MAF 2017

figure

Methods and Applications in Fluorescence (MAF) is pleased to announce that we will be publishing a collection of research articles based on work presented at the MAF 17 conference which was held in Bruges.The success of the MAF conference series, reflects the enormous progress that has been made in fluorescence over the last few decades.In this issue we plan to present a selection of the most exciting work presented at the conference.

Guest Editors

Yves Mély Université de Strasbourg
Johan Hofkens KU Leuven

Papers

Open access
Unusually large Stokes shift for a near-infrared emitting DNA-stabilized silver nanocluster

Sidsel Ammitzbøll Bogh et al 2018 Methods Appl. Fluoresc. 6 024004

In this paper we present a new near-IR emitting silver nanocluster (NIR-DNA-AgNC) with an unusually large Stokes shift between absorption and emission maximum (211 nm or 5600 cm−1). We studied the effect of viscosity and temperature on the steady state and time-resolved emission. The time-resolved results on NIR-DNA-AgNC show that the relaxation dynamics slow down significantly with increasing viscosity of the solvent. In high viscosity solution, the spectral relaxation stretches well into the nanosecond scale. As a result of this slow spectral relaxation in high viscosity solutions, a multi-exponential fluorescence decay time behavior is observed, in contrast to the more mono-exponential decay in low viscosity solution.

Fluorescence properties of Yb3+–Er3+ co-doped phosphate glasses containing silver nanoparticles

Ma A Martínez Gámez et al 2018 Methods Appl. Fluoresc. 6 024005

Er3+–Yb3+ co-doped phosphate glasses containing silver nitrate (SN), were fabricated. Transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS) analyses were used to evidence the nucleation and presence of silver nanoparticles (SNP). The basic parameters of the glasses were inspected by means of absorption and fluorescence spectra, and fluorescence lifetimes under excitation at 916 nm (in-band of Yb3+), and at 406 nm (in-band of surface plasmon resonance given by the presence of SNP). The spectra as well as estimates for the basic parameters defining the lasing/amplifying potential of the glasses were studied as a function of SN concentration. The experimental results indicate that by increasing the SN content an enhancement of Er3+/Yb3+ fluorescence takes place.

Open access
Surface functionalisation with viscosity-sensitive BODIPY molecular rotor

Aurimas Vyšniauskas et al 2018 Methods Appl. Fluoresc. 6 034001

Surface functionalisation with viscosity sensitive dyes termed 'molecular rotors' can potentially open up new opportunities in sensing, for example for non-invasive biological viscosity imaging, in studying the effect of shear stress on lipid membranes and in cells, and in imaging contacts between surfaces upon applied pressure. We have functionalised microscope slides with BODIPY-based molecular rotor capable of viscosity sensing via its fluorescence lifetime. We have optimised functionalisation conditions and prepared the slides with the BODIPY rotor attached directly to the surface of glass slides and through polymer linkers of 5 kDa and 40 kDa in mass. The slides were characterised for their sensitivity to viscosity, and used to measure viscosity of supported lipid bilayers during photooxidation, and of giant unilamellar vesicles lying on the surface of the slide. We conclude that our functionalised slides show promise for a variety of viscosity sensing applications.

Synthesis of highly stable cyanine-dye-doped silica nanoparticle for biological applications

Ying Lian et al 2018 Methods Appl. Fluoresc. 6 034002

Cyanine dyes are widely used in biological labeling and imaging because of their narrow near infrared emission, good brightness and high flexibility in functionalization, which not only enables multiplex analysis and multi-color imaging, but also greatly reduces autofluorescence from biological matter and increases signal-to-noise ratio. Unfortunately, their poor chemical- and photo-stability strongly limits their applications. The incorporation of cyanine dyes in silica nanoparticles provides a solution to the problem. On one hand, the incorporation of cyanine dyes in silica matrix can enhance their chemical- and photo-stability and increase brightness of the nanomaterials. On the other hand, silica matrix provides an optimized condition to host the dye, which helps to maintain their fluorescent properties during application. In addition, the well-established silane technique provides numerous functionalities for diverse applications. However, commercially available cyanine dyes are not very stable at high alkaline conditions, which will gradually lose their fluorescence over time. Our results showed that cyanine dyes are very vulnerable in the reverse micelle system, in which they will lose their fluorescence in less than half an hour. The existence of surfactant could greatly promote degradation of cyanine dyes. Fluorescent silica nanoparticles cannot be obtained at the high alkaline condition with the existence of surfactant. In contrast, the cyanine dyes are relatively stable in Stöber media. Owing to the fast formation of silica particles in Stöber media, the exposure time of cyanine dye in alkaline solution was greatly reduced, and highly fluorescent particles with good morphology and size distribution could be obtained via Stöber approach. However, the increasing water content in the Stöber could reduce the stability of cyanine dyes, which should be avoided. This research here provides a clear guidance on how to successfully synthesize cyanine dye-doped silica nanoparticles with good morphology, size distribution, stability and brightness.