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IOP Concise Physics

Elements of Photoionization Quantum Dynamics Methods

Lampros A A Nikolopoulos

Chapter 11

Quantum mechanics of vector- and matrix-states

Traditionally, the first encounter with quantum mechanics (QM) theory and its
applications is through the state vector formalism, maybe just because it is the
simpler choice (but not simple) conceptually. On a practical level, it is vastly the
most economical one. The central concepts in this formulation for a physical system
are (i) the physical states represented by the vector state, ψ∣ 〉, (ii) the observablesQ
represented by operators, Q̂, and (iii) the transformation rules when operators act on
the vector states ψˆ∣ 〉Q , with the chief rule being the time-evolution laws, one
deterministic (the Schrödinger equation) and the other probabilistic (the measure-
ment). All the predictions about a QM system are derived from these two central
concepts, the abstract vector states ψ∣ 〉 and the observable operators, Q̂.

In the following, a set of QM axioms are listed, representing a merged version of
the full set of postulates stated in [1], where a more detailed discussion can be found.

States. The physical state of a system is represented by a vector (ψ∣ 〉) belonging to
some linear vector space V .

Operators. A physical quantity (Q) is represented by an operator (Q̂). Their action
on a vector state, ψˆ∣ 〉Q , is also a vector state of V .

Time evolution. The time evolution of the vector state ψ∣ 〉 is governed by the
system’s total energy operator, Ĥ , as

ψ ı ψ∣ 〉 = − ˆ ∣ 〉d dtH . (11.1)

Measurement. A measurement ofQ changes the state ψ∣ 〉 to an eigenstate ∣ 〉qn of Q̂
with probability dependent on the eigenstate ∣ 〉qn and the state ψ∣ 〉. The measure-
ment returns the value qn.
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11.1 Vectors and operators
Some additional notes are needed here. The abstract state ψ∣ 〉 follows the Dirac
convention and is also known as the ket vector state. Associated (isomorphically)
with the vector space V there is the dual (abstract) vector space (V⋆) containing all
bra states ( ψ〈 ∣) associated with each ψ∣ 〉 of V .

The fact that the space V is a linear vector space has many important
consequences with the most fundamental being that any linear combination of
vector states belonging to V also belongs to F , thus representing a physical state of
the system

V Vχ ϕ ψ χ ϕ∣ 〉 ∣ 〉 ∣ 〉 = ∣ 〉 + ∣ 〉c cif , in then in .1 2

Moreover, as V is a linear vector space a complex-valued inner product between χ∣ 〉
and ϕ∣ 〉 is defined. This way one is ready to define the scalar inner product between
two arbitrary states of V as the complex value, expressed as

χ ϕ χ ϕ= 〈 ∣ 〉c( , ) .

The practical consequences of the above abstract (and general) definitions become
more evident when F is specialized.

A complete set of orthonormalized states ϕ∣ 〉n is defined when all ψ∣ 〉 in V can be
expressed in a unique way as

∑ψ ϕ ϕ ψ∣ 〉 = ∣ 〉 = 〈 ∣ 〉c c, . (11.2)
n

n n n n

The above expansion is also known as a superposition expansion. This set is called
orthonormalized when ϕ ϕ δ〈 ∣ 〉 =n m nm. In analogy to the vector algebra learned in
high school, the role of ψ∣ 〉n is very similar to the Cartesian components of the
familial spatial vector (see figure 11.1); namely, if A is a vector in the three-
dimensional space, then its (Cartesian) coordinates A A A( , , )1 2 3 can be expressed
along three orthogonal directions ˆ ˆ ˆx x x( , , )1 2 3 as

∑ δ= ˆ = · ˆ ˆ · ˆ =
=

A x A x x xA A, , . (11.3)
i 1

3

i i i i i j ij

An additional formulation of equation (11.3) is obtained if we identify the three-
element column basis, satisfying
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. (11.4)1 2 3

1

2

3

The generalization of the familiar three-dimensional algebra is slightly more
involved, mainly for two reasons: (i) the dimensionality is higher (now it is not so
easy to visualize an n-orthogonal vector, ϕ∣ 〉n ) and (ii) the inner product is complex
valued, thus introducing the dual space basis vectors of V⋆. For an N-dimensional
state space,
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, (11.5)n1 2

v v v〈 ∣ = … 〈 ∣ = … … 〈 ∣ = … …(1, , 0), (0, 1, ), , (0, 0, , 1, 0), (11.6)n1 2

where we set v= ∣ 〉vi i and v= 〈 ∣ = …iv , 1, 2,i
T

i for the column and row vectors.
For later reference let us call this (column) basis ( v v v∣ 〉 = ∣ 〉 ∣ 〉 …{ } , ,1 2 ) the
fundamental ket basis and its dual (row) basis the fundamental bra basis. The above
definitions help to express

Figure 11.1. In QM a physical state can be thought of as a vector of the (abstract) Hilbert space spanned by
the orthogonal eigenstates ϕ∣ 〉i of some observable operator, Q̂. In accordance with this geometrical picture any
change of the state can be analyzed in terms of the observable’s eigenstates, which play the role of familiar
components of the linear algebra. In other words, any observable defines its own ‘coordinate system’ for the
vector state, known as the representation.
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⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
ψ ψ∣ 〉 = = ⋯

⋯
〈 ∣ = = ⋯* *( )

c
c

c

c

c cC C . (11.7)
n

N

T
N

1

2

1

This way one can use matrix algebra to work out compactly and efficiently (suitable
for numerical calculations) the (initially) abstract algebraic relations. For example, it
is now immediately seen that the inner product of ψ∣ 〉 with itself (multiplication of its
bra with the ket state) is

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟ ∑ψ ψ〈 ∣ 〉 = · = … …
⋯

⋯
= ∣ ∣

=

* * *( )c c c

c

c

c

cC C , , , , , (11.8)
n

N

1

T
n N n

N

n1

1

2

and that
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⎠

⎟⎟⎟v ψ= 〈 ∣ 〉 = … …
⋯

⋯
c

c

c

c

(0, , 1, 0) . (11.9)n n n

N

1

Finally, an important mathematical object arises when one multiplies a ket of a state
with its bra, namely, ψ ψ= ∣ 〉〈 ∣ψP ,
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⎜⎜⎜
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The above object, ψ̂P , is known as the projection operator of ψ∣ 〉 for reasons that will
be explained shortly. Obviously, the projection operators have the algebraic
structure of a matrix, but what is more interesting is that it appears to be an
alternative construction for the physical state represented by ψ∣ 〉. In this particular
case ψ∣ 〉 and ψ̂P are completely equivalent and one can use either ψ∣ 〉 or ψ̂P to

represent the state of the system. In such a context (where ψ̂P is chosen to describe the

state of the system) ψ̂P is also known as the density-operator state with ψP the
corresponding density-matrix state expanded in an arbitrary basis. ψ∣ 〉 is of course
more economical, as knowledge of the N components is needed while for ψ̂P one
needs N2 numbers for a complete determination1. Obviously, the use of ψ∣ 〉 is
preferred.

1 For normalized states since ψ ψ〈 ∣ 〉 = 1 the number of unknowns is reduced by one.
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Along similar lines as for the algebraic representation of ψ∣ 〉 and ψ〈 ∣ as one-
dimensional matrices (rows and columns), we can extend this to two-index vectors,
represented as matrices. If the fundamental basis is defined as U v vˆ = ∣ 〉〈 ∣ij i i and its
matrix representation as U = vvij i j

T ,

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
U Uv vˆ = ∣ 〉〈 ∣ ↔ = =

⋯
⋯

⋯ ⋯ ⋯ ⋯
⋯ ⋯

⋯ ⋯ ⋯ ⋯

vv

0 0 0 0 0
0 0 0 0 0

... 0
0 0 1 0

... 0

, (11.11)ij i j ij i j
T

then an arbitrary operator/matrix, M̂ M, , can be expressed in the fundamental
basis as

U U Uv v∑ ∑ ∑ˆ = ∣ 〉〈 ∣ = ˆ = · ˆM M M MTr( ) , (11.12)
ij ij ij

ij i j ij ij ji ij

U U U∑ ∑= = ·MM MTr( ) . (11.13)
ij

ij ij ji ij

It is straightforward to confirm that

Uv v= · ∣ 〉〈 ∣ = ·M M MTr( ) Tr( ). (11.14)ij j i ji

With this notation the fundamental i projection operator is defined as v v= ∣ 〉〈 ∣i i i

(obviously = i i
T and ∑ = i i ).

Operators. Operators act on states. In QM operators are used to represent physical
quantities, also known as observables. Examples are energy, position, translational
and angular momentum, and spin, and generally any combination of them is also an
observable. The mathematical expression of the observables arises quite easily when
the corresponding classical operator exists, e.g. position (r), translational momen-
tum (p), by following the quantization rules, ı→ ˆ → − ∇xx pand . If one thinks that
most of the classical mechanics quantities can be expressed in terms of these two
fundamental quantities (e.g. angular momentum, = ×L r p) then this approach is
sufficient. Not always, however, as one can conclude from the spin operator, a
purely quantum operator with no classical counterpart.

In any case, when the observable is chosen, an associated operator exists which in
turn defines a complete set of eigenvectors and eigenvalues as

δˆ∣ 〉 = ∣ 〉 〈 ∣ 〉 =Q q q q q q, . (11.15)n n n n m nm

Noting that the eigenstate basis set of an observable (actually this is the require-
ment for a physical quantity to be an observable) is complete according to the
superposition expansion (11.2), the ket state ψ∣ 〉 can be expanded in terms of this
eigenset:
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∑ψ ψ∣ 〉 = ∣ 〉 = 〈 ∣ 〉c q c q, . (11.16)
n

n n n n

Coefficient cn has a very precise physical meaning upon measurement ofQ. For now,
it is necessary to note that the observableQ is associated with the operator Q̂, which
acts on ψ∣ 〉. However, for each ψ∣ 〉 ket we have a ψ〈 ∣ bra and it is normal to wonder
what kind of operator (associated with the observableQ) acts on these states. It turns
out that for an observable the conjugate (dual) operator acting in V⋆ satisfies the
conjugate eigenvalue equation2,

δ〈 ∣ ˆ = 〈 ∣ 〈 ∣ 〉 =q Q q q q q, . (11.17)n n n n m nm

This means that for an arbitrary ψ∣ 〉 ket or ψ〈 ∣ the action of an observable in the system
is fully determined by the use of equations (11.15), (11.16) and (11.17). For example,

∑ ∑ ∑ψˆ∣ 〉 = ˆ ∣ 〉 = ˆ∣ 〉 = ∣ 〉Q Q c q c Q q c q q .
n n n

n n n n n n n

Vector spaces of finite dimension are called Hilbert spaces. A further level of
generalization arises when the basis is of infinite dimension. The complication is that
eigenvectors ∣ 〉qn are not normalized and vector spaces resulting from such bases via
equation (11.16) should have inner products that result in probabilities lying
necessarily between 0 and 1.

