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IOP Concise Physics

A Concise Introduction to Quantum Mechanics

Mark S Swanson

Chapter 4

Wave mechanics

In 1926 Schrödinger proposed a partial differential equation, now known as the
Schrödinger equation, that governs the wave function, and formal quantum
mechanics was developed from it. Solving the Schrödinger equation and applying
the resulting wave function is often referred to as wave mechanics, and its basic
structure is the subject of this chapter.

4.1 The Schrödinger equation and its general properties
The properties required for the wave function, and therefore the equation that
governs it, have been discussed. These are the properties of linear superposition,
membership in the space of square integrable functions L2, the result (3.15) for a
massive particle wave function undergoing a Galilean transformation of the form
(1.17), the need to include potential energies, an independence of the scale chosen for
the energy, the ability to represent a large variety of spatial boundary conditions
through a complete basis set of functions, and an equation that is linear in the time
derivative. The most viable candidate for such a governing equation is a linear
partial differential equation of the Sturm–Liouville type, which typically generates
complete sets of functions.

The Schrödinger equation for the wave function can be found by examining the
properties of the basis wave functions (3.49) of the particle in a box, given at t = 0 by

πΨ = = =
ℏ

⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠x t

L
n x
L L

p x
( , 0)

1
sin

1
sin , (4.1)n

n

where n is a positive integer. Applying the de Broglie wavelength formula (2.18)
identifies the magnitude of momentum π= ℏp n L/n and the energy

π= = ℏE p m n mL/2 /2n n
2 2 2 2 2 associated with the basis wave function Ψn. The term
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associated will now be formalized by noting that the basis wave function of (4.1)
satisfies the mathematical relation

− ℏ ∂
∂

Ψ = = Ψ = = Ψ =
m x

x t
p

m
x t E x t

2
( , 0)

2
( , 0) ( , 0). (4.2)n

n
n n n

2 2

2

2

Examining (4.2) shows that the quantum mechanical energy is obtained by applying
the differential operator − ℏ ∂ ∂m x( /2 ) /2 2 2 to the basis wave function. This differential
operator can be written as p̂ m/22 , where ˆ = − ℏ ∂ ∂p i x/ . Throughout this text
operators are designated with a hat, so that p̂ is read as the operator p. Since the
differential operator p̂ m/22 gives the energy p m/2n

2 , the operator p̂ is identified as the
quantum mechanical momentum operator. In wave mechanics the canonical momen-
tum p of Newtonian physics becomes the differential operator ˆ = − ℏ ∂ ∂p i x/ , and
this momentum operator acts on the wave function. This is the first example of what
is known as the correspondence principle, which is the postulate that classical
quantities, such as energy, momentum, and angular momentum, correspond to
differential operators in wave mechanics. It is natural to question why the negative
sign is used for the momentum, since either sign works equally well in (4.2). This
question will be answered by the result (4.13) for a Galilean transformation on the
Schrödinger equation. In (4.2) the operator ˆ = ˆH p m/22 corresponds to the classical
Hamiltonian =H p m/22 with → ˆp p, so that

ˆ Ψ = = ˆ Ψ = = − ℏ ∂
∂

Ψ = = Ψ =H x t
p
m

x t
m x

x t E x t( , 0)
2

( , 0)
2

( , 0) ( , 0). (4.3)n n n n n

2 2 2

2

The result (4.3) is referred to as an eigenvalue equation. The function
Ψ ≡ Ψ =x t( , 0)n n is an eigenfunction of the differential operator corresponding to
the Hamiltonian, denoted by ˆ ˆH p( ), and the action of Ĥ on the eigenfunction yields
the associated energy eigenvalue =E p m/2n n

2 . The result (4.3) is written ˆ Ψ = ΨH En n n.
Eigenvalue equations such as (4.3) are the predominant mathematical statement of
formal quantum mechanics. In the Copenhagen interpretation of quantum mechan-
ics, the eigenvalues provide the possible experimental values of the observable
associated with the operator in the eigenvalue equation.

The generalization of momentum to higher spatial dimensions uses the gradient,

∇ˆ = − ℏp i . (4.4)

Using (4.4), the complex function ψ = · ℏx p xi( ) exp( / )p and its complex conjugate
satisfy

ψ ψ ψ ψ ψ ψ∇ ∇ˆ = − ℏ = ˆ * = − ℏ * = − *p x x p x p x x p xi i( ) ( ) ( ), ( ) ( ) ( ). (4.5)p p p p p p

The result (4.5) demonstrates that ψ x( )p and *ψ x( )p are eigenfunctions of the
momentum operator, ∇ˆ = − ℏp i , corresponding respectively to the eigenvalues p
and −p. Insight into these functions is found by looking at the electromagnetic wave
(1.40) in terms of its photon content. Using the de Broglie relation, = ℏk p/ , and
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the Einstein relation, ω = = ℏ = ℏck cp E/ /p , gives = · − ℏp x E tA A cos(( )/ )p0 .
This general form for a wave can be applied to the momentum eigenfunctions of
(4.5) to create a time-dependent momentum–energy wave function for the
Newtonian particle. Normalizing (4.5) with the volume V of space, the result is a
form identical to the generic wave function of (3.19),

Ψ = · − ℏx t
V

e( , )
1

, (4.6)( )p x
p

i E tp

where =E p m/2p
2 . In addition to being an eigenfunction of the momentum operator

(4.4), function (4.6) also satisfies the equation

ℏ ∂
∂

Ψ = Ψx xi
t

t E t( , ) ( , ), (4.7)p p p

so that Ψp is also an eigenfunction of the differential operator ℏ ∂ ∂i t/ with the
eigenvalue Ep. Although (4.7) was motivated by the photon related electromagnetic
wave, this general recipe provides an equation that is linear in the time derivative
and will now be incorporated into the equation for free Newtonian particles,
resulting in the free particle version of the Schrödinger equation.

In order to extend the result (4.7) to the case of a free massive Newtonian particle,
the spatial equation (4.2) must allow the eigenvalue Ep to be identified as the energy
of a free massive Newtonian particle, =E p m/2p

2 . If this identification holds, it then
results in a function that satisfies a linear partial differential equation, explicitly
given by

ˆ ˆ − ℏ ∂
∂

Ψ = − ℏ ∇ − ℏ ∂
∂

Ψ =⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟p x xH i

t
t

m
i

t
t( ) ( , )

2
( , ) 0. (4.8)p p

2
2

Using (4.1) shows that equation (4.8) also holds for a particle in a box if the time-
dependent wave function takes the form Ψ = Ψ− ℏx t e x( , ) ( )iE t

n
/p . The final require-

ment is to show that (4.8) is consistent with Galilean transformations. Using
′ = −p p vm , ′ = −x x vt, ′ =t t, and = ′ = − =′ p vE p m m m p m/2 ( ) /2 /2p

2 2 2

− · +v p mv1
2

2 in (4.6) gives

Ψ ′ ′ = ≡ Ψα
′

· − ℏ · − ℏ −( )x xt e
V

e e t( , )
1

( , ). (4.9)( )
p

v x p x v x
p

i m mv t i E t i t
1
2 ( , , )p

2

The phase angle α = · − ℏv xm mv t( )/1
2

2 that results from the transformation
depends on x, t, and the relative velocity v, but not p. Therefore, result (4.9) is the
general behavior (3.15) under a Galilean transformation that is required to make the
probability density a scalar function. This phase will be the same even for linear
combinations of Ψp with different values of p. This allows mixed momentum states,
which are critical to explaining quantum phenomena, to transform according to
(3.15).
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In addition, the differential equation (4.8) must also be form invariant under a
Galilean transformation. This is demonstrated by combining the chain rule for
partial derivatives with (1.17), which results in

∑∂
∂ ′

=
∂
∂ ′

∂
∂

+ ∂
∂ ′

∂
∂

= ∂
∂=x

x

x x
t

x t x
, (4.10)
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i j i i
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∂

+ ∂
∂
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v
t

x

t x
t
t t

v
x t t

. (4.11)
j j1

3

1

3
j

j
j

j

Using (4.9), (4.10), and (4.11) in (4.8) yields, after some rearrangement,

∇ ∇

∇
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v x
p

i t

2
2

2
2

2 2

( , , )

The appearance of the combination ∇− ℏ + vi m( ) in the transformed equation (4.12)
shows that Galilean invariance requires identifying the momentum operator with the
negative sign, ∇ˆ = − ℏp i . This follows from the phase angle α in (4.9), which gives
two results,

∇− ℏ + = ℏ ∂
∂

+ =α α− −⎛
⎝⎜

⎞
⎠⎟vi m e i

t
mv e( ) 0,

1
2

0. (4.13)v x v xi t i t( , , ) 2 ( , , )

These results show that the transformed momentum ∇ˆ ′ = − ℏ ′p i and wave function
give

