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IOP Concise Physics

Topological Insulators

Panagiotis Kotetes

Chapter 1

Symmetries and effective Hamiltonians

In this chapter we introduce a number of symmetry concepts that play a key role in
predicting and analysing topological phenomena. First we provide an introduction
to unitary and antiunitary symmetry transformations and afterwards unfold a
programme of how to employ them for retrieving symmetry-invariant effective
Hamiltonians. We specifically focus on models for III–V semiconductors, which are
particularly relevant for the topological systems to be studied later. One should note
that the invariance of a system under a set of symmetries not only serves as an
indispensable tool for performing technical analysis, but is essentially decisive for the
arising topological properties.

1.1 Crash course on symmetry transformations
By and large, the behaviour of material systems and other abstract objects under the
action of a group of symmetry transformations, allows us to categorise them into
distinct classes. The members of a given class share common features and character-
istics tied to the ensuing symmetry. An abstract object is said to exhibit a particular
symmetry when it remains invariant under the corresponding symmetry trans-
formation or operation, cf textbooks such as [1–5]. For example, an ideal planar disc
is symmetric or invariant under arbitrary rotations about its out-of-plane axis. This,
in turn, implies that the coordinate vector of a given point on the disc transforms in a
specific fashion under rotations. Apart from spatial rotations, symmetry tranforma-
tions additionally include operations such as reflections, inversion and translations,
while the last two are also extended to the time dimension. More importantly, one
can also define symmetries not associated with the physical spacetime but rather
with a type of internal or parameter space related, for instance, to isospin, flavour,
colour, valley or other degrees of freedom.

When symmetry transformations are defined in the Hilbert space of a given
quantum-mechanical system, they are usually considered to yield an O-symmetry
when the respective operator effecting the symmetry Ô, leaves the Hamiltonian (Ĥ )
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invariant, i.e. ˆ ˆ ˆ†
O HO = ˆ ⇒ ˆ ˆ = ˆH O H[ , ] 0 [1]. As a result, the presence of symmetry

leads to energy degeneracies for two (or more) Hamiltonian eigenstates with quantum
numbers ≠a b, i.e. =E Ea b. While this corresponds to the conventional and most often
used definition, one can extend the notion of symmetry to include also those which
instead yield a sign change of the Hamiltonian, i.e. ˆ ˆ ˆ = − ˆ ⇒ ˆ ˆ = ˆ†

O HO H O H{ , } 0 [6–8].
Symmetries of this kind are crucial for predicting and describing the topological
properties of a system. This will become clear in the upcoming chapters and especially in
chapter 8. While these symmetries do not generally imply degeneracies, they still impose
constraints on the energy spectrum, e.g. = −E Ea b. Finally, the operators effecting
symmetry transformations can be split into two categories, the unitary (Ou) and
antiunitary (Oa), which can be distinguished by their different action on a complex c-

number z, i.e. ˆ ˆ = ˆ†
O zO z1u u and ˆ ˆ = ˆ†

*O zO z 1a a , with 1̂ the identity operator.

1.1.1 Unitary symmetry transformations

Here we introduce the unitary symmetries by considering the case of a spinless
particle described by a wavefunction ϕ, that is a solution of the time-independent
single-particle Schrödinger equation ϕ ϕˆ =H E [1], with E denoting the particle’s
energy. Within the quantum-mechanical description, a symmetry transformation
acts on a wavefunction which depends on the particle’s coordinate r in the following
manner

ϕ ϕ ϕ ϕ′ ≔ ′ = ˆr rO Oand ( ) ( ), (1.1)

where Ô corresponds to the symmetry-transformation operator, defined in the given
r basis. For instance, if we wish to translate the system by a along the direction
defined by the unit vector ň, i.e. ′ = + ˇr r na , we must act on ϕ r( ) with the translation

operator ˆ =ˇ − ˇ· ˆ ℏt en n p
a

ai / [1], where p̂ defines the momentum operator which, in the
position basis, is represented as ∇ˆ = ℏp /i. It is straightforward to see that for an
infinitesimal translation a along ň, we have

ϕ ϕ ϕ

ϕ ϕ ϕ∇
′ = ≈ − ˇ · ˆ ℏ

= − ˇ · ≈ − ˇ ≡

− ˇ· ˆ ℏ

− ˇ( )
r r n p r

n r r n r

e a

a a t

( ) ( ) (1 i ) ( )

(1 ) ( ) ( ) .
(1.2)

n p

n

a

a

i

Note that, in the above, the transformation acts in the argument in the inverse sense
compared to the wavefunction. Such a transformation property was anticipated,
since the existence of a symmetry transformation implies that we can equivalently
write for the scalar wavefunction

ϕ ϕ ϕ ϕ′ ′ = ⇒ ′ = − ˇr r r r na( ) ( ) ( ) ( ). (1.3)

In a similar fashion, a rotation by an angle θ about an axis with direction ň would

be effected using the rotation operator ˆ =θ
θˇ − ˇ· ˆ ℏR e

n n Li / [1], where ˆ = ˆ × ˆL r p defines the
orbital angular momentum operator. If the wavefunction ϕ r( ) is instead a spinor

ϕ r( ), then a rotation will be generated by the total angular momentum ˆ = ˆ + ˆJ L S ,
with Ŝ denoting the spin angular momentum operator. A spinor corresponding to
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spin s, has +s2 1 components labelled by the quantum number =ms

− … −s s s, 1, , :

ϕ ϕ ϕ ϕ= …− −( )r r r r( ) ( ), ( ), , ( ) , (1.4)s s s1
T

with T denoting matrix transposition. For a spin-1/2 particle, = ±m 1
2s , and we have

ϕ ϕ ϕ ϕ ϕ= ≔+ − ↑ ↓( ) ( )r r r r r( ) ( ), ( ) ( ), ( ) (1.5)1
2

1
2

T T

and the spin operator assumes the form σˆ = ℏ ˆS /2, where σ̂ define the Pauli matrices [1]

⎜ ⎟⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠σ σ σˆ = ˆ = − ˆ =

−
0 1
1 0

, 0 i
i 0

and 1 0
0 1

. (1.6)x y z

The corresponding rotation operator θ− ˇ· ˆ ℏe n Si / , reads

σθ θ= ˆ − ˇ · ˆσθ
σ

− ˇ· ˆ ne cos ( 2)1 i sin( 2) , (1.7)ni 2

with ˆσ1 denoting the identity matrix in spin space. The factor of 1/2 implies that the
above operator exhibits a π4 , instead of π2 , periodicity with respect to θ. Contrary to
the wavefuctions and spin rotation operator, the spin operators Ŝ are connected to
physical observables and thus exhibit a π2 periodicity, as shown in section 1.1.2. For
more details see section 1.2.2.