Deterministic time evolution. The time development of a quantum state is expressed
in equation (11.1) and assigns a special role to the system’s Hamiltonian operator.
For this reason this operator (of the energy observable) is the most important among
all the observables. As long as the system evolves in an isolated fashion, its time
development is fully deterministic and its calculation is only of practical interest;
exactly of the same type as the one encountered in non-quantum theories (Newton/
Einstein mechanics and electrodynamics), where it is the huge number of variables
required that prevents us from following the time evolution of physical systems
(hence the emergence of the statistical mechanics theories). Since a large fraction of
the present text refers to this time-evolution law, no further comments will be made
here apart from the fact that the Hamiltonian operator is the generator of time
displacements and its form guarantees that the state becomes normalized as the
system evolves.

Probabilistic time evolution (measurement). The action of an arbitrary operator, Q̂,
on a state ψ∣ 〉 generally results in a different state, ψ ϕˆ∣ 〉 → ∣ 〉Q . A measurement can
be seen as a special type of time evolution of a quantum system; the system abruptly
changes state following its interaction with an external system (the measurement
device). The measurement enforces a probabilistic time evolution of the system that
is abrupt with a devastating effect on the system (known as ‘collapse of the
wavefunction’). Following the measurement, regardless of the state, only one state

2For an arbitrary operator (not necessarily an observable) if ψ ψ ψ ψˆ∣ 〉 = ∣ 〉 〈 ∣ = 〈 ∣† ⋆A a A athenn n n n n n .

Elements of Photoionization Quantum Dynamics Methods

11-6



will survive. No deterministic predictions are possible within the generally accepted
interpretation of a quantum measurement. It leads to inconsistencies if pushed
further, which is still a matter of debate, but it is not of concern here. Also, it is
exactly this postulate that makes QM an inherently probabilistic theory with no way
to escape. A readable discussion about the various interpretations of QM can be
found in [2] and references therein.

That said, let us now consider a system in a state ψ∣ 〉 and an observable Q. A
measurement ofQ will give the real eigenvalue qn with probability Pn. If ˆ = ∣ 〉〈 ∣Q q qn n n ,

ψ ψ ψ ψ ψ ψ ψ= 〈 ∣ ˆ ∣ 〉 = 〈 ∣ ∣ 〉〈 ∣ ∣ 〉 = 〈 ∣ 〉 〈 ∣ 〉 = ∣〈 ∣ 〉∣⋆( )P q Q q q q q q( ) . (11.18)n n n n n n n
2

The state of the system immediately afterwards is proportional to ∣ 〉qn . The matrix

representation of the projection operator (projector) Q̂n on the fundamental basis
(Uij) is

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
= =

⋯ ⋯
⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯

q
q

Q

0 0 0
0 0 0

0 0
, (11.19)n n n

n

where n is the basis projection matrix (see the definition following equations (11.12)
and (11.13)). Accordingly, the matrix representation of the operator Q̂n is given by

v v= 〈 ∣ ˆ ∣ 〉Q Q( ) . (11.20)n ij i n j

The measurement process can be put on a more formal basis as follows3:

Measurement of Q in state ψ∣ 〉 gives the value qn with probability P q( )n and
leaves the system in the state

ψ ψ ψ
ψ

ψ ψ
= 〈 ∣ ˆ ∣ 〉 → ∣ 〉 =

ˆ ∣ 〉

〈 ∣ ˆ ∣ 〉
P q Q

Q

Q
( ) . (11.21)n n n

n

n

So far, the discussion has exclusively referred to a formulation of QM with the
physical states as elements of an abstract Hilbert space. In the case of familiar three-
dimensional space vectors4, the choice of a particular coordinate system, say C,
provides the means for the practical calculations turning the abstract vector relation
(such as Newton’s second law) into down-to-earth numerical relations between
physical quantities. Translation and/or rotation of the coordinate system (C C→ ′)
transforms the original set of components, expressed in (C), in a controlled way, to

3The below definition is suitable for both degenerate and non-degenerate eigenvalue spectra, provided a
proper definition of the projection operator, Q̂n, is introduced.
4You may imagine, for example, the vectors representing the position, momentum and angular momentum of
a particle, or the force acting on the particle.
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another set of components (expressed now in C′)5. The choice of the coordinate
system can greatly facilitate (or not) the numerical computations. Furthermore, the
proper choice can offer improved insight on the process under question or it can
obscure it all. Recall the calculation of the electrostatic potential of a motionless
uniformly charged spherical ball in the spherical and orthogonal coordinate systems.
What would be the wiser choice? It seems that the identification of physical
symmetries, possessed by the system, is a fairly reasonable starting point to choose
a suitable coordinate system.

Having said the above, one should realize that these lines of thinking are valid in
QM problems as well. The key is that quantum physical states (and operators) live in
linear vector spaces and dealing with QM systems, more often than not, a suitable
complete basis set must be chosen. The abstract quantum basis set is used to expand
the abstract vectors corresponding to the (spatial) coordinate system of classical
mechanics. Also, the basis is often dictated by the observable (Q) in question and the
type of measurement to be performed, and not only the system itself. Fortunately,
the operator associated with the observable offers through its eigenvalue equation a
recipe to generate a complete basis set. Picking the right observable and solving the
eigenvalue equation is a step that one needs to go through in most cases.

11.2 Statistical matrix state (or density matrix)
It was seen previously that for a quantum system, S , in the state ψ∣ 〉, the associated
projector ψ̂P contains the exact same information about the system as the state ψ∣ 〉.
This was seen during the derivation of equation (11.10). In this case one can
calculate the expectation value of an observableQ 〈 〉ψQas together with its variance
〈 Δ 〉Q( )2 (11.55). That is to say that, despite the fact that the S system is in a definite
state ψ∣ 〉, generally the measurements of an arbitrary observable are expected to be
distributed in a statistical sense6. The outcome of a measurement of Q̂ on one
quantum system in state ψ∣ 〉 can result in different values. The causality principle
does not always apply in QM since cause and effect do not have a one-to-one
relation; these quantum events can only be described statistically. This is an inherent
obstacle, that it cannot be lifted within the current form of QM. Apart from this
fundamental issue of the theory, more often than not the system’s state is not a priori
surely known; one may know that the system is in state ψ∣ 〉1 with probability w1, in
state ψ∣ 〉2 with probability w2, and so on. This more general case cannot be written as
a linear combination of ψ∣ 〉 = …n, 1, 2,n ; so a question arises: how is a system in this
mixture of states treated quantum mechanically? We can discriminate between the
two different levels of knowledge we have for the system by saying that the system is
in a pure state (where the system can be characterized by a single vector of the
Hilbert space) while in the second case the system is in a mixed state (where the

5Of course, the relations between the involved set of components remain as dictated by the laws of physics. For
example, for a particle of mass m subject to a force governed by Newton’s second law, the ratio between
acceleration and force will still be equal to the particle’s mass, regardless of which coordinate system happens
to be in use, (C) or C′.
6 Only when the state ψ∣ 〉 is an eigenstate of Q̂ do we have a sure value or equivalently 〈Δ 〉 =Q 02 .

Elements of Photoionization Quantum Dynamics Methods

11-8



system has a probability distribution over a possible set of Hilbert-state vectors). We
ask for a formulation of the quantum mechanics where these fundamentally different
states are treated on an equal footing. The solution to this is to generalize the
projection operator ( ψ̂P ) to a more general physical quantity, known as the density
operator (or statistical operator), introduced by von Neumann [3]. This operator is
generally used to describe all the (statistical) properties of any arbitrary operator
within the QM theory. Based on this observation, the density-state operator ρ̂ and the
above formulation is an alternative to the ‘traditional’ vector state ψ∣ 〉. The interested
reader can find relevant information in the textbooks [1, 3–7].

11.2.1 Density-state operator

As there are a few different ways of defining the density-state operator for a QM
system7, one needs to choose. For pedagogical reasons, the current choice is to
introduce the density-state operator in two ways, dependent on the quantum system
in question. If the system is in a known state S ψ∣ 〉state (a pure state), as was the case
so far, then the density-state operator will be defined in terms of vector states of a
Hilbert space. Here, this approach is called quantum mechanical. However, when the
system is initially in a state that is known only in a statistical sense (the system can
possess a range of states with some probability) then the choice is to introduce the
density-state operator as a method of calculating the statistical properties of an
ensemble of identical quantum systems8. This latter approach will be called
statistical, and most likely this is the reason that the density-state operator is also
called the statistical operator. This particular method has its origin in the methods
developed in statistical mechanics prior to QM. The third method, introduced by
Fano [4], known as the operational approach, relies on the measurement of the mean
values of some properly chosen physical quantities for the determination of the
density operator. A detailed and comparative discussion of these three methods can
be found in the early work by Ter Haar [5].

Pure state. Assume a system S in a particular state ψ∣ 〉i . Next, assume a set of
orthogonal eigenstates of some complete set of physical operators (CSOP)9, say
Ω̂ = …k, 1, 2,k , such as

∑ϕ ϕ δ〈 ∣ 〉 = ∣ ∣ = = …c n N, 1, 1, 2, , .
n

n m nm n
2

We take the general case where the state ψ∣ 〉i is not in any of the states ϕ∣ 〉n ; however,
it can still be expressed in terms of the eigenstates, ϕ∣ 〉n ,

∑ψ ϕ∣ 〉 = ∣ 〉c . (11.22)
n

i n
i

n
( )

7Of course all these different definitions should lead to the same predictions when the same problem is treated.
8As was first introduced by von Neumann in his monograph [3].
9 The CSOP includes all observables with a common eigenstate basis.
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Obviously the use of the superscript i is to declare that the expansion coefficients cn
i( )

are associated with the state ψ∣ 〉i . The expectation value (or equivalently mean value)
of a physical quantityQ is calculated as

∑ψ ψ ϕ ϕ〈 ˆ〉 = 〈 ∣ ˆ∣ 〉 = = 〈 ∣ ˆ∣ 〉⋆Q Q c c Q Q Q, . (11.23)
m n,

i i i m
i

n
i

mn mn m n
( ) ( )

The above (purely quantum) averaging (expectation value of Q̂) of a physical
observable (Q) for a quantum system (S) in a particular state ψ∣ 〉i is a (coherent)
summation over the eigenstate members of the Ω̂k set of operators. Coherent here is
used in the sense that knowledge of the (complex) amplitudes cn is necessary for the
averaging to be performed. In this context, the use of incoherent would mean that
knowledge of the (real) absolute square of amplitudes, ∣ ∣cn

2, would suffice to perform
the averaging. So quantum averaging is a coherent process.

Mixed state.Now, assume that there is lack of knowledge as to whether the system is
in state ψ∣ 〉i or not10. Therefore, the system has a probability wi to be in state ψ∣ 〉i . Let
us now denote the mixture state by (ψ = …w i N, ) 1, 2, ,i i . The ensemble average of
the QM expectation value (11.23) results in an overall expectation value for Q̂:

∑〈 ˆ〉 = 〈 ˆ〉Q w Q . (11.24)
i

i i

The above, with the help of equation (11.14), maybe re-written as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∑ ∑

∑ ∑

〈 ˆ〉 = 〈 ˆ〉 = 〈 ∣ ˆ∣ 〉

= ˆ∣ 〉〈 ∣ = ˆ ∣ 〉〈 ∣

Q w Q w i Q i

w Q i i Q w i iTr( ) Tr .

i i

i i

i i i

i i

Now, if we define the density-state operator as

∑ρ ψ ψˆ = ∣ 〉〈 ∣w , (11.25)
i

i i i

the expectation value of any physical operator is obtained by11

ρ〈 ˆ〉 = ·Q QTr( ), (11.26)

where Tr(M) denotes the trace of the matrix M. The above property of the density
operator encapsulates two types of averaging into one: a quantum coherent

10 This is the most common case, of course. Nevertheless, one can obtain a certain knowledge at this level by
preparing the system through the measurement of the observable of which that state is an eigenstate. For
example, to prepare an electron in a plane-wave state ∣ 〉mk s we must perform a measurement of its momentum
(in three directions) together with a measurement of its spin projection along some axis.
11 This relation can also be considered as a definition of the density operator of a system.
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averaging in state ∣ 〉i followed by a classical incoherent weighted (with wi) averaging
over the states ∣ 〉 = …i i N, 1, , .

In the special case of a system in a pure state ∣ 〉k (a mixed state where δ=wi ik), the
grand average is reduced to include only the quantum average,

∑δ〈 ˆ〉 = 〈 ˆ〉 = 〈 ˆ〉 = 〈 ∣ ˆ∣ 〉Q Q Q k Q k ,
i

ki i k

while the expression of the density operator in this pure state takes the form of a
projection operator:

ρ̂ = ∣ 〉〈 ∣k k . (11.27)k

Below are given some general properties of the density operator which are useful to
keep in mind:

ρ ρ ρ ρ ρ ρ= = ⩽ ⩽ =*, Tr( ) 1, 0 Tr( ) 1, ( , for a pure state).2 2

Transformation of the density matrix via the change of the CSOP representation (or
base representation) follows the standard transformation rule:

ρ ρ′ = −S S, S is unitary, (11.28)1

where ρ′ is the representation of the density-operator state in the basis ′ϕ∣ 〉n (the basis

of a CSOP ′ˆ = …Q k, 1, 2,k ), while ρ is the corresponding representation in the basis

ϕ∣ 〉n of the Q̂k CSOP and S is a unitary transformation matrix12.

Time development. Within the Schrödinger picture the state of the system is time-
dependent (TD), while the operator of a physical observable is constant. A similar
property should be true for the density-operator state of the system. It has to be, in
general, TD since it actually represents the state of the system. It is straightforward
to show that the time evolution of the density-operator state ρ̂ is given by

ı ρ ρˆ = ˆ ˆd
dt

t H t( ) [ , ( )]. (11.29)

The above equation replaces the time-dependent Schrödinger equation (TDSE) as a
dynamical equation. In contrast to the operators of a physical observable, the
density-operator state of a system in the Schrödinger picture (SP) is, in the general
case, a TD quantity. In the Heisenberg picture, since the state vector ψ∣ 〉 is time-
independent, the same should hold (and can be shown to be true) for the density-
operator state. It is worth noting that the time-evolution law of the density operator
has the same form as the equation of motion of the observable operators in the
Heisenberg picture, but with the opposite sign.

12Unitarity is imposed by the fact that ρ ρ′ = =Tr( ) Tr( ) 1.
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11.3 Position representation
We can specialize the above discussion and take as ∣ 〉i the eigenstates of the position
quantum operator, r̂.13 The position operator is, genuinely, a continuous-spectrum
operator. For our purposes we have to adopt a continuum notation for the index i,
assuming that ∣ 〉 → ∣ 〉 → ∣ 〉i r ri , we have

∫ δˆ∣ 〉 = ∣ 〉 ∣ 〉〈 ∣ = 〈 ′∣ 〉 = ′ −r r r r dr r r r r r r, ( ). (11.30)

Multiplying the completeness relation from the right by the ket ψ∣ 〉 we obtain

∫ ∫ψ ψ ψ∣ 〉 = ∣ 〉〈 ∣ 〉 = ∣ 〉dr r r dr r r( ) . (11.31)

Direct comparison of the above expansion on the ∣ 〉r basis, with the abstract state
vector expansion of equation (11.2), relates the basis coefficients c t( )i as ψ→c r( )i

and, as such,

ψ ψ= 〈 ∣ 〉r r( ) . (11.32)

This equation, apart from a formal definition of a system’s wavefunction in the
position representation, is also a confirmation that the wavefunction values ψ r( ) can
also be interpreted as the expansion coefficients of the state vector in the position’s
operator basis [2]. For the above function to have a legal role within QM it is vital to
obey

∫ ψ∣ ∣ < ∞dr r( ) . (11.33)2

It is only then that ψ∣ ∣r( ) 2 can be interpreted as a probability distribution of the
particle’s position14. It is desirable now to derive the evolution law in this
representation. Since the spectrum of the position operator is continuous, there
are no any discrete sums in the expressions for the state vector’s TDSE. For
quantum systems with a classical analogue, the Hamiltonian will be some function
of the particle’s position and momentum. The classical expression turns into a
quantum mechanical operator by assigning the transformations15

ı→ ˆ → − ∇r r p, . (11.34)r

We then have for the overlap matrix elements and the Hamiltonian matrix elements,

ı δ ı δ〈 ∣ ˆ ∣ ′〉 = ˆ − ∇ ′ − = ˆ ′ − ∇ ′ −′H H Hr r r r r r r r( , ) ( ) ( , ) ( ). (11.35)r r

Take the inner product of equation (11.1) with ∣ 〉r (in loose language, multiplying
from the left by the bra 〈 ∣r ), followed by integration all over the space by

13Note the difference between r̂, r̂ and r. The first represents the position operator while the second represents
the unit vector along the direction pointed to by the position vector r.
14 In fact, it is the integral that should be finite and not ψ∣ ∣r( ) 2 itself.
15 Because the action of r̂ is to multiply the ket position vectors (11.30) by r, one may use r to represent either
the classical position vector or the quantum position operator.
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∫ ∫
∫

ı ψ ψ ψ

ψ ψ

ı δ ψ ı ψ

∂
∂

〈 ∣ 〉 = 〈 ∣ ˆ ∣ 〉 = 〈 ∣ ˆ ∣ 〉

= 〈 ∣ ˆ ′∣ ′〉〈 ′∣ ∣ 〉 = ′〈 ∣ ˆ ∣ ′〉〈 ′∣ 〉

= ′ ˆ ′ − ∇ ′ − ′ = ˆ − ∇′



( )
t

t H H t

H t H t

H t H t

r r r

r dr r r dr r r r

dr r r r r r r

( ) ( ) ( )

( ) ( )

( , ) ( ) ( , ) ( , ) ( , ),r r

where equations (11.30) and (11.35) were used. So, we arrived at the familiar TDSE
expressed as a partial differential equation in space and time:

ı ψ ı ψ ψ ψ∂
∂

= ˆ − ∇ =
t

t H t tr r r r r( , ) ( , ) ( , ), ( , ) ( ). (11.36)r 0 0

where by definition, ψ ψ≡ 〈 ∣ 〉tr r( ) ( )0 0 is known. In the final expression for the TDSE,
the time has been explicitly added to emphasize the fact that the Hamiltonian can be
an explicit function of time as well. This is true when the quantum system is
interacting with an external agent (e.g. the electro-magnetic field). The Hamiltonians
of particular interest are those that can be split into a time-independent part plus a
TD part. We will generally denote the former by Ĥ0 and the second byV̂ t( ), allowing
us to write the full system’s Hamiltonian as

ˆ = ˆ + ˆH t H V t( ) ( ). (11.37)0

In the context of atomic and molecular physics, Ĥ0 could represent the atomic or
molecular Hamiltonian, free from any external interactions. We call external
interactions the interactions with the environment, either static or TD. For example,
placing an atom in a region of a constant magnetic or electric field is a static external
interaction. On the other hand, irradiation of an atom or molecule by a laser pulse
represents an external TD interaction. Provided that such a separation is in place we
arrive at our final form of the TDSE in the position representation,

ı ψ ψ ψ ψ∂
∂

= ˆ ˆ ˆ + ˆ ˆ ˆ =
t

t H t V t t tr r p r p r r r( , ) [ ( , , ) ( , , )] ( , ), ( , ) ( ), (11.38)0 0 0

with ı= − ∇p the momentum operator in the position representation. At last, it is
mentioned here that the physical meaning of the wavefunction ψ tr( , ) derives from
Born’s statistical interpretation of ψ∣ ∣t dvr( , ) r

2 as the probability for a particle to be
observed in the elementary volume, dvr, centered at position r at time t.

11.4 Degenerate systems
In the discussion of the time evolution and measurement(s) of a system no mention
was made of the possibility that an operator’s eigenvalue could correspond to
different eigenstates of the system. For such cases some proper amendments are in
place, however, these are not always trivial. It might be better to show how one can
work with such systems by using a concrete example. In doing this, let us take a
quantum system with three possible states with two of them doubly degenerate. We
consider the degenerate states to be energetically higher than the non-degenerate
states. If the system’s Hamiltonian is Ĥ , the above considerations are expressed as
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ϕ ϵ ϕ ϵ ϵˆ ∣ 〉 = ∣ 〉 = − =H i, 1 3 withi i i 2 3. For these states the following orthonormal
relations hold,

∑∑ϕ ϕ δ δ ϕ ϕ〈 ∣ 〉 = ∣ 〈 ∣ =
= =

, . (11.39)
i

g

n

N

1 1
n

i
m

j
ij nm n

i
n

i( ) ( ) ( ) ( )
i

For our case, we have =N 2, =g 11 , =g 22 . To simplify the discussion let us set
ϵ ω ϵ ϵ ω= = =and 2i 0 2 3 0. Also, the system is initially in a normalized (coherent)
superposition of the above states, for example

∑ψ ϕ∣ 〉 = ∣ 〉 = =c c c,
1
2

. (11.40)
n

n n0 2 3

Next we consider the observables H andQ. We wish to examine the results of some
measurements made on this system.

Energy measurement. The operator of the energy observable H is the Hamiltonian
operator, Ĥ . Let us assume that the energy measurement takes place at time =t 00 .
The question is what results one should expect and how probable they are. The first
thing to do is to determine the state at the time of observation which is given by
equation (11.40). Since the state is normalized the absolute value of c1 is easily
calculated by

∑∣ ∣ = → ∣ ∣ + = → =
ıθ

c c c
e

1 2
1
4

1
2

,
n

n
2

1
2

1

where θ is of real value but unknown. Nevertheless, a good amount of information
can still be extracted. So the initial state is

ψ ϕ ϕ ϕ∣ 〉 = ∣ 〉 + ∣ 〉 + ∣ 〉
ıθe

2

1
2

1
2

. (11.41)0 1 2 3

Energy measurement can provide only the two eigenvalues of Ĥ , ω ωand 20 0 with
some probability. These probabilities can be found from the generalized definition of
the projection operator, Q̂n,

∑ ϕ ϕˆ = ∣ 〉〈 ∣Q , (11.42)
i

g

n n
i

n
i( ) ( )

i

∑ψ ψ ϕ ψ= 〈 ∣ ˆ ∣ 〉 = ∣〈 ∣ 〉∣P q Q( ) . (11.43)
i

g

n n n
i( ) 2

i

In the particular case we examine we have

∑ϵ ω ϕ ψ= = ∣〈 ∣ 〉∣ = =
=

ıθ
P

e
( )

2

1
2

.
i 1

1
i

1 0 1
( )

0
2

2
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Similarly, for the second energy eigenvalue we obtain

∑ϵ ω ϕ ψ= = ∣〈 ∣ 〉∣ = + =
=

P( 2 )
1
4

1
4

1
2

.
i 1

2
i

2 0 2
( )

0
2

It is relatively trivial to calculate the expectation value of the Hamiltonian operator
(the mean energy of the system) by

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ψ ψ ϕ ϕ ϕ

ϕ ϕ ϕ

ϵ ϵ ϵ

ω ω ω ω

〈 ˆ 〉 = 〈 ∣ ˆ ∣ 〉 = 〈 ∣+ 〈 ∣ + 〈 ∣ ˆ

× ∣ 〉 + ∣ 〉 + ∣ 〉

= ⋯ = + +

= + + =

ıθ

ıθ

−
H H

e
H

e

2

1
2

1
2

2

1
2

1
2

1
2

1
4

1
4

1
2

1
4

(2 )
1
4

(2 )
3
2

.

0 0 1 2 3

1 2 3

1 2 3

0 0 0 0

The ⋯ in the above calculations represent the calculation of the inner products
ϕ ϕ〈 ∣ 〉n

i
m

j( ) ( ) according the orthonormality rules of equation (11.39). An alternative, fast
track, calculation of the mean energy value can be obtained by relying on matrix
operations if we decide to represent operators and vectors on the (fundamental)
vector basis (11.5). Then,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ω ψ= ∣ 〉 =

ıθe
H

1 0 0
0 2 0
0 0 2

,
1
2

2
1
1

. (11.44)0

We then immediately obtain

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎤

⎦
⎥⎥

⎡

⎣
⎢⎢⎢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎤

⎦
⎥⎥⎥

ψ ψ

ω ω

〈 ˆ 〉 = 〈 ∣ ˆ ∣ 〉

= · · =ıθ

ıθ

−( )

H H

e
e1

2
2 , 1, 1

1 0 0
0 2 0
0 0 2

1
2

2
1
1

3
2

.

0 0

0 0

The standard deviation of the system’s energy at that particular time may be found
by calculating ΔE using the well known statistical formula

Q Qψ ψΔ = 〈 ∣ ˆ − 〈 〉 ∣ 〉 = 〈 〉 − 〈 〉 ≠ψ ψ ψ ψQ Q Q( ) ( ) 0. (11.45)2 2 2 2

Replacing ˆ ˆQ Hby followed by calculation either using the analytical approach or
the matrix representation approach16 should end up with ωΔ =E /20 .

16 Left as an exercise for the reader to familiarize with the algebraic operations involved.
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Q measurement. Now we repeat the same question for an observable Q. As an
example we specify its matrix representation on the fundamental ket basis and take
it as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟= qQ

1 0 0
0 0 1
0 1 0

. (11.46)

The measurement outcomes and the associated probabilities are determined from
the corresponding eigenvalue problem (11.15). Since a matrix representation of the
operator is available a standard matrix diagonalization suffices to find the observ-
able’s eigenvalues:

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟− ∣ 〉 = →

−
−

−
· =( )q q

q q

q q

q q

q
q
q

Q 0,

0 0

0

0
0, (11.47)n n

n

n

n

n

n

n

1

2

2

with qni the ith component of the nth eigenvalue (qn). The possible eigenvalues can be
simply found as the roots of the − qQ( )n matrix:

− = → − − =

→ − + = → = ±

( )det q q q q q

q q q q q q

Q 0 ( )( ) 0

( ) ( ) 0 .
n n n

n n n

2 2

2

So one eigenvalue, = −q q1 , is non-degenerate and this allows us to assign one single
ket to it, say ∣ 〉q1 ,

ˆ∣ 〉 = ∣ 〉Q q q q .1 1

The other eigenvalue, =q q2 , is doubly degenerate and is associated with all kets
belonging to a special two-dimensional Hilbert space (which is determined as long as
we determine two kets belonging to this subspace). Let us call two of these states
∣ 〉 = ∣ 〉 ∣ 〉 = ∣ 〉q u q uand2 2

(1)
3 2

(2) . Thus, for the second eigenvalue we have, for any
complex values of a, b,

∣ 〉 = ∣ 〉 + ∣ 〉 → ˆ∣ 〉 = ∣ 〉u a q b q Q u q u . (11.48)2 3

At this point it is left as an exercise for the reader to calculate the normalized
eigenvectors, ∣ 〉 ∣ 〉 ∣ 〉q q q, ,1 2 3 , representing these quantum states on the fundamental
vector set as17

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∣ 〉 =

−
∣ 〉 = ∣ 〉 =q q q

1

2

0
1
1

,
1

2

0
1
1

,
1
0
0

. (11.49)1 2 3

It is trivially seen that δ〈 ∣ 〉 =q qi j ij for any combination of = −i j, 1 3. Now one is in
a position to calculate the probabilities for the measurement outcomes ofQ exactly

17Unless explicitly stated, it will be assumed that matrix representations are on this basis.
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the same way as used for the energy measurement. Nevertheless, for pedagogical
reasons, the matrix form of equation (11.43) will be used. So first, using equation
(11.42) the matrix representation of the projection operators are calculated as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟= ∣ 〉〈 ∣ =

−
− = −

−
M q qQ ( )

1

2

0
1
1

1

2
(0, 1, 1)

1
2

0 0 0
0 1 1
0 1 1

, (11.50)1 1 1

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∑= ∣ 〉〈 ∣ = + ·

= + =

=

M q qQ
1

2

0
1
1

1

2
(0, 1, 1) (1, 0, 0)

1
0
0

1
2

0 0 0
0 1 1
0 1 1

1 0 0
0 0 0
0 0 0

1
2

2 0 0
0 1 1
0 1 1

.

i 2,3
i i2

Based on the above18, using equation (11.43), we obtain

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ψ ψ− = 〈 ∣ ˆ ∣ 〉 = · −

−
· =ıθ

ıθ

−( )P q Q e
e

( )
1
2

2 , 1, 1
1
2

0 0 0
0 1 1
0 1 1

1
2

2
1
1

00 1 0

and

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ψ ψ= 〈 ∣ ˆ ∣ 〉 = · · =ıθ

ıθ

−( )P q Q e
e

( )
1
2

2 , 1, 1
1
2

2 0 0
0 1 1
0 1 1

1
2

2
1
1

1.0 2 0

Of course, the last result could have been derived by noting that only two
eigenvalues are possible and as such − + =P q P q( ) ( ) 1. We could have predicted
that a measurement ofQ will give the value q with certainty since ψ∣ 〉0 belongs to the
relevant subspace (11.48) with =a 1/ 2 and = ıθb e / 2 . Noting that the operator Q̂
commutes with the Hamiltonian Ĥ ,19 we may predict that if we had waited and
performed the measurement not at time =t 00 but at a later time t, then the outcome
would have been again q with certainty. This is because ψ∣ 〉0 belongs to the
q-subspace.

11.5 Homework problems
Problem 11.1. Probability distribution current. Assume the state of a particle in

position representation, ψ tr( , ), and define the probability distribution as
ρ ψ ψ ψ= 〈 ∣ 〉 = ∣ ∣t tr r( , ) ( , ) 2. Show that a continuity equation holds for the
time evolution of the probability distribution leading to an associated
probability current distribution

18Note that we could have calculated Q2 more easily from + = Q Q1 2 since ∑ ˆ = Q .nn
19 It can be checked simply by confirming that for the corresponding matrices HQ = QH holds.
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ρ ψ ψ∂
∂

+ ∇ˆ = ˆ = ˆ⋆

t
t t t t tr j r j r r p r( , ) ( , ) 0, ( , ) Re[ ( , ) ( . )]. (11.51)

Problem 11.2. Calculation of eigenvectors. Consider the matrices of the
observables H andQ of section 11.4 and the initial state at time t = 0, ψ∣ 〉0
given by equation (11.41) with θ = 0. In addition, consider the observableQ′
defined by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟′ = ′qQ

0 1 0
1 0 0
0 0 1

. (11.52)

(a) Show that ˆ ˆ′ ≠H Q[ , ] 0.
(b) What is the state vector at time t and what are the expectation values for

the system’s energy and observablesQ andQ′? You may use the general
QM formula ψ ψ〈 〉 = 〈 ∣ ˆ∣ 〉Q t Q( ) .

(c) A measurement ofQ andQ′ takes place at time t = 0. Find the possible
outcomes for each of the observables and the corresponding
probabilities.

(d) The above measurements, instead of being taken at time t = 0, take place
at a later time >t 0. Similarly, find the possible outcomes for each of the
observables and the corresponding probabilities. How do they differ from
the results of question 11.2 (c) above? Comment on your observations.

Problem 11.3. Calculation of eigenvectors. Consider the matrices of the
observables H andQ of section 11.4.
(a) Show that ˆ ˆ =H Q[ , ] 0.
(b) Determine their eigenvalues and the corresponding eigenvectors within

an undetermined phase factor. For convenience, set the phase equal to
zero for all eigenvectors.

(c) For the Hamiltonian operator name the three eigenkets ∣ 〉 = −e i, 1 3i
and form the matrix, =S e e e[ , , ]1 2 3 . Show that

= −H SHSd
1

is a diagonal matrix. Similarly, show that = −Q SQSd
1. The above

property of the matrices S formed by the eigenvectors of an operator
provide a brute-force recipe for the transformation of an arbitrary matrix
to a diagonal one.

Problem 11.4. Expectation and variance of observables in a pure state. Consider a
system S in the pure state ψ∣ 〉 and the observable Q. Using the eigenvalue
equations (11.2), (11.15) and (11.17) show that:
If the ∣ 〉i is an eigenbasis of Q then a simplified expression for the mean is
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∑ρ〈 〉 =ψQ q (11.53)
n

ii i

and for the variance,

ψ ψΔ = 〈 ∣ ˆ − 〈 〉 ∣ 〉 = 〈 〉 − 〈 〉 ≠ψ ψ ψ ψQ Q Q Q Q( ) 0. (11.54)2 2 2

Problem 11.5. Expectation and variance of an observable in a mixture of states.
Consider a system S in the mixture of states ∣ 〉 = …i w i N( , ) 1, 2, ,i and the
observableQ. Show that the expectation value forQ is

∑〈 〉 = 〈 〉Q w Q , (11.55)
i

i i

where 〈 〉Q i is given by equation (11.53) for ψ∣ 〉 = ∣ 〉i . The above results show
that the mean value of any operator Q̂ is a linear combination of the
expectation values of the base operators P̂i.
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