∇ ∇ˆ ′Ψ ′ ′ = − ℏ ′Ψ ′ ′ = − ℏ Ψ = − Ψ ′ ′α
′ ′

−
′( )p x x x p v xt i t i e t m t( , ) ( , ) ( , ) ( ) ( , ), (4.14)p p p p

i

which reproduces the Galilean transformation. Similarly, applying ℏ ∂ ∂ ′i t/ to
Ψ ′ ′′ x t( , )p yields the the eigenvalue −p vm m( ) /22 . In addition, using (4.13) in
(4.12) gives

∇ ∇− ℏ ′ − ℏ ∂
∂ ′

Ψ ′ ′ = − ℏ − ℏ ∂
∂

Ψ =α−
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟x x

m
i

t
t e
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i

t
t

2
( , )

2
( , ) 0, (4.15)p

v x
p

i t
2

2 ( , , )
2

2


showing that (4.8) takes the same form for all Galilean observers, regardless of
relative motion. Because both the solution and the equation it obeys satisfy the
requirements for a quantum mechanical wave function, (4.8) is the correct quantum
mechanical equation for the case of a free Newtonian particle. The linearity in the
time derivative is critical to the Galilean invariance of (4.15). In that regard, the
d’Alembertian, □ = −∇ + ∂ ∂ ct/ ( )2 2 2, which governs light waves is not invariant
under Galilean transformations, and therefore is not the correct differential operator
for the wave function of a Newtonian particle.
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The final step is to generalize (4.8) to the case that a potential energy xU t( , ) is
present. This is done by using the associated classical Hamiltonian, p xH t( , , ), defined
by (1.9) so that it includes the potential. The replacement ∇→ ˆ − ℏ xH H i t( , , ) turns
the classical Hamiltonian into a differential operator. The generalization of (4.8) is
then known as the Schrödinger equation, a linear partial differential equation given by

∇ˆ ˆ Ψ = ˆ − ℏ Ψ = ℏ ∂
∂

Ψp x x x x xH t t H i t t i
t

t( , , ) ( , ) ( , , ) ( , ) ( , ). (4.16)

Combining the same transformation (4.9) for the wave function with
→ −x x vU t U t t( , ) ( , ) leaves (4.16) form invariant under a Galilean transforma-

tion. Although there is no a priori justification for using the same potential present in
the classical system, Ehrenfest’s theorem, presented later in this chapter, shows that
a form of Hamilton’s equations (1.13) follow from (4.16). The Hamiltonian operator
of (4.16) can therefore be viewed as an example of the correspondence principle,
which derives all the operators of quantum mechanics from their classical ante-
cedents. The best justification for (4.16) is its great success explaining the myriad of
quantum phenomena to which it has been applied.

Investigating the general properties of (4.16) begins by noting that the complex
conjugate of (4.16) yields a second equation, given by

ˆ * ˆ Ψ* = − ℏ ∂
∂

Ψ*p x x xH t t i
t

t( , , ) ( , ) ( , ), (4.17)

where the process of complex conjugation for Ĥ uses ∇ˆ* = ℏp i . Multiplying (4.16)
by Ψ* and (4.17) by Ψ and subtracting the latter from the former yields

Ψ* ˆ Ψ − ˆ *Ψ* Ψ = ℏ ∂
∂

Ψ* Ψ + ℏΨ* ∂
∂

Ψ = ℏ ∂
∂

Ψ* Ψ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠H H i

t
i

t
i

t
( ) ( ) ( ). (4.18)

It is often the case that the classical Hamiltonian has the form = + xH p m U t/2 ( , )2 ,
whereU is the potential energy. For that case, the quantummechanical Hamiltonian is

ˆ = ˆ + = − ℏ ∇ +x xH
p
m

U t
m

U t
2

( , )
2

( , ). (4.19)
2 2

2

If * =x xU t U t( , ) ( , ), then the potential energy terms on the left-hand side of
(4.18) cancel. The remaining Laplacian terms in (4.18) can be rewritten using the
identity

∇ ∇ ∇∇ Ψ* Ψ − Ψ* ∇ Ψ = · Ψ*Ψ − Ψ* Ψ( ) ( ) ( ), (4.20)2 2

so that, for the case of (4.19) and *=U U , (4.18) can be written

∇ ∇ ∇ ∇− · ≡ · ℏ Ψ* Ψ − Ψ* Ψ = ∂
∂

Ψ*Ψ = ∂
∂

x xt
im t t

tJ( , )
2

( ) ( ) ( , ). (4.21)P

Result (4.21), ∇ · + ∂ ∂ =tJ / 0P , is identical in form to the conservation law for
electric charge given by (1.30). Since = Ψ* Ψx x xt t t( , ) ( , ) ( , )P is the probability
density and plays the role of the electric charge density, result (4.21) represents the
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conservation of probability. In three spatial dimensions the vector J, given
explicitly by

∇ ∇= ℏ Ψ* Ψ − Ψ* Ψx x x x xt i
m

t t t tJ( , )
2

( ( , ) ( , ) ( , ) ( , )), (4.22)

has the SI units of 1/(m s)2 , and can therefore be identified as the current density for
probability. The result (4.21) satisfies the same relation as (1.31), so that any
probability lost or gained in a volume over time is matched by the flow of probability
out of or into that volume through its surfaces.

The form of the spatial probability current (4.22) places a continuity requirement
on Ψ and ∇Ψ. If J is discontinuous at a point, then that point will serve as a source or
sink of probability. This is seen by considering an infinitesimal closed surface Sd
around the point and noting that · ≠SJ d 0 if J is discontinuous at that point.
Therefore, in order to avoid creating or destroying probability, J must be spatially
continuous, and this generally requires that both Ψ and ∇Ψ must be continuous. If
one is discontinuous at a point, then the other must vanish at that point in such a
way that J remains continuous. The conservation of probability for the very general
form (4.19) is critical to interpreting the results of solving the Schrödinger equation.
An example for barrier penetration is given in the next chapter.

As an example of probability current, the momentum eigenfunction (4.6) for a
particle in a volume V yields = p mVJ /( ) and satisfies ∇ · =J 0. This is consistent
with the right-hand side of (4.21), which vanishes since = V1/P is a constant. The
flow of probability through a surface associated with the momentum eigenfunction
is therefore in the direction of the classical velocity =v p m/ and is equally into and
out of any volume, including the total volume V of the system. The total volume can
be chosen as a cube of side L, so that =V L3. The flux of probability through a
surface S of the cube with area L2 is then given by · = · ˆp n mLJ S / , where n̂ is
normal to the surface. This should be zero if the particle remains in the volume, and
this is true only if → ∞L . As a result, (4.6) correctly describes the situation of a
particle contained in a volume V only if the volume is arbitrarily large. This is
discussed in the section on the Heisenberg uncertainty principle.

In addition to the potential energy of (4.19) being real, it is often the case that U
has no explicit time-dependence. For such a case, the wave function can undergo
separation of variables, so that it is written ψΨ =x xt T t( , ) ( ) ( ). Inserting this in the
Schrödinger equation (4.16) and dividing by ψΨ =x xt T t( , ) ( ) ( ) yields

ψ
ψ− ℏ ∇ + = ℏ ∂

∂
⎛
⎝⎜

⎞
⎠⎟x

x x
m

U
i

T t t
T t

1
( ) 2

( ) ( )
( )

( ). (4.23)
2

2

For such a case the left-hand side is solely a function of x, while the right-hand side is
solely a function of t. Since x and t are independent of each other, both sides of
(4.16) must equal the same constant, designated E. This constant has the same units
as ℏ/t, which is energy. The right-hand side is then very simple to solve, and the
function T E t( , ) associated with the choice of E is given by
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= −
ℏ

⎜ ⎟⎛
⎝

⎞
⎠T E t

i
Et( , ) exp , (4.24)

where (4.24) has been normalized so that * =T E t T E t( , ) ( , ) 1. For such a case the
wave function has the required property that the energy E can be modified by an
arbitrary amount, δ→ +E E E , since doing so simply creates an overall phase
factor,

δ δ δ+ = −
ℏ

−
ℏ

= −
ℏ

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠T E E t

i
Et

i
Et

i
Et T E t( , ) exp exp exp ( , ). (4.25)

As was the case with the Galilean transformation of (4.9), an overall phase factor
has no effect on the quantum mechanical probability density. For a separable wave
function the resulting quantum mechanics, like Newtonian mechanics, does not
depend on the zero point chosen for the energy. In addition, a separable wave
function has the property that the probability density = Ψ* Ψx xt t( , ) ( , )P

ψ ψ= * x x( ) ( ) is time-independent since * =T E t T E t( , ) ( , ) 1. For the case that
(4.21) holds, the spatial probability current J of (4.22) must satisfy
∇ · = −∂ ∂ =tJ / 0P , and this requires continuity for xJ( ).

For the case of a time-independent potential, the Schrödinger equation (4.23)
reduces to an eigenvalue equation for E and the associated spatial wave function
ψ x( )E ,

ψ ψ ψˆ ˆ = − ℏ ∇ + =
⎛
⎝⎜

⎞
⎠⎟p x x x x xH

m
U E( , ) ( )

2
( ) ( ) ( ). (4.26)E E E

2
2

If solvable, the Hamiltonian eigenvalue equation (4.26) generates a set of constant
energy eigenvalues associated with a set of time-independent eigenfunctions, known
as stationary states. In the Copenhagen interpretation, solving (4.26) with appro-
priate boundary conditions determines all the possible observable energies for the
quantum mechanical system while simultaneously determining the stationary state
ψ x( )E associated with each energy eigenvalue. It is important to determine the
conditions for which the energy eigenvalues are real. This is because an imaginary
part for E, designated ϵ, so that ϵ= ±E E iR , will cause the function (4.24) to
exhibit exponential damping or growth over time since − ℏ =iEtexp( / )

ϵ− ℏ ± ℏiE t texp( / )exp( / )R . This would correspond to an unstable solution since the
wave function would not remain normalized and the probabilistic interpretation of
the wave function would then be lost. The starting point to examine this possibility is
the complex conjugate of (4.26), which yields a second eigenvalue equation
involving E*,

ψ ψˆ * * = * *x xH E( ) ( ). (4.27)
E E

Multiplying (4.26) by ψ* x( ) and (4.27) by ψ x( ), subtracting the latter from the
former, and then integrating over the volume of space for which the system is defined
yields
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∫ ∫* *ψ ψ ψ ψ ψ ψˆ − ˆ * = − * * = − *( )( ) x xV H H E E V E Ed ( ) ( ) d ( ) ( ) , (4.28)
V

E E E E
V

since normalization requires that the integral of ψ∣ ∣x( ) 2 is one. For the case that the
Hamiltonian satisfies the condition

∫ ∫ψ ψ ψ ψ* ˆ = ˆ * *( )V H V Hd ( ) d , (4.29)
V

E E
V

E E

the left-hand side of (4.28) will vanish and therefore − * =E E 0, insuring that the
energy eigenvalues are real.

A Hamiltonian with the form (4.19) will now be shown to satisfy (4.29) as long as
= *x xU U( ) ( ). For such a case, the terms involving the potential are the same on both

sides of (4.29) and therefore cancel. Suppressing the factor of ℏ m/22 and using the
identity (4.20), the Laplacian term on the left-hand side of (4.29) can be rewritten as

∫ ∫ ∫ψ ψ ψ ψ ψ ψ ψ ψ∇ ∇ ∇* ∇ = · * − * + ∇ *( ) ( )V V Vd ( ) d d . (4.30)
V

E E
V

E E E E
V

E E
2 2

Comparing the first integral on the right-hand side of (4.30) with the spatial
probability current (4.22) shows that the argument is proportional to ∇ · J. It was
shown earlier that ∇ · =J 0 for a wave function that is separable, as in (4.23).
Therefore, only the second integral on the right-hand side of (4.30) remains, which is
identical to the Laplacian term on the right-hand side of (4.29). As a result,
Hamiltonians of the general form (4.26) with a real valued potential xU ( ) possess
real energy eigenvalues. In the next section, a general criterion for real eigenvalues,
called Hermiticity, will be established.

A Hamiltonian of the form (4.19) also has the the property that the spatial
eigenfunctions associated with different energy eigenvalues are orthogonal. If ψE and

ψ ′E are two different energy eigenfunctions associated with a Hamiltonian Ĥ
satisfying, it follows that both E and ′E are real. The eigenfunctions then satisfy

∫ ∫ψ ψ ψ ψ* ˆ = *
′ ′V H E Vd ( ) d (4.31)

V
E E

V
E E

∫ ∫ψ ψ ψ ψˆ * * = ′ *
′ ′( )V H E Vd d . (4.32)

V
E E

V
E E

Since the Hamiltonian satisfies (4.29), the left-hand sides of (4.31) and (4.32) are
equal. Subtracting (4.32) from (4.31) therefore gives

∫ ψ ψ− ′ * =′E E V( ) d 0. (4.33)
V

E E

Comparing this result to (3.23) shows that the integral appearing in (4.33) is the inner
product of the two eigenfunctions. This means that spatial eigenfunctions associated
with different energy eigenvalues are orthogonal, i.e. the integral giving their inner
product vanishes since − ′ ≠E E 0. The Hamiltonian may also have orthogonal
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eigenfunctions associated with the same eigenvalue. Such an energy eigenvalue is
referred to as degenerate.

In general, the Hamiltonians considered in wave mechanics give rise to a complete
set of orthonormal eigenfunctions. This means that the set of all Hamiltonian
eigenfunctionsΨ x t( , )j , where j is some set of quantum numbers, are both orthonormal,

∫ δΨ* Ψ =x xx t td ( , ) ( , ) , (4.34)
V

n
j k jk

and complete,

∑ δΨ* Ψ = −y x y xt t( , ) ( , ) ( ), (4.35)
j

j j
n( )

where n is the spatial dimension of the volume V system under consideration and the
sum in (4.35) is over all possible quantum numbers. Such a set of functions typically
forms a complete basis for the space of square integrable functions, referred to as L2,
allowing the preparation of the initial wave function so that it can represent an
arbitrary experimental situation. The mathematical statement of completeness (4.35)
for the eigenfunctions is identical to property (3.40) for the Fourier series. The Dirac
delta appearing in (4.35) means that an arbitrary initial preparation Ψ x( , 0) for the
wave function can be projected onto this complete set,

∫
∫∑ ∑

δΨ = Ψ −

= Ψ Ψ Ψ* = Ψ

x y y x

x y y x

y

y a

( , 0) d ( , 0) ( )

( , 0) d ( , 0) ( , 0) ( , 0),
(4.36)

j j

n n

j
n

j j j

( )

where the the coefficient aj is the result of the integral in (4.36). Therefore, for the
case that the eigenfunctions form a basis of L2, an arbitrary preparation of the wave
function is possible. The proof of completeness requires the specific details of the
eigenfunctions under consideration. However, in all the cases analyzed in this
monograph the eigenfunctions will be a complete basis for the function space L2.

The Schrödinger equation also has the extremely important property that it is linear
in the time derivative. This means that the time evolution of the wave function is
determinedonce its initial form is givenor, in theCopenhagen interpretation, prepared.
In other words, the time evolution of the wave function itself is deterministic and does
not need additional initial or final information to be specified, unlike the light wave
equation (1.39). Assuming the wave function is not singular at the time t and that the
Hamiltonian satisfies ∂ ˆ ∂ =H t/ 0, the Schrödinger equation (4.16) allows the Taylor
series expansion of the wave function around the time t to be written

∑Ψ + =
!

∂
∂

Ψ = Ψ ≡ ˆ Ψ
=

∞
− ˆ ˆ ℏx x x xt T

T
n t

t e t T t( , ) ( , ) ( , ) U( ) ( , ), (4.37)
n 0

p x
n n

n
iH T( , )

where the time-independence of Ĥ , so that ˆ ∂ Ψ ∂ = ∂ ˆ Ψ ∂ = ℏ∂ Ψ ∂+ +H t H t i t/ ( )/ /n n n n n n1 1,
allows the second step. The operator ˆ = − ˆ ℏT iH TU( ) exp( / ) appearing in (4.37) has
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the property that ˆ * = ˆ −
T TU ( ) U ( )

1 as long as ˆ *= ˆH H . Examining (4.37) shows that
ˆ tU( ) is responsible for the time evolution of the wave function, Ψ = ˆ Ψx xt t( , ) U( ) ( , 0),
and for that reason it is referred to as the evolution operator. This result is particularly
evident if Ψ =x t( , 0)E is an eigenfunction of Ĥ with the eigenvalue E, since (4.24)
gives

ˆ Ψ = Ψ = Ψ = Ψ− ˆ ˆ ℏ − ℏx x x xt e e tU( ) ( , 0) ( , 0) ( , 0) ( , ). (4.38)p x
E

iH t
E

iEt
E E

( , )

The Schrödinger equation therefore embodies the classical concept that the
Hamiltonian is responsible for the time evolution of the physical system, an idea
first encountered with the classical Poisson bracket formulation (1.15) involving the
Hamiltonian. The action of the evolution operator ˆ tU( ) preserves wave function
normalization as long as the Hamiltonian satisfies (4.29), since ˆ Ψ *= ˆ *Ψ*(U ) U gives

∫ ∫ ∫ˆ *Ψ* ˆ Ψ = Ψ* ˆ * ˆ Ψ = Ψ*ΨV V Vd (U )(U ) d U (U ) d , (4.39)
V V V

where the second step follows from the assumption that the Hamiltonian satisfies
(4.29). To make this step clear, the power series representation of Û appearing in
(4.37) has terms of the form ˆ ℏiHT( / )n appearing in it. If Ĥ satisfies (4.29), these
terms have the property

∫ ∫ˆ * ℏ Ψ* ˆ Ψ = Ψ* ˆ ℏ ˆ ΨV iH T V iHTd (( ) )U d (( ) U ), (4.40)
V

n

V

n

so that the powers of i do not change sign. An operator that obeys ˆ * ˆ =U U 1 is
referred to as a unitary operator.

4.2 Observables and the wave function
As stressed earlier, in the Copenhagen interpretation of quantum mechanics the
wave function encapsulates all the measurable aspects of a physical system. A
physical quantity that can be measured or observed is referred to as an observable,
and is given the general expression ˆ p̂ x tO( , , ). In wave mechanics observables are
assumed to obey the correspondence principle, where a quantum mechanical
observable is given by an operator obtained from the classical observable

p x tO( , , ) by the replacement ∇ˆ = − ℏp i , while x and t remain unchanged. This is
a basic assumption of quantum mechanics and was used to obtain the Schrödinger
equation (4.16) from the classical Hamiltonian. For the moment, the case of an
explicitly time-dependent observable will be ignored.

The observables of quantum mechanics often involve combinations of momen-
tum and position. The operator form for these two basic observables has a product
that satisfies

δ δˆ Ψ = − ℏ ∂
∂

Ψ = − ℏ Ψ − ℏ ∂
∂

Ψ = − ℏ Ψ + ˆ Ψ( )p x i
x

x i i x
x

i x p , (4.41)k j
k

j jk j
k

jk j k
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which gives an important property of these two observables called their commutator,

δˆ − ˆ ≡ ˆ = ℏ⎡⎣ ⎤⎦x p p x x p i, . (4.42)j k k j j k jk

In general, two observables Â and B̂ may not commute, so that ˆ ˆ[A, B]
= ˆ ˆ − ˆ ˆ ≠AB BA 0.

It is possible for the wave function to be prepared at t = 0 as an eigenfunction of a
chosen observable Ô. Examples are the separable wave function (4.26) associated
with the Hamiltonian operator Ĥ or the eigenfunction (4.6) associated with the
momentum operator p̂. For such a case

λˆ ˆ Ψ = = Ψ =λ λp x x xt tO( , ) ( , 0) ( , 0), (4.43)

where λ is the eigenvalue of Ô that is associated with the normalized eigenfunction
Ψλ. It is critical that the eigenvalues of an observable are real, and it is therefore
important to establish a general criterion for this to be the case. To that end, the
Hermitian adjoint of the operator Ô is designated as ˆ †

O and is defined by the relation

∫ ∫Ψ* ˆ Ψ = ˆ *Ψ* Ψ† ( )( )V Vd O d O , (4.44)
V V

1 2 1 2

where ˆ *O is the complex conjugate of the operator Ô. As mentioned, (4.44) defines
the Hermitian adjoint of Ô. If the operator Ô satisfies ˆ = ˆ†

O O, it is said to be self-
adjoint or, more commonly, Hermitian. This was the case for the Hamiltonian
(4.19), since (4.29) is simply the requirement that ˆ = ˆ†

H H . The momentum
∇ˆ = − ℏp i is also Hermitian, since using ∇ˆ*= ℏp i and integrating by parts in

(4.44), assuming the endpoints do not contribute, shows that ˆ = ˆ†p p. If the
observable Ô is Hermitian it will have real eigenvalues, which follows from (4.43)
and using a normalized eigenfunction Ψλ,

∫ ∫ ∫
∫ ∫ ∫

λ λ

λ λ

* = Ψ* Ψ *= Ψ* ˆ Ψ *= ˆ * Ψ* Ψ

= Ψ* ˆ Ψ = Ψ* ˆ Ψ = Ψ* Ψ =

λ λ λ λ λ λ

λ λ λ λ λ λ
†

⎡⎣ ⎤⎦( ) ( )V V V

V V V

d d [O ] d O

d [O ] d [O ] d .
(4.45)V V V

V V V

In addition, generalizing result (4.33) for a Hermitian Hamiltonian, the eigenfunc-
tions of a Hermitian operator define an orthonormal set since

∫ ∫ ∫ ∫λ λ′ Ψ*Ψ = ˆ *Ψ* Ψ = Ψ* ˆ Ψ = Ψ*Ψλ λ λ λ λ λ λ λ′ ′ ′ ′( )V V V Vd d O d (O ) d . (4.46)
V V V V

For the case that λ λ′ − ≠ 0 the integral vanishes and the eigenfunctions are
orthogonal.

However, there is a hidden assumption in the proofs (4.45) and (4.46), which is
that Ψλ x t( , ) remains an eigenfunction of Ô if it is an eigenfunction at t = 0. This
holds only if the observable Ô commutes with the Hamiltonian, so that ˆ ˆ =H[O, ] 0.
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This follows from (4.37), which shows that ˆ = − ˆ ℏt iHtU( ) exp( / ) generates the time
evolution of Ψλ x( , 0). Combining this with the definition of the commutator gives

λ

ˆ Ψ = ˆ Ψ = ˆ Ψ + ˆ Ψ

= ˆ Ψ + Ψ

λ λ λ λ

λ λ

− ˆ ℏ − ˆ ℏ − ˆ ℏ

− ˆ ℏ

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

x x x x

x x

t e e e

e t

O ( , ) O ( , 0) O, ( , 0) O ( , 0)

O, ( , 0) ( , ).
(4.47)

iHt iHt iHt

iHt

Result (4.47) shows that an eigenfunction of a Hermitian observable Ô at t = 0 will
be an eigenfunction at a later time only if the observable commutes with the
Hamiltonian. This follows from the expansion of the evolution operator in powers
of Ĥ . The related concept of a complete set of commuting observables will be
discussed later in this section. Furthermore, the eigenfunctions of a particular
observable may not be complete, since the eigenfunctions may only span a subspace
of the full Hilbert space. An example is the Hermitian operator p̂z, which has the
eigenfunctions ℏeip z/z . These eigenfunctions are complete only for arbitrary functions
of z. If p̂x and p̂y are included, then the eigenfunctions are complete for an arbitrary
function =xf f x y z( ) ( , , ).

If the wave function at t = 0 coincides with Ψ =λ x t( , 0), the Copenhagen
interpretation states that measuring the observable Ô experimentally at t = 0 will
yield λ. Although eigenvalues and eigenfunctions are paired in quantum mechanics,
it is important to remember that the wave function Ψ is not necessarily an
eigenfunction of any observable since it can always be prepared in the simple mixed
state Ψ = Ψ + Ψλ λ′a b . This is not an eigenfunction of Ô, since λ λˆ Ψ = Ψ + ′Ψλ λ′a bO ,
which, in general, cannot be written λ″Ψ. This mixed state can be normalized at t = 0
by using the orthonormality of the eigenfunctions, which yields ∣ ∣ + ∣ ∣ =a b 12 2 in
order for condition (3.1) to be satisfied.

The wave function encapsulates the probabilities for all possible outcomes of
experimentally measuring Ô. This can be demonstrated by considering an experi-
ment that prepares the particle at t = 0 with one of two possible values for the
observable Ô. The probability that it is prepared with the value λ is Pλ and the
probability that it is prepared with the value λ′ is λ′P . Since these are the only two
possible values, these probabilities must satisfy + =λ λ′P P 1. The statistical average
for the measured values of the observable Ô immediately after preparation will be
given by λ λ〈 ˆ 〉 = + ′λ λ′P PO if the same preparation and measurement is repeated many
times. As in the statistical mechanics expression (2.3), this is referred to as the
expectation value of Ô. This same expectation value is obtained from the wave
function Ψ = Ψ + Ψλ λ′a b by evaluating the t = 0 expression

∫ ∫ λ λ

λ λ

〈 ˆ 〉 = Ψ* ˆ Ψ = *Ψ* + *Ψ* Ψ + ′Ψ

= + ′

λ λ λ λ′ ′( )V V a b a b

a b

O d O d ( )

,
(4.48)V V

2 2

where the orthonormality of the two eigenfunctions Ψλ and Ψλ′ was used. As
discussed in chapter 3, the two probabilities are immediately identified as = ∣ ∣λP a 2

and = ∣ ∣λ′P b 2, the modulus squared of the coefficients of the respective
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eigenfunctions in the mixed state. Wave function normalization requires
∣ ∣ + ∣ ∣ =a b 12 2 , so this gives the required relation + =λ λ′P P 1. This interpretation
generalizes to an arbitrary mixed state. At any later time, the expectation value of Ô
is still given by (4.48) with the understanding that Ψ = ˆ Ψ =λ λx xt t( , ) U( ) ( , 0)

Ψλ
− ˆ ℏ xe ( , 0)iHt/ is used in (4.48), yielding

∫〈 ˆ 〉 = Ψ* ˆ ˆ Ψˆ ℏ − ˆ ℏx p x xt V e t eO ( ) d ( ( , 0))O( , , )( ( , 0)). (4.49)
V

iHt iHt

Result (4.39) shows that the functions Ψλ remain orthonormal as long as Ĥ is
Hermitian. However, unless Ĥ and Ô commute, the expectation value (4.49) will be
time-dependent.

These techniques can be demonstrated for the momentum observable, ∇ˆ = − ℏp i ,
which has the eigenfunctions Ψ = = · ℏx t e V( , 0) /p

p xi / . These eigenfunctions corre-
spond to themomentum eigenvalue ˆ Ψ = = Ψ =p x p xt t( , 0) ( , 0)p p . For the case that

the particle is free, ˆ = p̂H m/22 , these eigenfunctions also correspond to the energy
eigenvalue ˆ Ψ = = Ψ = = Ψ =x p x xH t m t E t( , 0) ( /2 ) ( , 0) ( , 0)p p pp

2 . However, if the
Hamiltonian is not free, then these momentum eigenfunctions are not eigenfunctions
of Ĥ . Even if the particle is free, it may be prepared at t = 0 in a mixed state
corresponding to a continuum of momentum states. The technique used to derive the
continuumversion of theDirac delta (3.41) can be adapted in the limit → ∞V to show
that such a wave function can be written at t = 0 in the following form,

∫∑
π

Ψ = →
ℏ

Ψ̃
→∞

· ℏ · ℏx p
V

a e
p

e( , 0) lim
1 d

(2 )
( ) , (4.50)

n
V

n
p x p xi i

3

3
n

where π= ℏp n L/n is the three-dimensional version of π= ℏp n L/n , so that
=n n n n( , , )x y z is a vector with arbitrary positive and negative integer components.

It is important to note that (4.50) is not an eigenfunction of momentum due to the
linear superposition of different momentum eigenfunctions.

Because (4.50) is a linear superposition of momentum eigenfunctions, in physics it
is often referred to as a wave packet. Result (4.50) is identical to the Fourier
transform (3.42) of a function, and this is consistent with the Copenhagen
interpretation that the particle may be prepared in an arbitrary state as a super-
position of momentum states. Using the n-dimensional extension of the Dirac delta
(3.45) allows (4.50) to be inverted,

∫ ∫ ∫
∫

π

δ

Ψ =
ℏ

Ψ̃

= Ψ̃ − = Ψ̃

− · ℏ − · ℏx k

k k p p

x e k
x

e

k

d ( , 0) d
d

(2 )
( )

d ( ) ( ) ( ).
(4.51)

p x k p x

V

n i n

V

n

n
i

n n

( )

( )

Using the units of Ψ x( , 0), pdn , and ℏn shows that Ψ̃ p( ) has the same units as V ,
where V is the volume element in n spatial dimensions. This is consistent with (3.44),
which shows that Ψ̃ =p V a( ) n, where an is dimensionless.
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In order to understand Ψ̃ p( ), it is noted that wave function normalization requires

∫ ∫ ∫

∫

∫

π π

π
δ

π

Ψ =
ℏ ℏ

Ψ̃* Ψ̃

=
ℏ

Ψ̃* Ψ̃ −

=
ℏ

Ψ̃ =

− · ℏx k p

k p k p

p

x
p k

xe

p
k

p

d ( , 0)
d

(2 )
d

(2 )
( ) ( ) d

d
(2 )

d ( ) ( ) ( )

d
(2 )

( ) 1.

(4.52)

p k x

V

n
n

n

n

n V

n i

n

n
n n

n

n

2 ( )

( )

2

The final integral in (4.52) is the continuum limit of the sum over the coefficients
(3.48) that resulted from normalizing an arbitrary wave function for a particle in a
box. For the case of a mixed state in (4.48), the modulus squared of the coefficients
in the superposition was interpreted as the probability of that eigenvalue being
present in the prepared state. Using the same quantum mechanical interpretation for
the Fourier transform of the wave function, it follows from the wave packet (4.50)
and result (4.52) that the quantity

π
= Ψ̃

ℏ
p

p
( )

( )
(2 )

(4.53)
n

2

P

can be interpreted as the probability density in momentum space at t = 0. In other
words, ppd ( )n P is the infinitesimal probability for finding the particle in the
infinitesimal momentum volume pdn located at the momentum p at the time t = 0,
just as ∣Ψ ∣xxd ( , 0)n 2 is the probability of finding the particle in the infinitesimal
spatial volume xdn located at the position x at the time t = 0. In that regard, using the
units of ℏ and Ψ̃ p( ) shows that p( )P does indeed have the units of inverse momentum
to the n power. Therefore, the Copenhagen interpretation of (4.50) is that it
represents a superposition of momentum states. If the coefficient Ψ̃ p( ) vanishes for
some p, then the initial wave function has no component corresponding to p. For
such a case, (4.53) gives zero probability for observing the particle with that
momentum at t = 0.

If ∂ ∂ =H t/ 0 the initial wave function (4.50) evolves to Ψ = Ψ− ˆ ℏx xt e( , ) ( , 0)iHt/ at
the time t. The result depends on the specific form of the Hamiltonian Ĥ . In the case
that the particle is free, so that ˆ = p̂H m/22 , the momentum eigenfunctions are also
eigenfunctions of Ĥ with the eigenvalue =E p m/2p

2 . The wave function at a later
time is then given by

∫ π
Ψ =

ℏ
Ψ̃ · − ℏx pt

p
e( , )

d
(2 )

( ) , (4.54)( )p xi E t
3

3
p

where Ψ̃ p( ) is the form (4.51) determined from the wave function preparation. This
wave packet will be analyzed in the last section of this chapter for a particular Ψ̃ p( ).

If the Ψ x t( , )j are an orthonormal set of functions obeying (4.34), then their
Fourier transforms (4.51) obey
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∫ ∫ ∫
∫
∫

* *

*

*

π π

δ

δ

ℏ
Ψ̃ Ψ̃ = Ψ Ψ

ℏ

= Ψ Ψ −

= Ψ Ψ =

· − ℏp p x y

x y x y

x x

p
x y

p
e

x y

x

d
(2 )

( ) ( ) d d ( , 0) ( , 0)
d

(2 )

d d ( , 0) ( , 0) ( )

d ( , 0) ( , 0) ,

(4.55)

p x y
n

n j k
V

n n
j k

n

n
i

V

n n
j k

n

V

n
j k jk

( )

( )

so that the Fourier transforms are also orthonormal. Using (4.51) shows that the
Fourier transforms of a complete set of eigenfunctions satisfy

∫

∫

∫

∑ ∑
π π

π
δ

π
δ

ℏ
Ψ̃* Ψ̃ =

ℏ
Ψ* Ψ

=
ℏ

−

=
ℏ

= −

· − · ℏ

· − · ℏ

− · ℏ

p k x y

x y

p k

x
ye

x
ye

x
e

1
(2 )

( ) ( )
d

(2 )
d ( , 0) ( , 0)

d
(2 )

d ( )

d
(2 )

( ),

(4.56)

j j

p x k y

p x k y

p k x

n j j

n

n
n i

j j

n

n
n i n

n

n
i n

( )

( ) ( )

( ) ( )

where the completeness of the eigenfunctions, given by (4.35), was used.
The expectation value for the momentum at t = 0 is found using the momentum

probability density (4.53),

∫ ∫π π
〈 ˆ 〉 =

ℏ
Ψ̃ =

ℏ
Ψ̃* Ψ̃p p p p p p

p
t

pd
(2 )

( , )
d

(2 )
( ) ( ). (4.57)

n

n

n

n
2

Expression (4.57) can be rewritten as

∫ ∫∇〈 ˆ 〉 = − ℏ Ψ* Ψ = Ψ* ˆ Ψp x x x p xi x xd ( , 0)[ ( , 0)] d ( , 0)[ ( , 0)]. (4.58)
V

n

V

n

The equivalence of (4.58) to (4.57) is demonstrated by inserting (4.50) into (4.58) and
using the Dirac delta (3.45) that results from the spatial integration. The result (4.58)
for the momentum expectation value at t = 0 is identical to the previous definition
(4.48).

To recapitulate, the wave function consistent with the initial state of the system,
Ψ =x t( , 0), is prepared as a superposition of a set of complete basis functions
available for the system under consideration. The coefficients of the superposition
are found from the inner product of Ψ =x t( , 0) with the basis functions. Typically,
the basis set consists of the energy eigenfunctions obtained from the Schrödinger
equation, but it can be any complete set of orthonormal functions. The future wave
function is determined by the evolution operator (4.38). At a later time t, the
expectation value of a Hermitian observable Ô is given by (4.49). In the Copenhagen
interpretation, the expectation value (4.49) predicts the statistical average of many
measurements of the observable at the time t performed subsequent to an identical
preparation of the wave function.

The definition (4.49) means that the expectation value of a quantum mechanical
observable may depend on time even if the associated classical observable has no
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explicit time-dependence. This is because the wave function appearing in (4.49) evolves
in time according to (4.37), which is governed by the Hamiltonian appearing in the
Schrödinger equation. This picture of quantummechanics, where the time-dependence
of ameasurement is contained in thewave function, is knownas theSchrödinger picture,
and the associated quantummechanical observables derived from the correspondence
principle are referred to as Schrödinger picture observables, denoted ÔS.

There is a second picture of quantum mechanics, known as the Heisenberg
picture, where the observables themselves embody the time-dependence for their
expectation value and the wave function is static. A Heisenberg picture observable,
denoted ÔH , is obtained from the Schrödinger picture observable by the definition

ˆ = ˆ = ˆˆ ℏ − ˆ ℏ †t e e t tO ( ) O U ( ) O U( ). (4.59)H
iHt

S
iHt

S

In the Heisenberg picture the expectation value of the observable (4.59) is given by

∫〈 ˆ 〉 = Ψ* = ˆ Ψ =x xt V t t tO ( ) d ( , 0) O ( ) ( , 0). (4.60)H

The Heisenberg picture expression (4.60) is identical to the Schrödinger picture
expression (4.49) since (4.37) gives

∫
∫
∫
∫

〈 ˆ 〉 = Ψ* ˆ Ψ

= Ψ* ˆ Ψ

= Ψ* ˆ Ψ

= Ψ* ˆ Ψ

†

†

x x

x x

x x

x x

t V t

V t t

V t t

V t t

O ( ) d ( , 0) O ( ) ( , 0)

d ( , 0)(U ( ) O U( )) ( , 0)

d (U ( ) ( , 0))O (U( ) ( , 0))

d ( , ) O ( , ).

(4.61)

H

S

S

S

Using Ψ = ˆ ℏ Ψt H id /d ( / ) and Ψ* = − ˆ ℏ Ψ*t H id /d ( / ) , result (4.61) yields

〈 ˆ 〉 = ∂ ˆ

∂
+

ℏ
〈 ˆ ˆ 〉

t t i
H

d
d

O
O 1

[O, ] , (4.62)

which holds in either picture as long as the Hamiltonian is Hermitian.
The result (4.62) allows quantum mechanical expectation values to satisfy

relationships formally similar to Newtonian mechanics, a result known as
Ehrenfest’s theorem. As an example, since ˆ ˆ =H H[ , ] 0, result (4.62) shows that

〈 ˆ 〉 = ∂ ˆ
∂t

H
H
t

d
d

. (4.63)

The right-hand side of (4.63) vanishes if Ĥ has no explicit time dependence. For such
a case, the expectation value of the Hamiltonian is time-independent, and this is the
quantum mechanical version of the classical conservation of energy (1.3). Working
in one dimension for simplicity, choosing ˆ = xO in (4.62), and assuming that the
Hamiltonian has the form ˆ = ˆ +H p m U x/2 ( )2 gives
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ˆ = ˆ = ˆ − ˆ = ˆ ˆ + ˆ ˆ = ℏ ˆ⎡
⎣⎢

⎤
⎦⎥x H x

p
m m

xp p x
m

x p p p x p i
p
m

[ , ] ,
2

1
2

( )
1

2
([ , ] [ , ]) , (4.64)

2
2 2

where (4.42) and =x U x[ , ( )] 0 were used. Inserting this result into (4.62) gives

〈 〉 = 〈 ˆ 〉
t

x
p
m

d
d

, (4.65)

a form identical to the classical relationship (1.8) for the same Hamiltonian.
Similarly, choosing ˆ = p̂O and using the same form for the Hamiltonian gives

ˆ ˆ = ˆ = − ℏ∂
∂

p H p U x i
U
x

[ , ] [ , ( )] , (4.66)

so that (4.62) becomes

〈 ˆ〉 = − ∂
∂t

p
U
x

d
d

, (4.67)

which is identical in form to Newton’s second law (1.11). In order to insure that this
holds for all observables, result (4.62) is used to extend the correspondence principle
by noting its formal similarity to the Poisson bracket formulation (1.15) of classical
mechanics. If A and B are two classical observables, then the expectation value of
their quantum mechanical commutator will be identical to the result obtained from
the classical Poisson bracket through the substitution

→
ℏ

〈 ˆ ˆ 〉
i

{A, B}
1

[A, B] . (4.68)

The result (4.42) shows that this correspondence holds for the observables p and x as
well as for the general time evolution result (4.62) involving the Hamiltonian.

In this regard, it is important to note that the commutator δˆ = ℏx p i[ , ]j k jk is clearly

notHermitian, even though both xj and p̂k areHermitian. In general, the product ˆ ˆAB

of two Hermitian operators, satisfying ˆ = ˆ†
A A and ˆ = ˆ†

B B, may not be Hermitian. In
order to be Hermitian, their product must satisfy (4.45), which means that

∫ ∫Ψ* ˆ ˆ Ψ = ˆ * ˆ *Ψ* Ψx x x xx t t x t td ( , )[AB ( , )] d [A B ( , )] ( , ). (4.69)
V V

3 3

Because the individual operators are Hermitian, it follows that

∫ ∫
∫
∫

Ψ* ˆ ˆ Ψ = Ψ* ˆ ˆ Ψ

= ˆ *Ψ* ˆ Ψ

= ˆ * ˆ *Ψ* Ψ

x x x x

x x

x x

x t t x t t

x t t

x t t

d ( , )[AB ( , )] d ( , )[A[B ( , )]]

d [A ( , )][B ( , )]

d [B A ( , )] ( , ).

(4.70)

V V

V

V

3 3

3

3
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This demonstrates a general result, ˆ ˆ = ˆ ˆ† † †
(AB) B A . In order for (4.69) and (4.70) to be

identical, the product of two Hermitian operators must satisfy ˆ ˆ = ˆ ˆ †AB (AB)

= ˆ ˆ = ˆ ˆ† †
B A BA. In other words, if the two operators do not commute, their product

is not Hermitian. This is made clear by writing the product as

ˆ ˆ = ˆ ˆ − ˆ ˆ + ˆ ˆ + ˆ ˆ ≡ ˆ ˆ + ˆ ˆAB
1
2

(AB BA)
1
2

(AB BA)
1
2

[A, B]
1
2 {A, B}, (4.71)

where ˆ ˆ{A, B} now stands for the anticommutator ˆ ˆ + ˆ ˆAB BA. Using ˆ ˆ = ˆ ˆ† † †
(AB) B A ,

the Hermitian conjugate of the commutator of two Hermitian operators satisfies
ˆ ˆ = ˆ ˆ = ˆ ˆ = − ˆ ˆ† † †

[A, B] [B , A ] [B, A] [A, B]. This reveals the commutator of two
Hermitian operators is antiHermitian, changing signs under Hermitian conjugation,
whereas the anticommutator is Hermitian since ˆ ˆ = ˆ ˆ = ˆ ˆ† † †

{A, B} {A , B } {A, B}. The

expectation value of an antiHermitian operator Ô, satisfying ˆ = − ˆ†
O O, is given by

∫ ∫
∫

〈 ˆ 〉* = ˆ *Ψ* Ψ = Ψ* ˆ Ψ

= − Ψ* ˆ Ψ = −〈 ˆ 〉

†⎡⎣ ⎤⎦x x x x

x x

V t t V t t

V t t

O d [O ( , )] ( , ) d ( , ) O ( , )

d ( , )[O ( , )] O
(4.72)V V

V

showing that its expectation value is pure imaginary. The anticommutator of two
Hermitian operators is Hermitian, so it has a real expectation value. Therefore,
(4.71) shows that the product of two Hermitian operators has an expectation value
that breaks into a real and an imaginary part. The imaginary part vanishes only if
the two operators commute.

In the Copenhagen interpretation an observable must yield a real expectation
value, and this requires the operator representing the observable to be Hermitian. If
the observable chosen for measurement contains products of Hermitian observables,
it is necessary that the product involves only Hermitian operators that commute
with each other. Otherwise, (4.71) shows that the product breaks into the sum of
Hermitian and antiHermitian pieces, yielding a complex expectation value.
Therefore, the Copenhagen interpretation of quantum mechanics states that an
experiment must choose a complete set of commuting observables, hereafter desig-
nated CSCO, in order for real expectation values to be obtained for their products.
This set of observables contains only Hermitian observables that commute with all
other members of the set. Observables that do not commute with any members of
the set cannot be measured simultaneously since their products with the members of
the set are not Hermitian. Since the fundamental Hermitian observables x and p̂ do
not commute, this will almost always require a choice for which observables are to
be included in the CSCO. There are additional problems with simultaneously
measuring observables that do not commute, and this is discussed in detail in the
next section where the Heisenberg uncertainty principle is derived.

An extremely important property of a CSCO is that its members share a common
set of eigenfunctions. This is readily seen by considering two members of a CSCO,
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denoted Â and B̂. If Ψλ is an eigenfunction of Â, such that λˆ Ψ = Ψλ λA , then it follows
that

λˆ ˆ Ψ = ˆ ˆ Ψ = ˆΨλ λ λBA(B ) B(A ) ( ). (4.73)

Result (4.73) shows that ˆ ΨλB must be proportional to Ψλ, so that λˆ Ψ = ′Ψλ λB , where λ′
is the constant of proportionality. This immediately reveals that the constant of
proportionality is simply the eigenvalue of B̂ associated with the eigenfunction Ψλ. A
CSCO therefore shares a set of eigenfunctions in common. If these eigenfunctions are
complete, then any L2 wave function may be prepared and arbitrary products of
members of the CSCO will have well-defined expectation values. An example of this
are the momentum eigenfunctions (4.6). For a free particle, the Hamiltonian Ĥ and
the momentum p̂ commute and therefore share these eigenfunctions. If the CSCO
contains the Hamiltonian, then (4.47) shows that all the observables in the CSCO
will have time-independent expectation values.

4.3 The Heisenberg uncertainty principle
If two observables do not commute it is still possible to devise an experiment that
will attempt to measure both of them simultaneously. For example, passing
electrons through a slit of width Δx determines their position up to the slit width
Δx. This can be accompanied by a measurement of the range of their momentum
parallel to the slit, designated Δp. A simple way to find this range of momentum is to
measure the angle θ at which each electron strikes the screen a distance L behind the
slit. If the velocity perpendicular to the slit is v, then the time to arrive at the screen is

=T L v/ . The distance D traveled parallel to the slit before striking the screen is
θ≈D L sin , and so the momentum parallel to the slit must have been

θ θΔ = Δ ≈ = =p m v m D T mL T mv( / ) sin / sin . However, the wave aspect of the
electron undergoes diffraction when passing through the slit, spreading the beam so
that their impact on the screen occurs within the first diffraction minimum of (1.51),

θ λ= Δ = Δx h mv xsin / /( ), where the de Broglie wavelength (2.18) was used.
Inserting this into the expression for Δp gives the result Δ Δ ≈x p h.

Heisenberg interpreted the slit width as the uncertainty in the position of the electron
as it passes through the slit, while Δp represents the uncertainty in the momentum
parallel to the slit subsequent to passing through the slit. If Δ →x 0, reducing the
uncertainty in position to zero, it results in Δ → ∞p , and the uncertainty in the
subsequent momentum of the electron parallel to the slit becomes arbitrarily large.
The uncertainty in momentum can be reduced to zero, Δ →p 0, only if Δ → ∞x ,
which requires the slit width or uncertainty in position to be arbitrarily large. It is
important to note that this occurs even if the source of the electrons is far from the slit,
which would classically preclude electrons with any initial momentum parallel to the
slit from passing through. As a result, it is the simultaneous observation of both
momentum and position that is involved in this effect. It will now be shown that the two
observables, momentum and position, cannot be measured simultaneously to arbi-
trary accuracy because they do not commute.

In order to demonstrate this, it is necessary to quantify mathematically the
uncertainty, denoted ΔÔ, in the measurement of an observable Ô, and then to derive
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a relationship between the uncertainties for observables that involves their commu-
tator. The definition of ΔÔ is borrowed from statistics, where deviation from the
norm is an important aspect of a statistical correlation. The operator ˆ − 〈 ˆ 〉O O
clearly has an expectation value of zero if many measurements are performed after
preparing the same wave function since 〈 ˆ − 〈 ˆ 〉 〉 = 〈 ˆ 〉 − 〈 〈 ˆ 〉 〉O O O O
=〈 ˆ 〉 − 〈 ˆ 〉 =O O 0. However, for an individual measurement it will not necessarily
vanish, and the uncertainty ΔÔ in measuring Ô is found by averaging the absolute
value of ˆ − 〈 ˆ 〉O O over many measurements. This prevents positive and negative
results from cancelling. This is achieved by finding the expectation value of its square
and then taking the square root. The result is

Δ ˆ = 〈 ˆ − 〈 ˆ 〉 〉 = 〈 ˆ 〉 − 〈 ˆ 〈 ˆ + 〈 〈 ˆ 〉 〉 = 〈 ˆ 〉 − 〈 ˆ 〉O (O O ) O 2 O O O O O . (4.74)2 2 2 2 2

This definition of uncertainty vanishes if the wave function is an eigenfunction or
pure state of the observable, as in (4.43), since λ〈 ˆ 〉 =O and λ〈 ˆ 〉 =O

2 2. This is
consistent with the idea that a pure state of the observable should have no
uncertainty in the measurement of that observable. Definition (4.74) is now
combined with the Cauchy–Schwarz inequality of (3.24). If Â and B̂ are two
Hermitian operators, then two new Hermitian operators are defined as α̂ = ˆ − 〈 ˆ 〉A A
and β̂ = ˆ − 〈 ˆ 〉B B . The two functions appearing in the Cauchy–Schwarz inequality
(3.24) are chosen to be derived from the wave function Ψ by defining α= ˆ Ψf and

β= ˆ Ψg . Since α〈 ˆ 〉 = Δ ˆ( A)2 2 and β〈 ˆ 〉 = Δ ˆ( B)
2 2 this yields

∫ ∫ ∫

∫ ∫ ∫

α α β β α β

α β αβ

α β

ˆ*Ψ* ˆΨ ˆ*Ψ* ˆΨ ⩾ ˆ*Ψ* ˆΨ

⟹ Ψ* ˆ Ψ Ψ* ˆ Ψ ⩾ Ψ* ˆ ˆΨ

⟹ Δ ˆ Δ ˆ ⩾ 〈 ˆ ˆ 〉 + 〈 ˆ ˆ 〉

V V V

V V V

d d d

d d d

( A) ( B)
1
4

[A, B] { , } ,

(4.75)

V V V

V V V

2

2 2
2

2 2 2

where the Hermitian nature of α̂ and β̂ was used in the second step, while the third
step used (4.71), definition (4.74), and α β〈 ˆ ˆ 〉 = 〈 ˆ ˆ 〉[ , ] [A, B] . Since the expectation
value of the commutator is pure imaginary and the expectation value of the
anticommutator is pure real, expression (4.75) gives

α βΔ ˆ Δ ˆ ⩾ 〈 ˆ ˆ 〉 + 〈 ˆ ˆ 〉A B
1
2

[A, B] { , } . (4.76)2 2

Result (4.76) is the formal statement of the Heisenberg uncertainty principle. If two
operators do not commute, then the first term in the square root of (4.76) will not
vanish and the product of the uncertainties in their measurements will never be zero.
The second term in the square root can be expanded using the definitions of α̂ and β̂
to give

α β〈 ˆ ˆ 〉 = 〈 ˆ − 〈 ˆ 〉 ˆ − 〈 ˆ 〉 〉 = 〈 ˆ ˆ 〉 − 〈 ˆ 〉〈 ˆ 〉{ , } {A A , B B } {A, B} 2 A B . (4.77)2 2 2
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Even if two operators commute, it is possible that the wave function for the system is
such that (4.77) is not zero. If the system is prepared in a state such that (4.77)
vanishes, then the Heisenberg uncertainty principle allows the expectation values for
commuting observables to be measured simultaneously to arbitrary accuracy. A
wave function for which (4.77) vanishes is referred as a minimum uncertainty wave
packet, and will be discussed again in the next section. For the choice of position and
momentum, if (4.77) vanishes then (4.76) gives the minimum uncertainty relation

δΔ Δ ˆ ⩾ ℏ
x p

2
. (4.78)j k jk

The uncertainty principle (4.78) for momentum and position explains why the
volume V in the momentum eigenfunction (4.6) must be arbitrarily large in order to
be consistent with a vanishing probability flux into and out of the volume V. Since
the particle is contained in the volume =V L3, the length L determines the
uncertainty in the position, so that ≈ ΔL xk. However, in the case of a momentum
eigenfunction it follows that Δ =p 0k since 〈 ˆ 〉 = 〈 ˆ 〉p pk k

2 2. As a result, Δ → ∞xk , and
this requires an arbitrarily large volume.

It is instructive to evaluate Δx and Δp for the simple case that the wave function
represents the ground state of a particle in a one-dimensional box of width L, given
at t = 0 by (3.49) with n = 1. The uncertainty squared in the particle’s position is then

∫ ∫π π

π π

Δ = 〈 〉 − 〈 〉 = −

= − − = −

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎛
⎝

⎞
⎠
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

x x x
L

x x
x

L L
x x

x
L

L
L L

L
L

L

( )
2

d sin
2

d sin

2
6 4

2
4

1
12

1
2

,

(4.79)

L L
2 2 2

0

2 2

0

2
2

3 3

2

2 2
2

2

so that the uncertainty in position is π πΔ = −x L( /2 ) ( 6)/32 . Similarly, for
momentum

∫

∫

π π

π π π π

Δ ˆ = 〈 ˆ 〉 − 〈 ˆ〉 = ℏ

− − ℏ = ℏ⎜ ⎟

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎞
⎠⎟

p p p
L

x
L

x
L

L
x

in
L

x
L

x
L L

( )
2

d sin

2
d sin cos ,

(4.80)

L

L

2 2 2

0

2 2

2
2

0

2 2 2

2

so that πΔ ˆ = ℏp L/ . The product πΔ Δ ˆ = ℏ −x p ( /2) ( 6)/32 satisfies the inequality
(4.78) since the square root is ≈1.14, slightly larger than one.

Quantum mechanics was developed to be consistent with Newtonian physics,
where the time t is a parameter rather than an observable. There is no correspond-
ence principle that turns time into a quantum mechanical operator T̂. However,
there is an important uncertainty relation involving time for the case that the
observable Ô has no explicit time-dependence, ∂ ˆ ∂ =tO/ 0, but does not commute
with the Hamiltonian Ĥ . For such a case, result (4.62) gives 〈 ˆ ˆ 〉 = ℏ 〈 ˆ 〉H i t[ , O] d O /d .
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Assuming the anticommutator (4.77) vanishes, the uncertainty relationship (4.76)
for the energy Ĥ and the observable Ô is given by

Δ Δ ⩾ ℏ 〈 ˆ 〉E
t

O
2

d
d

O . (4.81)

The more rapidly the expectation value of the observable is changing in time, the
greater the uncertainty in simultaneous measurements of the system’s energy and the
observable will be. The result (4.81) can be restated by defining a time interval Δt
from 〈 ˆ 〉 td O /d ,

Δ ≡ Δ

〈 ˆ 〉
t

t

O
d
d

O
,

(4.82)

corresponding to the time interval during which the observable’s expectation value
significantly changes. This is the case if the expectation value of the chosen
observable oscillates with some angular frequency ω, since then ωΔ ≈t 1/ .
Making the identification (4.82) gives a second commonly used uncertainty relation,

Δ Δ ⩾ ℏE t 2. (4.83)

It should be remembered that the time interval Δt has an interpretation that depends
on the choice for the observable Ô and the system with which it is associated.

An instructive example of (4.83) is obtained by letting the observable be the
position x of a free particle moving in one dimension. Ehrenfest’s theorem allows

〈 〉x td /d to be interpreted as the average velocity of the particle, denoted v. For this
case (4.82) gives Δ = Δt x v/ , which is interpreted as the time interval a particle
detector must interact with the particle in order to compensate for the uncertainty
Δx in the particle’s position. In order for Δt to be small, there must be a small
uncertainty in the particle’s position, and this requires a large uncertainty in the
particle’s momentum, which in turn creates a large uncertainty in the particle’s
energy. This interpretation is consistent with the dynamics of a free particle, where
the uncertainty in the energy is a function of Δp, since Δ = Δ = ΔE p m p p m( /2 ) /2 for
the case Δ ≪p p. Combining the two expressions gives Δ Δ = Δ Δ =E t p p x mv/
Δ Δ ⩾ ℏp x /2, the previous uncertainty relation.

The result (4.83) is commonly extended to all cases involving a finite observation
time, where it is interpreted as relating the time interval of observation Δt to the
uncertainty ΔE in the energy measured for the particle or system. For example, if an
unstable particle decays with a lifetime of τ, this places an upper limit on the time it
can be observed, so that the minimum uncertainty in the particle’s energy is

τΔ ≈ ℏE /2 . The rho meson has a lifetime of τ ≈ × −4.5 10 24 s, corresponding to
an uncertainty in its observed energy of ≈ × −1.2 10 11 J or ≈ ×7 10 eV7 . This also
applies to a quantum state that decays to a lower energy state with a lifetime of τ. In
this case, τΔ =t creates an uncertainty in the energy associated with the transition,
and if a photon is emitted during the transition there will be a range of frequencies,

ω τΔ = Δ ℏ ≈E / 1/2 , associated with the decay process.
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4.4 Wave packets
In the Copenhagen interpretation of quantum mechanics the wave function is
prepared at some initial time and then evolves in time according to (4.37) until an
observation forces the wave function to collapse onto some specific possible values
for a complete set of commuting observables. This section discusses consequences of
wave function preparation.

Wave function preparation can cause the simultaneous measurements of com-
muting observables to be accompanied by uncertainties unless their anticommutator
(4.77) vanishes, and so it is important to determine the wave functions for which the
anticommutator vanishes. This starts by noting that the Cauchy–Schwarz inequality
used to derive the uncertainty relation becomes an equality, therefore corresponding
to the case of minimum uncertainty, when the two functions appearing in (3.24) are
proportional to each other. In the derivation of the uncertainty principle this
requires that α βˆΨ = ˆΨz or β αˆΨ = ˆΨ z/ , where z is some complex constant.

Taking the complex conjugate gives α βˆ*Ψ* = * ˆΨ*z . Using αβ β αˆ ˆ = ˆ ˆ† † †( ) and the

Hermitian nature of β̂ gives β β βˆ = ˆ = ˆ† †
( ) ( )

2 2 2, so that

∫ ∫ ∫
∫ ∫

αβ β α β

β βα

Ψ* ˆ ˆΨ = ˆ* ˆ*Ψ* Ψ = * ˆ Ψ* Ψ

= * Ψ ˆ Ψ = * Ψ* ˆ ˆΨ

*V V z V

z V
z
z

V

d ( ) d ( ) d ( )

d ( ) d ( ).
(4.84)

2

2

If z is pure imaginary, so that λ=z i , then * = −z z/ 1 and (4.84) gives the desired
result α β〈 ˆ ˆ 〉 ={ , } 0, resulting in minimum uncertainty. In the case that momentum
and position are chosen for α̂ and β̂ , the condition for a minimum uncertainty wave
function is then

α λβ λ∇ˆΨ = ˆΨ ⟹ − ℏ − 〈ˆ 〉 Ψ = − 〈 〉 Ψp x xi i i( ) ( ) , (4.85)

where λ is an arbitrary real constant.
A particularly useful minimum uncertainty wave function is given by preparing

the initial wave function as a Gaussian wave packet, given in one dimension by

γ π
Ψ = = γ− −x t e( , 0)

1
, (4.86)x x1

2
( )o

2 2

where γ is an arbitrary real constant with the units of length. It is straightforward to
show (4.86) satisfies the necessary normalization condition (3.1) for the case that the
system is defined over the spatial interval −∞ ∞( , ). The initial expectation values for
position and momentum are given by using the probability density = ∣Ψ∣x( , 0) 2P to
find

∫

∫
γ π

γ π

〈 〉 = =

〈 ˆ〉 = ℏ − =

γ

γ

−∞

∞
− −

−∞

∞
− −

x x xe x

p
i

x x x e

1
d ,

d ( ) 0.
(4.87)

x x
o

o
x x

( )

3
( )

o

o

2 2

2 2
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These results show that condition (4.85) is satisfied with λ γ= ℏ/ 2, verifying that
(4.86) is a minimum uncertainty wave function. Additional expectation values are
given by

∫

∫
γ π γ γ γ

γ π
γ

〈 ˆ 〉 = ℏ − ℏ − = ℏ

〈 〉 = = +

γ

γ

−∞

∞
− −

−∞

∞
− −

⎛
⎝⎜

⎞
⎠⎟p x x x e

x x x e x

1
d ( )

2
,

1
d

1
2

.

(4.88)
o

x x

x x
o

2
2

2

2

4
2 ( )

2

2

2 2 ( ) 2 2

o

o

2 2

2 2

Combining results (4.87) and (4.88) gives γΔ = 〈 ˆ 〉 − 〈 〉 = ℏp p p /( 2 )2 2 and

γΔ = 〈 〉 − 〈 〉 =x x x / 22 2 , corresponding to the minimum uncertainty relation
Δ Δ = ℏp x /2. The Gaussian wave packet (4.86) is initially peaked around the
position of maximum probability, xo, with the parameter γ determining how sharply
it is peaked. The limit γ → 0 corresponds to Δ =x 0, so that the probability density
must therefore approach the behavior of the Dirac delta, δ −x x( )o . In fact, it can be
shown that an alternative representation of the Dirac delta is given by the γ → 0
limit of ∣Ψ∣2 for the case of (4.86). At the other extreme, the limit γ → ∞ corresponds
to Δ =p 0, for which the probability density for position approaches a constant over
all space, like the momentum eigenfunction (4.6) for the case →p 0.

It is instructive to examine the time evolution of the wave function (4.86) for the
case that the particle is free. For that case, the Gaussian is understood as a mixed
state of momentum eigenfunctions (4.6) with a momentum distribution Ψ̃ p( )
determined from the initial state (4.86) using (4.51). