of the potential in terms of the polar and equatorial shape eccentricities, while the numerical method uses the exact potential expression. These solutions can be used to infer the interior structure of planets and synchronous moons from their observed shape, rotation, and gravity. When applied to the dwarf planet Ceres, we show that it is most likely a differentiated body with an icy crust of equatorial thickness 30–90 km and a rocky core of density 2.4–3.1 g cm−3. For synchronous moons, we show that the J2/C22 ≃ 10/3 and the (bc)/(ac) ≃ 1/4 ratios have significant corrections of order Ω2/(πGρ), with important implications for how their gravitational coefficients are determined from fly-by radio science data and for how we assess their hydrostatic equilibrium state.

100

, , , , and

Here we measure the absolute magnitude distributions (H-distribution) of the dynamically excited and quiescent (hot and cold) Kuiper Belt objects (KBOs), and test if they share the same H-distribution as the Jupiter Trojans. From a compilation of all useable ecliptic surveys, we find that the KBO H-distributions are well described by broken power laws. The cold population has a bright-end slope, $\alpha _{{1}}=1.5_{-0.2}^{+0.4}$, and break magnitude, $H_{{\rm B}}=6.9_{-0.2}^{+0.1}$ (r'-band). The hot population has a shallower bright-end slope of, $\alpha _{{1}}=0.87_{-0.2}^{+0.07}$, and break magnitude $H_{{\rm B}}=7.7_{-0.5}^{+1.0}$. Both populations share similar faint-end slopes of α2 ∼ 0.2. We estimate the masses of the hot and cold populations are ∼0.01 and ∼3 × 10−4M. The broken power-law fit to the Trojan H-distribution has α1 = 1.0 ± 0.2, α2 = 0.36 ± 0.01, and HB = 8.3. The Kolmogorov–Smirnov test reveals that the probability that the Trojans and cold KBOs share the same parent H-distribution is less than 1 in 1000. When the bimodal albedo distribution of the hot objects is accounted for, there is no evidence that the H-distributions of the Trojans and hot KBOs differ. Our findings are in agreement with the predictions of the Nice model in terms of both mass and H-distribution of the hot and Trojan populations. Wide-field survey data suggest that the brightest few hot objects, with $H_{{r^{\prime}}}\lesssim 3$, do not fall on the steep power-law slope of fainter hot objects. Under the standard hierarchical model of planetesimal formation, it is difficult to account for the similar break diameters of the hot and cold populations given the low mass of the cold belt.

101

, , , , , , , and

A long-term spectroscopic and photometric survey of the most luminous and massive stars in the vicinity of the supermassive black hole Sgr A* revealed two new binaries: a long-period Ofpe/WN9 binary, IRS 16NE, with a modest eccentricity of 0.3 and a period of 224 days, and an eclipsing Wolf–Rayet binary with a period of 2.3 days. Together with the already identified binary IRS 16SW, there are now three confirmed OB/WR binaries in the inner 0.2 pc of the Galactic center. Using radial velocity change upper limits, we were able to constrain the spectroscopic binary fraction in the Galactic center to $F_{\rm SB}=0.30^{+0.34}_{-0.21}$ at a confidence level of 95%, a massive binary fraction close to that observed in dense clusters. The fraction of eclipsing binaries with photometric amplitudes Δm > 0.4 is $F^{\rm GC}_{\rm EB}=3\%\pm 2\%$, which is consistent with local OB star clusters (FEB = 1%). Overall, the Galactic center binary fraction seems to be similar to the binary fraction in comparable young clusters.