In addition to the above continuous symmetry transformations, one can also
introduce discrete ones, such as spatial inversion and reflections. In three spatial
dimensions (d = 3), inversion (I) has the following action: = − −r p L r p LI{ , , } { , , }.
The angular momentum does not change sign, since it constitutes a pseudovector.
Remarkably, the situation changes for a strictly two-dimensional system, where I can
flip the sign of the angular momentum components. The reason is that in d = 2, I
describes a transformation which is equivalent to a proper rotation, similar to that
generated by Ĵ . This should be contrasted with d = 3, in which I effects an improper
rotation. The distinction between proper and improper rotations relies on the sign of
the determinant of the rotation matrix, being positive and negative, in each case
respectively. As a matter of fact, for systems defined in odd spatial dimensions,
inversion also effects parity. The latter is defined as a discrete improper rotation in all
dimensions. For a system confined in the xy plane, the two-dimensional version of
parity coincides with reflections σv, with ‘v’ denoting the presence of a vertical mirror
symmetry plane. For example, the reflection or mirror operation σxz, effects the
transformation ↦ −x y x y( , ) ( , ). In general, an improper rotation defined in even
spatial dimensions is equivalent to the combination of a proper rotation and an
inversion, when the system is embedded in a space with one extra spatial dimension.
For an example see Hands-on section 1.3.

1.1.2 Action of symmetry transformations on operators

Having retrieved the transformation properties of the wavefunctions under a
symmetry operation, we can readily determine the transformation of any operator,
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Â, associated with a physical observable. This is achieved by requiring that the
matrix elements of the operator remain unchanged. We define:

∫ ∫ ∫ϕ ψ ϕ ψ ϕ ψˆ′ ≔ ′ ˆ ′ = ˆ ˆ ˆ* * * †r r r r r r r r rd A d A d O AO( ) ( ) [ ( )] ( ) ( ) ( ), (1.8)

for arbitrary ϕ(r) and ψ(r) which implies

ˆ′ ≔ ˆ ≡ ˆ ˆ ˆ†A OA O AO. (1.9)

Interestingly, for the particular description of our coordinate-space-defined wave-
functions, we can also view the position vector r, as an operator r̂. Therefore,
equation (1.9) allows us to verify that for a translation ˆ ˇ

t n
a , one obtains

ˆ′ = ˆ ˆˆ = ˆ = ˆ + ˇˇ † ˇ ˇ· ˆ ℏ − ˇ· ˆ ℏ( )r r r r nt t e e a . (1.10)n n n p n p
a a

a ai i

This result was expected, as according to the definition of ˆ′A given in equation 1.8,
we essentially consider that we transform the Hamiltonian system rather than the
coordinate system, i.e. we employ the so-called active view of symmetry trans-
formations [1, 3]. We could alternatively employ the passive point of view of
symmetry transformations via the definition ∫ ∫ϕ ψ ϕ ψˆ ≔ ′ ˆ′ ′* *r r r r r rd A d A( ) ( ) [ ( )] ( )

that instead yields ˆ′ = ˆ ˆ ˆ†
A OAO . Throughout this book we always employ the active

view. Furthermore, note that for more general operators, which are not defined in a
Hilbert space, we have ˆ′ = ˆ ˆ ˆ−

A O AO
1 [3, 5].

As an example, we investigate the transformation of the spin operators ˆ ˆS S( , )x y ,
under a rotation by an angle θ about the z axis. For simplicity, we consider the case
of a spin-1/2 particle, where we can equivalently study the transformation of the σ̂x y,

Pauli matrices. Equation (1.9) yields:

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠
⎛
⎝⎜

⎞
⎠⎟

σ
σ

σ
σ

θ θ
θ θ

σ
σ

ˆ
ˆ =

ˆ
ˆ = − ˆ

ˆ
σ σ

θ
θ θˇ ˇ· ˆ − ˇ· ˆR e e cos sin

sin cos
. (1.11)z z zx

y

x

y

x

y

i 2 i 2

From this we observe that the spin operator Ŝ , exhibits a π2 periodicity under spatial
rotations and transforms in a similar way to r̂.

1.1.3 Antiunitary symmetry transformations: time reversal

Themost familiar example of an antiunitary symmetry transformation is time reversal
(TR) T , effected by taking → −t t. The time-reversed partner of a spinless particle’s
wavefunction ϕ r t( , ), is Tϕ ϕ= −*r rt t( , ) ( , ). The time-reversed Hamiltonian simply
reads T ˆ = ˆ −*H t H t( ) ( ), since we are dealing with an antiunitary symmetry trans-
formation operator. The explicit action of complex conjugation can be replaced by
introducing the respective operation K, thus T ˆ = ˆ −H t KH t( ) ( ). Note that ˆ = ˆK 1

2 and
its action on the position, momentum and orbital angular momentum operators is [1]

ˆ = ˆ ˆ = − ˆ ˆ = − ˆr r p p L LK K K, and . (1.12)
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From this we conclude that for spinless particles governed by time-independent
Hamiltonians, T ≡ K . Consequently, T -symmetric time-independent Hamiltonians
for spinless particles are necessarily real, while the action of T on the above
operators also reads

T T Tˆ = ˆ ˆ = − ˆ ˆ = − ˆr r p p L L, and . (1.13)

In the case of spinful particles we have to retrieve the action of T on the spin
operator Ŝ . Since the latter represents a type of angular momentum, it transforms in
the same manner as L̂. Thus T ˆ = − ˆS S . Given the freedom to choose a representa-
tion in which Ŝx z, are real and Ŝy imaginary (see [1]), we can employ K and rewrite

the T̂ operator as

T̂ = ˆπ ˆ ℏe K . (1.14)Si /y

Given this representation, T is generated by the successive operations of K and a
π rotation in spin space about the y axis, since ˆ ˆ ˆ = ˆ − ˆ ˆK S S S S S S( , , ) ( , , )x y z x y z .

For spin-1/2 fermions (e.g. electrons) we have σˆ = ℏ ˆS /2y y , which implies T σˆ = ˆ K̂i y

and T σ σˆ = ˆ ˆ ˆ ˆ ˆ†
H K HKy y. Notice that T̂ = −1̂

2
, which is a characteristic of systems with

half-integer spin. In contrast, for systems with integer spin, we obtain T̂ = 1̂
2

. In the
first case, the negative sign yields the celebrated Kramers degeneracy, i.e. every
Hamiltonian eigenenergy is doubly degenerate and the two eigenstates are connected
by TR. As an example consider the case of electrons in the absence of a magnetic
field, in which the spin-up and -down states are degenerate. However, if T̂ = 1̂

2
, T

behaves in a similar way to K . In this case, the presence of time-reversal symmetry
(TRS), with an operator squaring to identity, imposes a reality constraint on the
Hamiltonian; i.e. by an appropriate choice of basis, the Hamiltonian can be
represented as a real matrix and characterised by real eigenvectors [1].

1.1.4 Symmetry groups

In the previous paragraphs we provided some examples of symmetry transforma-
tions. However, a real material or abstract system can be simultaneously invariant
under a set of symmetries. One finds that the various symmetry transformations may
be interrelated, thus construing symmetry groups. A collection of elements

…A B C, , , form a group G, when the following conditions are met [4]:
1. The product of any two group elements yields another group element, i.e.

=AB C , with G∈A B C, , .
2. The elements satisfy the associative law: =AB C A BC( ) ( ).
3. There exists an identity element, E , commuting with any other group

element A, i.e. =EA AE .
4. Every element has an inverse: = =− −AA A A E1 1 .

