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Appendix A
Mathematical formalism

A.1 Solutions of the Laplace operator
The Laplace eigenvalue problem of the kinetic operator ˆ = −∇K /22 (also known as
the Helmholtz equation in a different context) is expressed as

ϕ ϕ∇ + = → = ı±Cek r( ) ( ) 0 , (A.1)k k
kr2 2

with ϕ r( )k a special solution, known as a plane wave, and C a normalization
constant. The spectrum is real, continuous from 0 to ∞. The choice of the
normalization constant as π=C 1/(2 )3/2 fixes a Dirac-delta function δ orthonorm-
alization of the plane waves,

∫ ∫ϕ ϕ δ ϕ ϕ δ= ′ − ⟷ ′ = − ′*
′

*kdr r r k k d r r r r( ) ( ) ( ) ( ) ( ) ( ). (A.2)k k k k

The spherical Bessel functions result as the radial part of the Laplace eigenvalue
problem, when the solution ϕ r( )k is expanded on the spherical harmonics (SH) basis.
This is immediately evident if one considers that for any two vectors φ= ϑkk ( , , )
and θ ϕ= rr ( , , ) we have

∑ π ı= + Θ ˆˆ = Θıe l j kr Y kr4 (2 1) ( ) ( ), cos , (A.3)
l

l
l l

kr
0

with j kr( )l the spherical Bessel functions andYlm the SH functions.

Spherical Bessel functions. The asymptotic behaviour at the infinity of j kr( )l and its
(irregular) twin, η kr( )l , is of special interest:

π η π⟶ − ⟶ − −
j kr

kr l
kr

kr
kr l

kr
( )

sin( 2)
, ( )

cos( 2)
. (A.4)l l
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A.1.1 Spherical harmonics, angular basis of ∇2

In the following, we assume that θ ϕ=Y Y ( , )lm lm . The orthonormality relation is
given by

∫ ∫ϕ θ θ θ ϕ θ ϕ δ δ〈 ∣ ′ ′〉 = =
π π

⋆
′ ′ ′ ′lm l m d d Y Ysin ( , ) ( , ) . (A.5)lm l m ll mm

0 0

2

The SH of m = 0 are related to the Legendre polynomials by

θ ϕ
π

θ= +
Y

l
P( , )

2 1
4

(cos ). (A.6)l l0

Upon applying the inversion operation θ ϕ π θ ϕ π= → − = − +r rr r( , , ) ( , , ), the
sign reversal of m and complex conjugation of the following relations are useful:

θ π ϕ π θ ϕ− + = − = − = −* −Y Y Y Y Y( , ) ( ) , ( , ) ( 1) , (A.7)lm
l

lm lm lm
m

l m

θ κ κ= ++ + −Y Y Y acos , (A.8 )lm l m l m l m l m1, 1 , 1

θ
θ

κ κ∂
∂

= − ++ + −Y l Y l Y bsin ( 1) , (A.8 )lm l m l m l m l m1, 1 , 1

with

κ = −
−

l m
l4 1

. (A.9)l,m

2 2

2

Coulomb field on SH. For two arbitrary vectors, r and ′r , the following multipole
expansion holds:

∑ ∑ π θ ϕ θ ϕ
− ′

=
+

′ ′
=

∞

=−

<

>
+

*
L

r

r
Y Y

r r
1 4

2 1
( , ) ( , ). (A.10)

L M L

L

0,

L

L LM LM1

Clebsch–Gordan, Wigner-3j and Gaunt coefficients. The Gaunt coefficient is defined
as the integral of three spherical harmonics:

π
χ χ= = − −G l m LM l m

L
( 1)

[ ]
4

, (A.11)l m l m
LM

a a b b
m l Ll

m Mm
l Ll

; 000a a b b
a a b

a b

a b

⎛
⎝⎜

⎞
⎠⎟χ = j j j

m m m
, (A.12)m m m

j j j 1 2 3

1 2 31 2 3
1 2 3

where ≡ +l l[ ] 2 1. The Gaunt coefficient is of great physical importance as it is directly
related to the angular part of the transition amplitudes between quantum mechanical
states. It is equally important in radiation, quantum collision theory and atomic structure
theory. The Gaunt factor is expressed in terms of the so-called Wigner-3j coefficient (χ)
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symbols and the Clebsch–Gordan coefficients1, χ= − − −
−C j( ) [ ]m m m

j j j j j m
m m m
j j j

, , 3 ,1 2 3
1 2 3 2 1 3

1 2 3
1 2 3 .

Some important properties of the Wigner-3j symbol are given as follows:

χ χ χ χ= − = − =Σ Σ
− − −( ) ( ) (A.13)m m m

j j j
m m m
j j j

m m m
j j j

m m m
j j j

, ,1 2 3
1 2 3

2 1 3
2 1 3

1 2 3
1 2 3

2 3 1
2 3 1

χ ≠ ∣ − ∣ ⩽ ⩽ + + =j j j j J m m m0, , . (A.14)m m m
j j j

1 2 1 2 1 21 2 3
1 2 3

For dipole transitions the following formula proves useful:

⎛
⎝⎜

⎞
⎠⎟

+
−

= − + −
+ + +

− −l l
m m

l m
l l l

1 1
0

( )
( 1)

(2 1)( 1)(2 3)
. (A.15)a a

a b

l m a a

a a a

1
2 2

a a

Product of two SH at the same angles.

∑ ∑= −
= −

+

=−

*Y Y G Y( 1) (A.16)
L l l

l l

M L

L

l m l m
M

l m LM
l m

LM, ;a a b b

a b

a b

a a
b b

⎜ ⎟⎛
⎝

⎞
⎠∑

π
= ′ ′

= − ′

+ ′

′Y Y
l l L l l L Y

[ ][ ][ ]
4 0 0 0

. (A.17)
L l l

l l

l l L0 0

2

0

Another useful relation is

∑ θ ϕ θ ϕ
π

′ ′ = + Θ Φ = Θ
=−

* ′Y Y
l

Y P( , ) ( , )
2 1

4
( , ) (cos ), (A.18)

m l

l

lm l m l l0

where Θ is the angle between the directions along θ ϕ′ ′( , ) and (θ ϕ, ).

A.2 Integro-differential calculus formulas
Highly oscillating integrals and Dirac-delta function A formal definition of the Dirac-
delta function in the k−r space is obtained if in equation (A.2) we take ′ =r 0:

∫ ∫δ
π

δ= ⟷ − ′ = ′ıe f fr dk dk r r r r( )
1

(2 )
( ) ( ) ( ), (A.19)kr

3

with f r( ) any arbitrary function2. For our purposes the one-dimensional Dirac-delta
function in the ω − t time–frequency plane can be defined by

1 In the physics literature the Clebsch–Gordan coefficients are used as well (frequently as synonyms for the Wigner-
3j coefficient). However the Wigner-3j symbols have higher symmetry than the Clebsch–Gordan coefficients.
2 In fact, it is often defined by this second property alone and it should be noted that expressions containing the
Dirac-delta inside integrals have the traditional properties of an any regular function.
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∫
∫

δ ω
π

ω δ ω ω ω ω ω ω ω

=

− = < <

ıω

ω

ω
−∞

∞
dt e

d f f

( )
1

2

( ) ( ) ( ), .
(A.20)

t

0 0 1 0 2
1

2

So, essentially, the practical consequence of the delta function is to pick one and only
one value of the function, ωf ( )0 , under the integral. The above definition can also be
thought of as the limiting case of a finite-time integral which plays important role in
the formulation [1],

⎧
⎨⎪
⎩⎪

⎡
⎣⎢

⎤
⎦⎥P

∫ζ ω ı
ω ıη

ω
ıπδ ω

πıδ ω

= − ′ =
±

=
∓ =

∓ = −

η→

ıω
±

→∞
± ′t dt e

t

t t

( , ) lim
1

1
( ), 0,

2 ( ),
.

(A.21)

0t

t
t

0

0

0

0

With this finite-time form of the Dirac-delta function two useful forms may be proven:

⎧
⎨⎪
⎩⎪
P

∫

∫

ω ζ ω ω ω

ω ω
ω ω

ıπ ω

πı ω
ω ω ω

−

= −
∓ =

∓ = −
< <

ω

ω

ω

ω

±d t f

d
f

f t

f t t

( , ) ( )

( )
( ) 0,

2 ( ), ,
.

(A.22)

0 0

0
0 0

0 0

1 0 2

1

2

1

2

If ω0 is not included in the interval ω ω[ , ]1 2 then only the principal value integral
survives. Because of the symmetrical appearance of ω and t in the exponent of
equation (A.21), the last two formulas hold by swapping t and ω accordingly and
choosing proper integral limits. Finally, at this point we may define the Fourier
transform (FT) and its inverse of a function as

∫ ∫ω
π

ω= ↔ =ıω ıω

−∞

∞

−∞

∞
−F dt f t e f t dt F e( ) ( ) ( )

1
2

( ) . (A.23)t t

The prefactor 2π may appear different in other definitions of the FT.

Multivariate Taylor expansion. Based on the following general Taylor-like expan-
sion for a multivariate function, ψ x( ), where = …x x xx ( , , , )k1 2 and

= …d dx dx dxx ( , , , )k1 2 :

⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟
⎤

⎦
⎥⎥∑ ∑ψ ψ+ =

!
∂

∂=n
dx

x
x dx x( )

1
( ) ,

n i

k

1

i
i

for functions of tr, we have
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⎜ ⎟⎛
⎝

⎞
⎠∑ψ ψ+ + =

!
· ∇ + ∂

∂
= ·∇+ ∂

∂t dt
n

dt
t

f t e tr dr dr r r( , )
1

( , ) ( , ). (A.24)
n

n
dt

t
dr

The above exponential form of the Taylor expansion immediately implies the
generators of the spatial and time variations as the corresponding first-order
differential operators.

Differentiation under the integral sign: Leibniz integration rule.

∫

∫

′ ′ = ′ − ′

+ ′ ∂
∂

′

dx F x x F x b b x F x a a x

dx
x

F x x

( , ) ( , ) ( ) ( , ) ( )

( , ).
(A.25)

b x

a x

b x

a x

( )

( )

( )

( )

A.3 Operator and (matrix) algebraic functionals
We may construct a function of an arbitrary operator, B̂, using a power series
expansion:

∑ ∑ˆ = ˆ ⟹ =f B c B f b c b( ) ( ) .
n n

n
n

n n
n

The cn quantities are ordinary (possibly complex) numbers, also called c-numbers
(non-operators). It is reasonable to assume that, if the above approach of expressing
functions of operators is valid, the operator power expansion should converge upon
replacing B̂ with any of its eigenvalues ( ˆ =B bx x).

Among the most frequently encountered functions is the exponential one which,
according to the above expansion, is defined by

∑=
!

ˆˆe
n

B
1

,
n

B n

where we have used the known expansion of the exponential function for c-numbers,
= ∑ !x x nexp( ) /n

n .

Let us for now assume two non-commuting operators, Â and B̂, and z as a c-
number parameter. The following useful identities hold between them:

ˆ = ˆ ˆ ˆ ˆ = ˆ ˆ ˆˆ − ˆ ˆ − ˆ − −e B e e Be Af B A f ABA( ) , ( ) ( ), (A.26)zA n zA zA zA n 1 1

ˆ = ˆ + ˆ ˆ +
!

ˆ ˆ ˆ +
!