102

, , , and

We present a spatial and spectral X-ray analysis of the Galactic supernova remnant (SNR) G352.7−0.1 using archival data from observations made with the XMM-Newton X-ray Observatory and the ChandraX-ray Observatory. Prior X-ray observations of this SNR had revealed a thermal center-filled morphology that contrasts with a shell-like radio morphology, thus establishing G352.7−0.1 as a member of the class of Galactic SNRs known as mixed-morphology SNRs (MMSNRs). Our study confirms that the X-ray emission comes from the SNR interior and must be ejecta dominated. Spectra obtained with XMM-Newton may be fit satisfactorily with a single thermal component (namely a non-equilibrium ionization component with enhanced abundances of silicon and sulfur). In contrast, spectra extracted by Chandra from certain regions of the SNR cannot always be fit by a single thermal component. For those regions, a second thermal component with solar abundances or two thermal components with different temperatures and thawed silicon and sulfur abundances (respectively) can generate a statistically acceptable fit. We argue that the former scenario is more physically plausible: on the basis of parameters of our spectral fits, we calculate physical parameters including X-ray emitting mass (∼45 M for solar abundances). We find no evidence for overionization in the X-ray emitting plasma associated with the SNR: this phenomenon has been seen in other MMSNRs. We have conducted a search for a neutron star within the SNR by using a hard (2–10 keV) Chandra image but could not identify a firm candidate. We also present (for the first time) the detection of infrared emission from this SNR as detected at 24 μm by the MIPS on board Spitzer. Finally, we discuss the properties of G352.7−0.1 in the context of other ejecta-dominated MMSNRs.

103

, , , and

Based on the dynamical black hole (BH) mass estimates, NGC 3115 hosts the closest billion solar mass BH. Deep studies of the center revealed a very underluminous active galactic nucleus (AGN) immersed in an old massive nuclear star cluster. Recent 1 Ms Chandra X-ray visionary project observations of the NGC 3115 nucleus resolved hot tenuous gas, which fuels the AGN. In this paper we connect the processes in the nuclear star cluster with the feeding of the supermassive BH. We model the hot gas flow sustained by the injection of matter and energy from the stars and supernova explosions. We incorporate electron heat conduction as the small-scale feedback mechanism, the gravitational pull of the stellar mass, cooling, and Coulomb collisions. Fitting simulated X-ray emission to the spatially and spectrally resolved observed data, we find the best-fitting solutions with χ2/dof = 1.00 for dof = 236 both with and without conduction. The radial modeling favors a low BH mass <1.3 × 109M. The best-fitting supernova rate and the best-fitting mass injection rate are consistent with their expected values. The stagnation point is at rst ≲ 1'', so that most of the gas, including the gas at a Bondi radius rB = 2''–4'', outflows from the region. We put an upper limit on the accretion rate at 2 × 10−3M yr−1. We find a shallow density profile nr−β with β ≈ 1 over a large dynamic range. This density profile is determined in the feeding region 0farcs5–10'' as an interplay of four processes and effects: (1) the radius-dependent mass injection, (2) the effect of the galactic gravitational potential, (3) the accretion flow onset at r ≲ 1'', and (4) the outflow at r ≳ 1''. The gas temperature is close to the virial temperature Tv at any radius.

104

, , , and

The discovery of rapid synchrotron gamma-ray flares above 100 MeV from the Crab Nebula has attracted new interest in alternative particle acceleration mechanisms in pulsar wind nebulae. Diffuse shock-acceleration fails to explain the flares because particle acceleration and emission occur during a single or even sub-Larmor timescale. In this regime, the synchrotron energy losses induce a drag force on the particle motion that balances the electric acceleration and prevents the emission of synchrotron radiation above 160 MeV. Previous analytical studies and two-dimensional (2D) particle-in-cell (PIC) simulations indicate that relativistic reconnection is a viable mechanism to circumvent the above difficulties. The reconnection electric field localized at X-points linearly accelerates particles with little radiative energy losses. In this paper, we check whether this mechanism survives in three dimension (3D), using a set of large PIC simulations with radiation reaction force and with a guide field. In agreement with earlier works, we find that the relativistic drift kink instability deforms and then disrupts the layer, resulting in significant plasma heating but few non-thermal particles. A moderate guide field stabilizes the layer and enables particle acceleration. We report that 3D magnetic reconnection can accelerate particles above the standard radiation reaction limit, although the effect is less pronounced than in 2D with no guide field. We confirm that the highest-energy particles form compact bunches within magnetic flux ropes, and a beam tightly confined within the reconnection layer, which could result in the observed Crab flares when, by chance, the beam crosses our line of sight.