In order to make the term symmetry group more transparent, let us give the
following example. Assume the time-independent Schrödinger equation ϕ ϕˆ =H E
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for a localised spin-1/2 particle in a magnetic field oriented along the z spin axis, for
which, the Zeeman coupling yields σˆ = − ˆH E zZeeman . Due to the properties of the

Pauli matrix, σ̂ = 1̂z
2 , and one finds that ˆ = ˆH E 1

2
Zeeman
2 . Thus, the eigenvalues of the

Hamiltonian are given by = ±±E EZeeman, implying that the respective eigenstates
ϕ∣ 〉± satisfy ϕ ϕˆ ∣ 〉 = ± ∣ 〉± ±H EZeeman . Note that every Hamiltonian squaring to a
constant will have the same eigenvalue structure and will lead to a similar relation
for its eigenvectors. The details of the physical system under consideration solely fix
the energy scale and the exact expression of the eigenvectors. These statements can
be also extended to operators effecting symmetry transformations. For example,
inversion satisfies ˆ = ˆI 1

2 and thus it is characterised by the same general type of
eigenvalues and eigenvectors as the Hamiltonian above.

Instead of eigenvalues and eigenvectors, a more appropriate nomenclature
applying for symmetry transformations is characters and irreducible representa-
tions. In fact, the characters and irreducible representations characterise a
symmetry group and not a single symmetry transformation. Notably, a group
structure has made its appearance already in the discussion above. For the case of
inversion, I and I 2 form a group. I 2 constitutes the identity element of the group,
commmonly denoted with E . Since the two symmetry tranformations commute,
i.e. =EI IE , the group is Abelian. In general, a symmetry group consists of a finite
or an infinite number of elements, which defines the order of the group, Gh . The
elements of a group do not necessarily commute and the group is in this case called
non-Abelian.

For the group E I{ , } there exist two irreducible representations A1 and A2,
coinciding with the representations of the group elements when acting on ϕ∣ 〉+ and
ϕ∣ 〉− , respectively. In the A1 irreducible representation: =E I{ , } {1, 1}, while in the A2:

= −E I{ , } {1, 1}. Note that these irreducible representations are one-dimensional,
since the ϕ∣ 〉± transform into themselves under the action of the symmetry-group
elements. However, non-Abelian groups support multi-dimensional irreducible
representations, in which, each symmetry group element is represented by a matrix.
The trace of the representation matrix defines the so-called character χ g( )IR of the
symmetry group element g, in the given irreducible representation IR. For one-dimen-
sional irreducible representations the character coincides with the representation
itself. Consequently, here we find χ = {1, 1}A1

and χ = −{1, 1}A2
.

While the scope of this work is not an in-depth group theory study (for more
details refer to [1–5]), we present in the following section an example of how to
analyse theC v3 symmetry point group, arising for instance in a triangularly-arranged
triple-quantum-dot device.

C v3 point-group symmetry example: triangular triple-quantum-dot device
In the following paragraphs we provide an example regarding symmetry groups
and, in particular, how to derive their irreducible representations. The model
system for this purpose is a lateral triple-quantum-dot (TQD) device where the
three dots are assumed identical and arranged in a triangular fashion [9, 10] as in
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figure 1.1. In the Hands-on section 1.3, we additionally demonstrate how to obtain
effective Hamiltonians for the TQD system using group theoretical approaches.

Quantum dots constitute ‘zero’-dimensional, electrostatically-confined (see
section 1.2.4) or self-assembled, islands of electrons in which the finite-size effects
lead to a discrete-only energy spectrum, since their diameter is of the order of a few
to a few-hundred nanometers. Due to the complete confinement-induced energy
level quantisation, they have been termed as artificial atoms [11]. Notably, while the
number of electrons in a quantum dot can be large, the energy for adding an extra
electron relative to a reference number can be finely tuned via electrostatic gating,
thus allowing one to controllably create a few-excess-electron subsystem on the dot.

In the following, we consider a TQD with a single excess electron relative to the
reference. Thus, a single-particle Hamiltonian is sufficient for examining the
properties of the system. Nonetheless, even without specifying any further details
for the TQD, we can already phenomenologically write down the most general
Hamiltonian that may describe this system, solely based on the notion of its
symmetries. We unfold the programme for reaching this goal below and in
Hands-on section 1.3.

The three identical dots are deposited on a substrate and assumed to be perfectly
aligned so to give rise to an equilateral triangle. The given structure is characterised
by invariance under a set of π2 /3 rotations about the out-of-plane z axis. A
counterclockwise rotation of the TQD is termed a C3 rotation, with the order n,
of a rotation π n2 / , being n = 3. One also finds the inverse rotation −C3

1 which rotates
the TQD in a clockwise fashion. Furthermore, one finds =C E3

3 and = −C C3
2

3
1.

Thus, the set E C C{ , , }3 3
2 forms a symmetry group, termed C3. Nevertheless, the

TQD is also dictated by the set σ σ σC C{ , , }xz xz xz3 3
2 of mirror symmetries.

These symmetry transformations exhaust all the possible unitary operations that
leave the TQD invariant and form the so-called C v3 group. Note that C3 is a
subgroup of C v3 . Both groups constitute point groups, since they consist of elements
that, when they act on the system, keep at least one point fixed. After having

Figure 1.1. Three identical quantum dots arranged in a triangular fashion. The emergent triangle is equilateral,
thus leading to a C v3 point group symmetry. This point-group consists of the identity element E , the C3

counterclockwise rotation ( ↦{1, 2, 3} {2, 3, 1}), the ≡ −C C3
2

3
1 clockwise rotation ( ↦{1, 2, 3} {3, 1, 2}), the

σxz mirror operation ( ↦{1, 2, 3} {1, 3, 2}), the σC xz3 mirror operation ( ↦{1, 2, 3} {3, 2, 1}) and the σC xz3
2

mirror operation ( ↦{1, 2, 3} {2, 1, 3}).
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identified the symmetry-group elements we have to: (i) construct the multiplication
table, (ii) retrieve the conjugacy classes, and (iii) obtain the irreducible representa-
tions that provides the character table. Below we appose a step-by-step presentation
of this programme; for more details see [2–5].

1. Multiplication table. The particular table consists of all the products of two
elements of the group and it also reflects its Abelian or non-Abelian
structure. In the particular example we obtain table 1.1.

2. Conjugacy classes. The conjugacy classes divide the symmetry-group ele-
ments into sets of transformations with common features and the same
character χ. For the given example one expects to find three classes. The first
solely consists of the identity element E{ } and is present in every group. The
second is built by the two rotations C C{ , }3 3

2 , and the last is spanned by the
mirror operations σ σ σC C{ , , }xz xz xz3 3

2 . Mathematically, two group elements
g1,2 are conjugate if they satisfy = −g g g g1 3 2 3

1, where g3 is an arbitrary element
of the group [4]. Based on this definition, we indeed recover the three
conjugacy classes mentioned above. Identifying the conjugacy classes is of
utter importance, since the number of conjugacy classes coincides with the
number of irreducible representations.

3. Irreducible representations and character table. After having identified the
conjugacy classes of the symmetry group we can proceed with identifying
the irreducible representations. This is greatly facilitated by the fact that the
number of irreducible representations equals the number of conjugacy classes
and if lj denotes the dimensionality of the jth irreducible representation, then

G∑ =l hj j
2 . In our case the order of the symmetry group is Gh = 6, and we

have three irreducible representations, therefore + + =l l l 61
2

2
2

3
2 . One of these

irreducible representations is the identity one (A1), which is one-dimensional.
In the A1 representation all the elements are equal to one, by definition. The
above relation yields the additional one-dimensional (A2) and two-dimensional
(E) irreducible representations. Note that the characters of the irreducible
representations satisfy the orthogonality condition [2–5]

G∑ χ χ δ=* g g h( ) ( ) , (1.15)
g

i jIR IR ,i j

Table 1.1. Multiplication table of the C v3 point group.