ˆ ˆ ˆ ˆ + ⋯ˆ − ˆe Be B z A B
z

A A B
z

A A A B[ , ]
2

[ , [ , ]]
3

[ , [ , [ , ]]] . (A.27)zA zA
2 3

Another very useful formula is a special case of the so-called Baker–Campbell–
Hausdorff theorem3:

3The theorem provides the solution to equation =ˆ ˆ ˆe e eC A B for Ĉ , where Â and B̂ are non-commuting
operators.
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= = ˆ ˆ ˆ = ˆ ˆ ˆ =ˆ+ ˆ ˆ ˆ − ˆ ˆ ˆ ˆ ˆ ˆ
e e e e e e e A A B B A B, [ , [ , ]] [ , [ , ]] 0. (A.28)A B A B A B B A A B1

2
[ , ] 1

2
[ , ]

The above relation can be extended for the case of arbitrary, constant and non-
commuting operators, Â and B̂, by

∫=ˆ+ ˆ ˆ ˆ− ˆ ˆ

e e e . (A.29)A B A dte BetA tA

0

1

The above theorem is a limiting case of the disentangling theorem for non-
commuting operators, first presented by Feynman in [2, 3]. A thorough presentation
of operator algebra can also be found in the book of Louissel [4].

By representing an operator on a finite basis we end up with a matrix-based
algebra. An algebra of this kind is very well suited to implementing the computa-
tional algorithms required for the solution of differential equations. For example,
consider the following problem:

˙ = + =t t t ty A y F y y( ) ( ) ( ), ( ) , (A.30)0 0

where = …t t t ty y y y( ) ( ( ), ( ), , ( ))T
N1 2 is a vector containing the unknown time-

dependent (TD) coefficients. Matrix A may be TD or constant. If it is constant
then we have the formal solution

∫= + ′ ′− − ′t e dt e ty y F( ) (0) ( ). (A.31)t t

t

t
t tA A( ) ( )0

0

If it is not, then we may obtain the solution of (A.30) by repeatedly solving its
short-time approximation. For example, we assume =tF( ) 0. We then divide the
total time interval into k smaller time intervals, τ+ = …t t j k[ , ], 1, 2, ,j j j , such
that tA( ) can be regarded as approximately constant ∼ ¯A t A t( ) ( )j , with t̄j some value
between τ+t t[ , ]j j j . Then inside this interval the following is true:

τ= = −τ
+ +t e t t ty y( ) ( ), , (A.32)j j j j j

A
1 1

j j

≡ t̄A A( )j j . Repeated evaluation of the above expression for = …j n1, 2, , t,
formally results in

τ+ = ⋯τ τ τ− −t e e e ty y( ) ( ),A A A
0

k k k k1 1 1 1

with τ τ= ∑ =j
k

j1 , with = …jA , 1, 2,j evaluated at times ¯ < ¯ < ⋯ < ¯t t tk1 2 . A typical
choice for t̄j is to take it at the middle of the time interval above, so that

τ¯ = +t t /2j j j . Then the problem is to compute efficiently and accurately τe yA .4 A
thorough review of matrix exponentiation methods in combination with practical
calculations can be found in the review by Moler and Van Loan [5].

The following exponentiation of a general matrix 2 × 2 is often useful. Taking the
matrix, A, to be a 2 × 2 matrix, then the exponent can conveniently be written as

4Vice versa, the computation of a matrix exponent can be approached using algorithms that solve the
corresponding ODE (A.30) with A constant. Nevertheless, generally solving an ODE is more costly than using
other available methods of matrix exponentiation.
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⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥ γ

γ

=
˜

+
˜
˜

˜ ˜ = −

= ˜ = ˜

γe e
Dt

D
Dt

D Det

I
D

D A I

A D

cosh
2

sinh
2

, 2 ,

Tr( ), ( ).

(A.33)
t tA 2

2

I2 is the 2 × 2 diagonal matrix and Tr() and Det() denote the trace and determinant of
a square matrix, respectively.
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