105

, , and

This work reports a study on the spectral lag of the prompt emission spectrum of a multi-pulse gamma-ray burst (GRB) GRB 060814 (z = 0.84) using the observations of the Swift Burst Alert Telescope and the Suzaku Wide Area Monitor. We found that the spectral lag for GRB 060814 is positive for the first two and the fourth pulses, while the third pulse exhibits negative lag. However, the time variation of the Epeak of all the stated pulses shows a similar trend. The leading models for spectral lags in GRBs are thus found inadequate to explain the observed spectral lag features of GRB 060814. Probable causes of the spectral lag characteristics of GRB 060814 are discussed.

106

, , and

Full sky maps of energetic neutral atoms (ENA) obtained with the Interstellar Boundary Explorer revealed a bright, arc-like Ribbon. We compare possible, though as yet undetected, He ENA emission in two models of the Ribbon origin. The models were originally developed for hydrogen ENA. In the first one, ENA are produced outside the heliopause from the ionized neutral solar wind in the direction where the local interstellar magnetic field is perpendicular to the line of sight. The second model proposes production at the contact layer between the Local Interstellar Cloud (LIC) and the Local Bubble (LB). The models are redesigned to helium using relevant interactions between atoms and ions. Resulting intensities are compared with possible emission of helium ENA from the heliosheath. In the first model, the expected intensity is ∼0.014 (cm2 s sr keV)−1, i.e., of the order of the He emission from the heliosheath, whereas in the second, the LIC/LB contact layer model, the intensity is ∼(2–7) (cm2 s sr keV)−1, i.e., a few hundred times larger. If the IBEX Ribbon needs a source population of He ENA leaving the heliosphere, it should not be visible in He ENA fluxes mainly because of the insufficient supply of the parent He ENA originating from the neutralized solar wind α-particles. We conclude that full-sky measurements of He ENA could give promising prospects for probing the Local Interstellar Medium at the distance of a few thousand AU and create the possibility of distinction between the above mentioned models of Ribbon origin.

107

, , , , and

The use of galaxy clusters as cosmological probes hinges on our ability to measure their masses accurately and with high precision. Hydrostatic mass is one of the most common methods for estimating the masses of individual galaxy clusters, which suffer from biases due to departures from hydrostatic equilibrium. Using a large, mass-limited sample of massive galaxy clusters from a high-resolution hydrodynamical cosmological simulation, in this work we show that in addition to turbulent and bulk gas velocities, acceleration of gas introduces biases in the hydrostatic mass estimate of galaxy clusters. In unrelaxed clusters, the acceleration bias is comparable to the bias due to non-thermal pressure associated with merger-induced turbulent and bulk gas motions. In relaxed clusters, the mean mass bias due to acceleration is small (≲ 3%), but the scatter in the mass bias can be reduced by accounting for gas acceleration. Additionally, this acceleration bias is greater in the outskirts of higher redshift clusters where mergers are more frequent and clusters are accreting more rapidly. Since gas acceleration cannot be observed directly, it introduces an irreducible bias for hydrostatic mass estimates. This acceleration bias places limits on how well we can recover cluster masses from future X-ray and microwave observations. We discuss implications for cluster mass estimates based on X-ray, Sunyaev–Zel'dovich effect, and gravitational lensing observations and their impact on cluster cosmology.

108

, , and

The generation process of a magnetic field around a proto-first-star is studied. Utilizing the recent numerical results of proto-first-star formation based on radiation hydrodynamics simulations, we assess the magnetic field strength generated by the radiative force and the Biermann battery effect. We find that a magnetic field of ∼10−9 G is generated on the surface of the accretion disk around the proto-first-star. The field strength on the accretion disk is smaller by two orders of magnitude than the critical value, above which the gravitational fragmentation of the disk is suppressed. Thus, the generated seed magnetic field hardly affect the dynamics of on-site first star formation directly, unless an efficient amplification process is taken into consideration. We also find that the generated magnetic field is continuously blown out from the disk on the outflows to the poles, that are driven by the thermal pressure of photoheated gas. The strength of the diffused magnetic field in low-density regions is ∼10−14–10−13 G at nH = 103 cm−3, which could play an important role in the next generation star formation, as well as the seeds of the magnetic field in the present-day universe.

109

and

For more than a decade now, the complete origin of the diffuse gamma-ray emission background (EGRB) has been unknown. Major components like unresolved star-forming galaxies (making ≲ 50% of the EGRB) and blazars (≲ 23%), have failed to explain the entire background observed by Fermi. Another, though subdominant, contribution is expected to come from the process of large-scale structure formation. The growth of structures is accompanied by accretion and merger shocks, which would, with at least some magnetic field present, give rise to a population of structure-formation cosmic rays (SFCRs). Though expected, this cosmic-ray population is still hypothetical and only very weak limits have been placed to their contribution to the EGRB. The most promising insight into SFCRs was expected to come from Fermi-LAT observations of clusters of galaxies, however, only upper limits and no detection have been placed. Here, we build a model of gamma-ray emission from large-scale accretion shocks implementing a source evolution calibrated with the Fermi-LAT cluster observation limits. Though our limits to the SFCR gamma-ray emission are weak (above the observed EGRB) in some cases, in others, some of our models can provide a good fit to the observed EGRB. More importantly, we show that these large-scale shocks could still give an important contribution to the EGRB, especially at high energies. Future detections of cluster gamma-ray emission would help place tighter constraints on our models and give us a better insight into large-scale shocks forming around them.

110

, , , , , , , , , et al

TeV-flaring activity with timescales as short as tens of minutes and an orphan TeV flare have been observed from the blazar Markarian 421 (Mrk 421). The TeV emission from Mrk 421 is believed to be produced by leptonic synchrotron self-Compton (SSC) emission. In this scenario, correlations between the X-ray and the TeV fluxes are expected, TeV orphan flares are hardly explained, and the activity (measured as duty cycle) of the source at TeV energies is expected to be equal to or less than that observed in X-rays if only SSC is considered. To estimate the TeV duty cycle of Mrk 421 and to establish limits on its variability at different timescales, we continuously observed Mrk 421 with the Milagro observatory. Mrk 421 was detected by Milagro with a statistical significance of 7.1 standard deviations between 2005 September 21 and 2008 March 15. The observed spectrum is consistent with previous observations by VERITAS. We estimate the duty cycle of Mrk 421 for energies above 1 TeV for different hypotheses of the baseline flux and for different flare selections and we compared our results with the X-ray duty cycle estimated by Resconi et al. The robustness of the results is discussed.

111

An important property of exoplanetary systems is the extent of the Habitable Zone (HZ), defined as that region where water can exist in a liquid state on the surface of a planet with sufficient atmospheric pressure. Both ground- and space-based observations have revealed a plethora of confirmed exoplanets and exoplanetary candidates, most notably from the Kepler mission using the transit detection technique. Many of these detected planets lie within the predicted HZ of their host star. However, as is the case with the derived properties of the planets themselves, the HZ boundaries depend on how well we understand the host star. Here we quantify the uncertainties of HZ boundaries on the parameter uncertainties of the host star. We examine the distribution of stellar parameter uncertainties from confirmed exoplanet hosts and Kepler candidate hosts and translate these into HZ boundary uncertainties. We apply this to several known systems with an HZ planet to determine the uncertainty in their HZ status.

112

A fully analytic expression for the linear corotation torque to first order in eccentricity for planets in non-barotropic protoplanetary disks is derived, taking into account the effect of disk entropy gradients. This torque formula is applicable to both the co-orbital, corotation torques and the non-co-orbital, corotation torques—for planets in orbits with non-zero eccentricity—in disks where the thermal diffusivity and viscosity are sufficient to maintain the linearity of these interactions. While the co-orbital, corotation torque is important for migration of planets in Type I migration, the non-co-orbital, corotation torque plays an important role in the eccentricity evolution of giant planets that have opened gaps in the disk. The presence of an entropy gradient in the disk can significantly modify the corotation torque in both these cases.

113

, , and

We show that the first order (non-co-orbital) corotation torques are significantly modified by entropy gradients in a non-barotropic protoplanetary disk. Such non-barotropic torques can dramatically alter the balance that, for barotropic cases, results in the net eccentricity damping for giant gap-clearing planets embedded in the disk. We demonstrate that stellar illumination can heat the gap enough for the planet's orbital eccentricity to instead be excited. We also discuss the "Eccentricity Valley" noted in the known exoplanet population, where low-metallicity stars have a deficit of eccentric planets between ∼0.1 and ∼1 AU compared to metal-rich systems. We show that this feature in the planet distribution may be due to the self-shadowing of the disk by a rim located at the dust sublimation radius ∼0.1 AU, which is known to exist for several T Tauri systems. In the shadowed region between ∼0.1 and ∼1 AU, lack of gap insolation allows disk interactions to damp eccentricity. Outside such shadowed regions stellar illumination can heat the planetary gaps and drive eccentricity growth for giant planets. We suggest that the self-shadowing does not arise at higher metallicity due to the increased optical depth of the gas interior to the dust sublimation radius.

114

, , and

We test some ideas for star formation relations against data on local molecular clouds. On a cloud by cloud basis, the relation between the surface density of star formation rate and surface density of gas divided by a free-fall time, calculated from the mean cloud density, shows no significant correlation. If a crossing time is substituted for the free-fall time, there is even less correlation. Within a cloud, the star formation rate volume and surface densities increase rapidly with the corresponding gas densities, faster than predicted by models using the free-fall time defined from the local density. A model in which the star formation rate depends linearly on the mass of gas above a visual extinction of 8 mag describes the data on these clouds, with very low dispersion. The data on regions of very massive star formation, with improved star formation rates based on free–free emission from ionized gas, also agree with this linear relation.

115

, , , and

A number of recent challenges to the standard ΛCDM paradigm relate to discrepancies that arise in comparing the abundance and kinematics of local dwarf galaxies with the predictions of numerical simulations. Such arguments rely heavily on the assumption that the Local Volume's dwarf and satellite galaxies form a representative distribution in terms of their stellar-to-halo mass ratios. To address this question, we present new, deep spectroscopy using DEIMOS on Keck for 82 low-mass (107–109M), star-forming galaxies at intermediate redshift (0.2 < z < 1). For 50% of these we are able to determine resolved rotation curves using nebular emission lines and thereby construct the stellar mass Tully–Fisher relation to masses as low as 107M. Using scaling relations determined from weak lensing data, we convert this to a stellar-to-halo mass relation for comparison with abundance matching predictions. We find a discrepancy between our observations and the predictions from abundance matching in the sense that we observe 3–12 times more stellar mass at a given halo mass. We suggest possible reasons for this discrepancy, as well as improved tests for the future.

116

, , and

COSMOS J100043.15+020637.2 is a merger remnant at z = 0.36 with two optical nuclei, NW and SE, offset by 500 mas (2.5 kpc). Prior studies suggest two competing scenarios for these nuclei: (1) SE is an active galactic nucleus (AGN) lost from NW due to a gravitational-wave recoil. (2) NW and SE each contain an AGN, signaling a gravitational-slingshot recoil or inspiralling AGNs. We present new images from the Very Large Array (VLA) at a frequency ν = 9.0 GHz and a FWHM resolution θ = 320 mas (1.6 kpc), and the Very Long Baseline Array (VLBA) at ν = 1.52 GHz and θ = 15 mas (75 pc). The VLA imaging is sensitive to emission driven by AGNs and/or star formation, while the VLBA imaging is sensitive only to AGN-driven emission. No radio emission is detected at these frequencies. Folding in prior results, we find: (a) The properties of SE and its adjacent X-ray feature resemble those of the Type 1 AGN in NGC 4151, albeit with a much higher narrow emission-line luminosity. (b) The properties of NW are consistent with it hosting a Compton-thick AGN that warms ambient dust, photoionizes narrow emission-line gas, and is free–free absorbed by that gas. Finding (a) is consistent with scenarios (a) and (b). Finding (b) weakens the case for scenario (a) and strengthens the case for scenario (b). Follow-up observations are suggested.