· E C3
2 C3 σxz σC xz3 σC xz3

2

E E C3
2 C3 σxz σC xz3 σC xz3

2

C3 C3 E C3
2 σC xz3 σC xz3

2 σxz

C3
2 C3

2 C3 E σC xz3
2 σxz σC xz3

σxz σxz σC xz3 σC xz3
2 E C3

2 C3

σC xz3 σC xz3 σC xz3
2 σxz C3 E C3

2

σC xz3
2 σC xz3

2 σxz σC xz3 C3
2 C3 E
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with χ the respective characters. The sum is over all the elements g ∈ G. The
above orthogonality condition can directly provide the A2 one-dimensional
irreducible representation. The orthogonality of A1,2 yields the character
relation: χ χ σ+ + =C1 2 ( ) 3 ( ) 0xzA 3 A2 2

. The latter immediately provides the
A2 irreducible representation in which χ =E( ) 1A2

, χ =C( ) 1A 32
and

χ σ = −( ) 1xzA2
. To identify the two-dimensional irreducible representation,

we do not need to further stick to the particular TQD system, since the former
constitutes a property of the group and not of the particular physical system
under consideration. Thus, we can alternatively consider any two abstract
objects, of our convenience, that transform into each other under the action of
C v3 according to the two-dimensional irreducible representation. For example,
we can simply study how the above rotations andmirror symmetries act on the
position vector in two dimensions x y( , ). The result in this case is easy to find,
since a counterclockwise rotation of angle θ about the z axis reads

⎜ ⎟⎛
⎝

⎞
⎠

θ θ
θ θ

= −
θ
ˇ( ) ( )R

x
y

x
y

cos sin
sin cos

. (1.16)z

We therefore find the two matrices

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠σˆ = − −

−
ˆ =

−
C

1 2 3 2

3 2 1 2
and 1 0

0 1
. (1.17)xz3

The above matrix representations of the operators generating C3 and σxz yield
χ =E( ) 2E , χ = −C( ) 1E 3 and χ σ =( ) 0xzE . Note, however, that we have not
yet verified if the above representation is indeed irreducible. In fact, instead it
can be a reducible one, decomposable according to one of the following
patterns: (i) +A A1 1, (ii) +A A2 2, or (iii) +A A1 2. To exclude this possibility
we verify via equation (1.15) that the given representation is indeed
orthogonal to A1 and A2 and thus inequivalent to both. In tables 1.2 and
1.5 we present the character table for C v3 .

1.1.5 Translations, Bloch’s theorem and space groups

A large part of this book focuses on crystalline systems which, apart from point-group
symmetries, additionally exhibit invariance under translations. The combination of
the latter two kinds of symmetries yields the so-called space groups. In d = 2 there exist
17 space groups, also called wallpaper groups. However, in d = 3 we find 230 space

Table 1.2. Character table of the C v3 point group.

Irr. Rep. E 2C3 3σv

A1 1 1 1
A2 1 1 −1
E 2 −1 0
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groups, see [4]. While studying space groups is not on the agenda of this work, we will
examine some properties of translations and introduce Bloch’s theorem [12].

Translations, represented here as ˇt n
a , constitute an Abelian group since two

translation operations commute. Assume a finite-sized three-dimensional crystal
with dimensions =L N ax x , =L N by y and =L N cz z , where a b c, , denote the lattice
constants and Nx y z, , the respective number of unit cells along the ˇ ˇx y, and ž
directions. By employing periodic boundary conditions one finds that =ˇt E( )x

a
Nx .

Similar conditions hold for the other two operations. The particular constraint on
the translation operations yields their one-dimensional irreducible representations,
which coincide with the respective characters. For ˇt x

a , the irreducible representations
are essentially retrieved using the roots of = ⇒ = πt t e1N

n
n Ni2 /x x with

= … −n N0, 1, 2, , 1x . For convenience, one introduces the wavenumber
π≔k n L2 /x x ( = … −n N0, 1, 2, , 1x ) and thus the irreducible representations

become =t ek
k ai

x
x . When → ∞Lx we may treat kx as a continuous variable.

A similar procedure for the remaining two operators allows us to introduce the
wavevector (or quasimomentum) π≔k 2 ( , , )n

L
m
L

l
Lx y z

with = … −n N0, 1, 2, , 1x ,

= … −m N0, 1, 2, , 1y and = … −l N0, 1, 2, , 1z .
With the above set of wavevectors we can introduce the so-called 1st Brillouin

zone (BZ), which in d = 1 is defined as the interval π π∈ −k a a( / , / ]x . The emergence
of a BZ is a result of the periodicity of the Hamiltonian and connects to the Bloch
theorem [12]. According to the latter, the eigenvector ϕ r( ) of a periodic Hamiltonian
satisfying ˆ + ˇ + ˇ + ˇ = ˆr x y z rH na mb lc H( ) ( ), with ∈ n l m, , , , can be decomposed
into two parts: ϕ = ∑ ·r u r e( ) ( )k k

k ri . Here u r( )k has the same periodicity as the
Hamiltonian and k is defined in the 1st BZ. In the case of a crystal, the electrons feel
a periodic ionic potential, + ˇ + ˇ + ˇ =r x y z rV na mb lc V( ) ( ), and the corresponding
eigenvectors u r( )k satisfy the time-independent Schrödinger equation

⎡
⎣⎢

⎤
⎦⎥

ˆ + ℏ + =p k
r u r u r

m
V E

( )
2

( ) ( ) ( ). (1.18)k k k

2

The energy bandstructure Ek n, of a crystal is determined by retrieving the eigenstates
u r( )k n, of the Bloch Hamiltonian, identified as the operator on the left-hand side (lhs)
of the above equation.

Before concluding this paragraph, let us retrieve the transformation properties of
the single-particle spinor wavefunction u r( )k and the Bloch Hamiltonian under K ,
which is useful for analysing the topological properties of the crystalline materials to
be discussed in the upcoming chapters. The complete electronic wavefunction is
ϕ = ∑ ·r u r e( ) ( )k k

k ri and under the action of K one obtains

∑ ∑ϕ = ≡* − ·
−
* ·r u r u rK e e( ) ( ) ( ) . (1.19)

k k
k

k r
k

k ri i

One observes that the action of K on the complete wavefunction can be completely
absorbed in taking the complex conjugate of u r( )k and inverting its wavevector
index. The latter implies the following action of K on a Bloch Hamiltonian
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ˆ = ˆ−
*r rKH H( ) ( ). (1.20)k k

Note that the wavevector satisfies =k kK . In contrast, ℏ = −ℏk kK , which follows
from ˆ = − ˆp pK . Due to this difference, equation (1.19) leads to the inversion of the
wavevector appearing in the right-hand side (rhs) of equation (1.20), and guarantees
the consistency between the r- and k-space descriptions.

1.2 Effective Hamiltonians for bulk III–V semiconductors
In the following paragraphs we demonstrate how to employ the symmetry artillery
developed above, to phenomenologically construct effective Hamiltonians for III–V
semiconductors. These materials are particularly interesting, since they can feature strong
spin–orbit coupling (SOC) [1, 4], which is a key ingredient for engineering topological
systems [13, 14]. Typically, a semiconductor belonging to this family consists of two
chemical elements, having 3 and 5 electrons in their outer atomic shell, which mainly
consists of s and p atomic orbitals. Characteristic examples are: GaAs, InAs and InP.
The electrons in these semiconductors are not free but instead feel a crystalline potential
that results in an energy bandstructure, as in equation (1.18). These semiconductors
usually crystallise in the so-called zincblende or wurtzite structures, invariant correspond-
ingly under the Td andC v6 point groups, both lacking a center of inversion [15, 16]. As we
discuss in section 1.2.3, bulk inversion asymmetry results in a non-negligible SOC, which
can play a pivotal role for crafting topologically non-trivial materials.

Despite the complex spaghetti-like energy bandstructure obtained for these systems,
mostof the timeweare interested in the energetically low lyingproperties and thus restrict
ourselves to the vicinity of particular k-space points, about which we obtain a Taylor
expansionof the energydispersion.Usually, thesek-points constitute localbandstructure
extrema and are governed by the same or reduced crystalline symmetry of the system,
which sets constraints to the allowed terms in this expansion. This perturbative approach
is termed ‘ ·k p expansion’. Such an effective Hamiltonian for the given k-region can be
extracted using a first-principles calculation.However, another approach is to solely rely
on the symmetryproperties of the systemandphenomenologically derive an effective low
energyHamiltonian, sufficient formakingqualitative predictions. Importantly, the latter
approach can be useful for understanding the universal properties emerging in a broader
class of systems, all sharing the same symmetry characteristics andbeing describedby the
same type of low energy Hamiltonian.

1.2.1 Effective Hamiltonian about the Γ-point: plain vanilla model

In the following paragraphs we construct an effective model for a semiconductor in
d = 3, valid near the vicinity of the Γ-point ( =k 0) of the bandstructure. The
semiconductor is here assumed to be invariant under inversion and arbitrary
rotations. The discussion of crystalline effects, and also bulk and structural inversion
asymmetry, is postponed for sections 1.2.2, 1.2.3 and 1.2.4. Our model Hamiltonian
builds upon s and p atomic orbitals characterised by the ℓ = 0 and ℓ = 1 quantum
numbers of the orbital angular momentum. However, the electron spin is characterised
by a spin quantum number =s 1/2. If we further consider the case of a non-negligible
SOC, the orbital and spin angular momenta couple. Under the artificially-enhanced
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symmetry considered here, it is convenient to introduce the total angular
momentum, ˆ = ˆ + ˆJ L S . By employing the total angular momentum, we can label
the states using the corresponding quantum number j. For the s orbitals we obtain

=j 1/2 and for the p orbitals =j 3/2, 1/2. The former and latter yield correspond-
ingly the so-called conduction and valence bands. One observes that the valence
band consists of two different kinds of states. The =j 3/2 leads to the heavy (HH)
and light (LH) holes, while the remaining =j 1/2 corresponds to the so-called split-
off hole (SOH) band, as shown in figure 1.2. Since the HH and LH belong to a
different irreducible representation compared to the SOH, the energy values of the
bandstructure at the Γ-point of the former and the latter will generally differ unless
an accidental degeneracy occurs. Below, we obtain effective Hamiltonians describ-
ing the conduction, HH and LH, and SOH bands, in the case where the respective
energy splittings at the Γ-point are sufficiently large. Otherwise all these bands are
described by an 8 × 8 Kane model, see [15].

Conduction and split-off hole bands
The effective Hamiltonian has the same general form for these bands, since they are
dictated by the same total angular momentum quantum number, i.e. =j 1/2. By
virtue of inversion symmetry, the terms appearing in the effective Hamiltonian of the
conduction and SOH bands have to be even in k. In addition, TRS implies that
for every Hamiltonian term we should have the same order of powers in k and Ĵ . By
additionally taking into account that both k and Ĵ transform as vectors under
rotations, the only couplings allowed have the form · ˆk J( ) n2 with ∈ n . However,
for =j 1/2 we obtain · ˆ ≡ ℏk J k( ) ( /4)n n2 2 2 , since τˆ = ℏˆJ /2. Here τ̂ correspond to
Pauli matrices satisfying τ· ˆ =a a( )2 2. Thus, we conclude that the effective
Hamiltonians for the conduction and SOH bands, at lowest order in k, take the
simple form of a quadratic energy dispersion, i.e. ∼k2, as in figure 1.2.

Figure 1.2. Typical bandstructure for a III–V cubic semiconductor near the Γ-point, located at =k (0, 0, 0),
that enjoys the full symmetry of the respective point group. The s orbitals give rise to the conduction band that
appears for positive energies. In contrast, the p orbitals yield the three valence hole bands. The latter consist of
the heavy (HH), light (LH) and split-off (SOH) hole bands. The HH and LH belong to the same irreducible
representation of the point group, which implies their degeneracy at the Γ-point. In addition, all the bands are
two-fold degenerate by virtue of time-reversal symmetry. Note, that, there exist materials in this family which
exhibit an inverted bandstructure, i.e. the conduction and the top-hole (HH and LH) bands exchange
positions, see figure 7.1. As we discuss in chapter 7, the phenomenon of band inversion plays an important role
in obtaining topologically-non-trivial semiconductors.
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Heavy- and light-hole bands: Luttinger Hamiltonian
Similar symmetry arguments hold for the HH and LH bands, and the allowed
Hamiltonian terms have once again the form · ˆk J( ) n2 with ∈ n . However, for

=j 3/2, the representation of Ĵ is such that the simplifications encountered in the
previous paragraph are not met here. Thus, one retrieves the so-called Luttinger
Hamiltonian [17] for a paramagnetic semiconductor, a specific form of which reads

⎜ ⎟
⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥γ γ γˆ = + ℏ − · ˆk k k JH

m
( )

1
2

5
2

( ) 2 ( ) . (1.21)1 2
2

2
2

In more detail, the total angular momentum components can be calculated using the
formulas [1]:

ˆ ∣ 〉 = ℏ + − ± ∣ ± 〉
ˆ ∣ 〉 = ℏ ∣ 〉
±J j m j j m m j m

J j m m j m

, ( 1) ( 1) , 1 and

, , ,
(1.22)

j j j j

z j j j

with ˆ = ˆ ± ˆ±J J Jix y. By considering the basis ∣ 〉 ∣ 〉 ∣ − 〉{ 3/2, 3/2 , 3/2, 1/2 , 3/2, 1/2 ,
∣ − 〉3/2, 3/2 }, the above lead to the matrix representations

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

ˆ = ℏ ˆ = ℏ

−

+ −

+ −

+

J J

0
3

2
0 0

3
2

0 1 0

0 1 0
3

2

0 0
3

2
0

,

0
3

2
i 0 0

3
2

i 0 i 0

0 i 0
3

2
i

0 0
3

2
i 0

and (1.23)x y

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

ˆ = ℏ

+

+

−

−

J

3
2

0 0 0

0
1
2

0 0

0 0
1
2

0

0 0 0
3
2

. (1.24)z

By employing Kronecker products of the Pauli matrices, τ̂ and σ̂ , accompanied by
the corresponding unit matrices, ˆτ1 and ˆσ1 , we may rewrite the above total angular
momentum operators as follows

σ τ σ τ σ σ τ σ τ σ

σ τ

ˆ ℏ = ˆ + ˆ ˆ + ˆ ˆ ˆ ℏ = ˆ + ˆ ˆ − ˆ ˆ

ˆ ℏ = ˆ + ˆ

( ) ( )J J

J

3
2

1
2

, /
3

2
1
2

and

1
2

.

(1.25)
x x x x y y y y y x x y

z z z
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Note that throughout this book we adopt this simplified notation, where Kronecker
products and unit matrices are omitted, e.g. σˆ ⊗ ˆ +τ11

2 z τ σ τˆ ⊗ ˆ ↦ ˆ + ˆσ1 1
2z z z.

Since the Luttinger Hamiltonian is made of products of the different components
of the total angular momentum, i.e. ˆ ˆJ Ja b with =a b x y z, , , , it is convenient to
introduce the Γ̂1,2,3,4,5 matrices, as employed in reference [18]

τ σ τ σ τ σ τ τΓ̂ = ˆ ˆ Γ̂ = ˆ ˆ Γ̂ = ˆ ˆ Γ̂ = ˆ Γ̂ = ˆ, , , and . (1.26)z x z y z z x y1 2 3 4 5

The Γ̂ matrices can be viewed as a vector Γ̂ in a d = 5 space, and constitute the
natural extension of the Pauli matrices σ̂ , as they satisfy δΓ̂ Γ̂ = ˆα β α β Γ{ , } 2 1, .
Furthermore, they also connect to the γ̂ matrices appearing in the Dirac equation.
With the use of Γ̂, the Hamiltonian is compactly written as

ε Γˆ = ˆ − · ˆΓk k g kH V( ) ( )1 ( ) , (1.27)

with ε = ℏγk k( ) ( )
m2
1 2 and = ℏγ

V 3
m2
2 2, while the vector g k( ) is defined as

= = =
− −

k k kg k k g k k g
k k k

( ) 2 , ( ) 2 , ( )
2

3
, (1.28)x z y z

z x y
1 2 3

2 2 2

= − =k kg k k g k k( ) and ( ) 2 . (1.29)x y x y4
2 2

5

Interestingly, the α kg ( ) correspond to the ℓ = 2 spherical harmonics that transform
according to the respective irreducible representation of SO(3). The eigenenergies of
the above Hamiltonian read

ε
γ γ

= ± ∣ ∣ =
±

ℏ± k k g k kE V
m

( ) ( ) ( )
2

2
( ) , (1.30)1 2 2

and exhibit a Kramers degeneracy due to TRS. The labels + and − correspond to the
LH and HH bands, and one observes that the energy dispersions reflect the
bandstructure depicted in figure 1.2.

1.2.2 Cubic crystalline effects and double covering groups

While in the above we neglected the crystalline effects for simplicity, in this
paragraph we restore them and understand their impact on the form of the effective
Hamiltonian derived. Here we continue to keep the inversion-symmetry intact and
discuss the consequences of its violation in the upcoming subsections. The relevant
cubic point group preserving I is the Oh, which consists of 48 elements as shown by
its character table presented in table 1.3.

One finds that the wavevector k transforms according to the T u1 irreducible
representation, while the total angular momentum Ĵ belongs to the T g1 . Note that the
index g/u (gerade/ungerade) reflects that the respective quantity is even/odd under I .
Due to this difference, no linear terms in k are allowed. Specifically, the product of
two operators transforming according to the T u1 and T g1 irreducible representations
yield operators that transform according to one of the following: A u1 , Eu, T u1
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and T u2 irreducible representations. The latter is expressed as × =T Tu g1 1

+ + +A E T Tu u u u1 1 2 . Thus, only one combination of these three-dimensional
irreducible representations can lead to a scalar or equivalently a one-dimensional
irreducible representation. This occurs via the inner product · ˆk J , that belongs to the
A u1 . However, only terms transforming according to the identity irreducible
representation (A g1 ) can appear in the Hamiltonian. We observe that

× =A A Au u g1 1 1 and consequently even powers of · ˆk J are legitimate candidates.
This is in agreement with the Luttinger Hamiltonian retrieved earlier and arises due
to the fact that the Oh point group supports three-dimensional irreducible represen-
tations, similar to the continuous rotational groups.

At this point a remark is in place. In section 1.1 we argued that the rotation operator
for a half-integer spin is π4 -periodic with respect to the rotation angle. From a
mathematical point of view, this stems from the fact that the elements of spin rotations
in this case belong to the so-called SU(2) group, being the double covering of the SO(3)
group of rotations in Euclidean d = 3 space [1]. As we remarked in section 1.1, the
wavefuctions can be labelled by the irreducible representations of the total angular
momentum, while the observables by the irreducible representations of the orbital
angular momentum. In other words, the spinors transform according to the SU(2)
group and the observables according to the SO(3) group. In a similar fashion, when
crystalline symmetry is introduced, the observables transform according to the
irreducible representations of the point group and the spinors according to the ones
of the double covering point group. To retrieve the irreducible representations of the
latter, one has to extend the domain of the rotation angles from π[0, 2 ) to π[0, 4 ). This
becomes possible by introducing an additional point-group element ′E , that corre-
sponds to a rotation of π2 and therefore satisfies ′ =E E( )2 . In this manner, if the
ensuing point group consists of Gh elements labelled by gi, the introduction of ′E will
double them, since the elements ′E gi will be added. Thereafter, the procedure for
determining the new irreducible representations and character table follows section
1.1.4. In the Hands-on section 1.3 we give instructions for obtaining the double
covering group of C v3 .

Table 1.3. Character table of the Oh point group. See reference [2].

Oh E 8C3 6C2 6C4 3C2 I 6S4 8S6 3σh 6σd

A g1 1 1 1 1 1 1 1 1 1 1

A g2 1 1 −1 −1 1 1 −1 1 1 −1
Eg 2 −1 0 0 2 2 0 −1 2 0

T g1 3 0 −1 1 −1 3 1 0 −1 −1
T g2 3 0 1 −1 −1 3 −1 0 −1 1

A u1 1 1 1 1 1 −1 −1 −1 −1 −1
A u2 1 1 −1 −1 1 −1 1 −1 −1 1
Eu 2 −1 0 0 2 −2 0 1 −2 0
T u1 3 0 −1 1 −1 −3 −1 0 1 1
T u2 3 0 1 −1 −1 −3 1 0 1 −1
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1.2.3 Bulk inversion asymmetry

In the previous paragraphs we considered an I-symmetric semiconductor. However,
this symmetry is violated in reality. Breaking inversion reduces the point-group
symmetry from Oh, to its Td subgroup, having a character table presented in table
1.4. In the former table we also added examples of linear, quadratic and cubic terms
transforming according to the irreducible representations of Td. We immediately
observe that even when inversion is broken, no bilinear coupling of the form · ˆk J is
allowed, since × = + + +T T A E T T1 2 2 1 2 does not include A1. However, a coupling
cubic in k and linear in Ĵ is now permitted. The latter is the so-called Dresselhaus
SOC [15] and has the following form

⎡⎣ ⎤⎦λˆ = − ˆ + − ˆ + − ˆ( )( ) ( )kH k k k J k k k J k k k J( ) , (1.31)D y z x x z x y y x y z z
2 2 2 2 2 2

with λ denoting a variable parametrising its strength. Due to the linear coupling to the
total angular momentum, such a Hamiltonian can be equivalently viewed as a
k-dependent magnetic field. Note that such a term appears for both the conduction
and valence bands, while it constitutes the lowest order SOC term in k, appearing for
the conduction band. Finally, we have to remark that a coupling linear in k and cubic
in Ĵ is also possible for the HH and LH bands.

1.2.4 Confinement and structural inversion asymmetry

Apart from bulk semiconductors, confined systems such as quantum wells, nano-
wires and dots are also of exceptionally high importance and relevance for designing
topological systems [13, 14]. A confinement potential rV ( )conf leads to an electric field

∇= −E r rV( ) ( )conf conf that violates inversion and translational symmetries. If we
assume for simplicity that =rV V z( ) ( )conf conf implying = ˇE r zE z( ) ( )conf , then trans-
lational invariance is only broken along the ž direction and solely the kz wavevector
does not constitute a good quantum number any more. In contrast, the perpendic-
ular wavevector =⊥k k k( , )x y and energy are conserved. In this case energy level
quantisation takes place, and the kz quantum number is replaced by a new quantum
number associated with confinement.

As an example, let us consider a three-dimensional electron gas with kinetic
energy p̂ m/(2 )2 in the presence of a confinement potential =V z( ) 0conf ∀ ∈z L[0, ]z

and = +∞V z( )conf ∪∀ ∈ −∞ +∞z L( , 0) ( , )z . The problem is identical to a particle

Table 1.4. Character table of the Td point group. See reference [2].

Td E 8C3 3C2 6S4 6σd Linear Higher order

A1 1 1 1 1 1 − + +k k kx y z
2 2 2, k k kx y z

A2 1 1 1 −1 −1 − −
E 2 −1 2 0 0 − − − −( )k k k k k2 ,z x y x y

2 2 2 2 2

T1 3 0 −1 1 −1 Ĵ − − −( )( )( ) ( )k k k k k k k k k, ,x y z y z x z x y
2 2 2 2 2 2

T2 3 0 −1 −1 1 k k k k k k k( , , )x y x z y z

Topological Insulators

1-16



in a box with the difference that the particle can still move freely in the xy plane. The
eigenstates and eigenergies of the resulting quantum well read

⎛
⎝⎜

⎞
⎠⎟ϕ π π= = ℏ + ℏ+

⊥
⊥

⊥
r k

k
L

n z
L

e E
n

mL m
( )

2
sin and ( )

( )
2

( )
2

, (1.32)( )
k n

z z

k x k y
n

z
,

i
2 2

2

2
x y

with = … +∞n 1, 2, , . A quantum nanowire (dot) is obtained when further
confining one (two) extra dimension(s).

While the above appears to be the whole story, this is fortunately not true. More
interesting phenomena occur due to confinement and the resulting structural
inversion asymmetry. The latter can be taken into account by recalling that the
non-relativistic Schrödinger equation is obtained as a limit of Dirac’s equation. As a
result of this limiting procedure an additional term appears which is proportional to

σˆ × ˆ ·p E( ) [1], with σ̂ denoting the spin Pauli matrices. When inversion symmetry is
present, =E 0, and thus this term drops out. For the quantum well case, this term is
present and leads to the so-called Rashba SOC given by the Hamiltonian

α σ σˆ = ℏ ˆ − ˆ( )kH k k( ) . (1.33)R x y y x

Similar effects arise in crystalline systems, the only difference being that the ionic
potential generally yields more complicated SOC terms. In the following paragraphs
we focus, for simplicity, on the conduction band near the Γ-point of a III–V
semiconductor with bulk inversion asymmetry for different directions of the
confinement-imposed electric field.

Confinement within the (001) plane: C v2 point-group symmetry
In this paragraph we consider the Γ-point conduction band of a zincblende III–V
semiconductor with Td point-group symmetry, whose Hamiltonian reads

⎡⎣ ⎤⎦λ τ τ τˆ = ℏ + + − ˆ + − ˆ + − ˆ( )( ) ( )k
k

H
m

E k k k k k k k k k( )
( )
2

. (1.34)c c y z x x z x y y x y z z

2
2 2 2 2 2 2

The τ̂ Pauli matrices above act on the total angular momentum Kramers doublet,
which corresponds to the Γ6 irreducible representation of the double covering Td

group1 [15]. We further assume that the system is confined, by applying an electric
field along the ž direction. Using Miller indices2 [12], the xy confinement plane is
denoted by (001). According to [19], the confinement reduces the point-group
symmetry of the system to C v2 , and invalidates kz as a good quantum number. As a

1 In contrast, the SOH (HH and LH) band(s) transform according to the Γ7 (Γ8) irreducible representation of
the double covering Td point group.
2 The Miller indices (hkl), define a plane in reciprocal space which is normal to the reciprocal (k) space vector

+ +b b bh k l1 2 3, with b1,2,3 denoting the reciprocal lattice basis vectors. Note that for a cubic system, the
reciprocal lattice vectors coincide with the direct (r-space) lattice basis vectors, generally denoted with a1,2,3.
With the Miller indices [hkl], we denote the direction + +a a ah k l1 2 3, in the direct lattice.

Topological Insulators

1-17



result of confinement, the Hamiltonian above becomes a matrix in the confinement
eigenstate basis, with matrix elements

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

δ

λ δ τ δ τ τ

ˆ =
ℏ

+

+ − ˆ + − ˆ + − ˆ

⊥
⊥

{ }( )

k
k

H
m

E

k k k k k k k k k

( )
( )

2

.

(1.35)
c nm c n n m

y n m z nm
x x z nm x n m y y x y z nm z

,

2

, ,

2
,

2 2 2
,

2 2

The matrix elements kz nm and kz nm
2 are understood as appropriate matrix elements

in the confinement eigenstate basis that replace kz and kz
2, respectively. In the extreme

limit that crystalline effects along the z axis become negligible, the former are matrix
elements of the rescaled momentum operator ˆ ℏp /z . Since here we attempt to acquire a
phenomenological understanding, it only suffices that these matrix elements are non
zero. When confinement is strong, we may restrict to the energetically lowest
confinement eigenstate, as given by the Ec n, hierarchy. In the single channel
approximation, we obtain ↦k kz nm z and ↦k kz nm z

2 2 and we may drop the
n m, indices in the Hamiltonian of equation (1.35). For a single channel =k 0z ,
since the confinement channel wavefunction is real. Thus, by restricting to up to the
quadratic order in the wavevector, we obtain the effective Hamiltonian

λ τ τˆ = ℏ + − ˆ − ˆ⊥
⊥ ( )k

k
H

m
E k k k( )

( )
2

. (1.36)c c z x x y y,lowest

2

,lowest
2

Note that this result contains only the projected bulk Hamiltonian and the
Dresselhaus effect. The effects of structural inversion asymmetry have not been
included yet and after adding them we obtain the final effective (001) Hamiltonian
up to the quadratic order

λ τ τ α τ α τˆ = ℏ + − ˆ − ˆ + ∣ ∣ ˆ − ∣ ∣ ˆ⊥
⊥ ( ) ( )k

k
H

m
E k k k k k( )

( )
2

. (1.37)c c z x x y y xy x y yx y x,lowest
(001) 2

,lowest
2

Note that the C v2 point group allows for an anisotropic Rashba SOC term.
Finally, note that in the case of an inversion-symmetric bulk semiconductor,

λ = 0, and in the presence of the confinement potential, the point-group symmetry
would be reduced to C v4 , which would only lead to a Rashba term with
α α α∣ ∣ = ∣ ∣ ≡xy yx .

Confinement within the (111) plane: C v3 point-group symmetry
If the bulk semiconductor could be cut or confined in the (111) plane, a C v3 point-
group symmetry emerges [19], whose properties were studied in section 1.1.4. In
table 1.5 we present a list of quantities that transform according to the irreducible
representations of this symmetry group.

As in the previous paragraph, one can appropriately project the Hamiltonian of
equation (1.34) in order to obtain the Dresselhaus SOC for the quantum well.
However, here we employ the predictive power given by knowing the ensuing point-
group symmetry, in combination with TRS, so to arrive at the effective Hamiltonian
which incorporates both structural and bulk inversion asymmetry types of SOC.
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Since there exist only linear terms in τˆ = ℏˆJ /2 for the given spinor representation, we
find the following Hamiltonian

α τ τ γ τˆ = ℏ + + ℏ ˆ − ˆ + − ˆ⊥
⊥ ( )( )k

k
H

m
E k k k k k( )

( )
2

3 . (1.38)c c x y y x x x y z,lowest
(111) 2

,lowest
2 2

As one observes, for the given symmetry group we obtain a Rashba-like term, as
also a cubic in k contribution. By projecting the original Dresselhaus Hamiltonian
onto the energetically-lowest confinement eigenstate, one finds that it contributes to
both terms.

Finally, note that a Hamiltonian identical to the one presented above, appears
also for the topologically protected states on the (111) surface of a bulk topological
insulator [20, 21], such as Bi Te2 3 and Bi Se2 3. Aspects of these so-called warped
topological insulators are discussed in section 7.2.3.

1.3 Hands-on: symmetry analysis of a triple quantum dot
The scope of this section is to help the interested reader become more familiar with
the symmetry classification and the construction of effective Hamiltonians. We
suggest a number of tasks in relation to the triple quantum dot system introduced in
section 1.1.4. For comparison, we provide the answers to the posed questions, and
guidance for the required intermediate steps.

To carry out the proposed tasks, it is recommended to introduce the following
multicomponent wavefunction:

ϕ ϕ ϕ ϕ ϕ ϕΦ = ↑ ↓ ↑ ↓ ↑ ↓( ), , , , , , (1.39)T
1, 1, 2, 2, 3, 3,

in order to describe the spinful electrons defined for the three quantum dots labelled
by1, 2, 3. A general 6 × 6 Hamiltonian acting on this wavefunction is expressed as a
Kronecker product λ σˆ ⊗ ˆα b (α = …1, ,8 and =b x y z, , ) of the following SU(3)
Gell-Mann [22] λ̂ matrices

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

λ λ λ λ

λ λ λ λ

ˆ = ˆ =
−

ˆ = − ˆ =

ˆ =
−

ˆ = ˆ = − ˆ =
−

0 1 0
1 0 0
0 0 0

,
0 i 0
i 0 0
0 0 0

,
1 0 0
0 1 0
0 0 0

,
0 0 1
0 0 0
1 0 0

0 0 i
0 0 0
i 0 0

,
0 0 0
0 0 1
0 1 0

,
0 0 0
0 0 i
0 i 0

,
1

3

1 0 0
0 1 0
0 0 2

(1.40)

1 2 3 4

5 6 7 8

Table 1.5. Quantities transforming according to the irreducible representations of C v3 .

Irr. Rep. E C2 3 σ3 v Linear Higher order

A1 1 1 1 − +k kx y
2 2, −( )k k k3y y x

2 2

A2 1 1 −1 Ĵz −( )k k k3x x y
2 2

E 2 −1 0 k k( , )x y , ˆ − ˆJ J( , )y x −( )k k k k2 ,x y x y
2 2 , k k k k( , )x z y z
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acting on the1, 2, 3 quantum-dot index and the usual σ̂ Pauli matrices acting on the
spin index ↑ ↓, . We additionally have the respective unit matrices ˆλ1 and ˆσ1 . For
simplicity we omit the Kronecker-product symbol ⊗, and the unit matrices ˆλ1 and ˆσ1 .
By adopting the active view of symmetry transformations for the C v3 point group,
proceed with carrying out the tasks.

Task 1: Show that the operators generating the C3 rotation and the σxz mirror
operation read

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟σ σˆ = ˆ = ˆπσ− ˆC e

0 0 1
1 0 0
0 1 0

and
1 0 0
0 0 1
0 1 0

i . (1.41)xz y3
i 3z

Explain the imaginary ‘i’ appearing in the expression for σ̂xz, by embedding the
system in d = 3 and expressing σxz as a combination of inversion and a proper
rotation. See also section 1.1.
Task 2: Show that the λ̂ …1, ,8 and σ̂x y z, , matrices are classified according to the
irreducible representations of the T×C v3 symmetry group, as presented in
table 1.6 where we have introduced

⎛
⎝⎜

⎞
⎠⎟

λ λ λ λΛ̂ ≡ Λ̂ Λ̂ Λ̂ ≔
ˆ + ˆ ˆ − ˆ ˆλ( ), ,

3
2

,
3

2
, 1 , (1.42)x y z

8 3 8 3

⎛
⎝⎜

⎞
⎠⎟λ λ λ λ λ λ λ λ λ λ λ λˆ ≡ ˆ ˆ ˆ ≔

ˆ + ˆ − ˆ ˆ − ˆ ˆ + ˆ + ˆ+ + + +( ), ,
2

3
, , , (1.43)x y z

1 4 6
1 4 1 4 6

⎛
⎝⎜

⎞
⎠⎟λ λ λ λ λ λ λ λ λ λ λ λˆ ≡ ˆ ˆ ˆ ≔

ˆ − ˆ − ˆ ˆ + ˆ ˆ − ˆ + ˆ− − − −( ), ,
2

3
, , . (1.44)x y z

2 5 7
2 5 2 5 7

Task 3: Verify that the most general T×C v3 -symmetric single-particle
Hamiltonian has the form

ε λ α λ σ λ σ βλ σˆ = − ˆ + ℏ ˆ ˆ + ˆ ˆ − ˆ ˆ
+ − − −( )H t . (1.45)dd z x x y y z z

Notice the analogy to equation (1.38).

Table 1.6. Classification of λ̂ and σ̂ matrices under T×C v3 .

Irr. Rep. E 2C3 3σv T = +1 T = −1

A1 1 1 1 Λ̂z, ˆσ1 , λ̂
+
z −

A2 1 1 −1 − σ̂z, λ̂
−
z

E 2 −1 0 Λ̂ Λ̂( ),x y , λ λˆ ˆ+ +( ),x y σ σˆ − ˆ( , )y x , λ λˆ − ˆ− −( ),y x
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Task 4: Retrieve the character table for the irreducible representations of the
double covering C v3 point group, shown in table 1.7. To carry out this task,
follow sections 1.1.4 and 1.2.2. Note that the addition of the group element ′E ,
doubles the number of elements. In fact, in the present case it additionally
doubles the number of irreducible representations. The latter doubling is not
generic though, see [4].
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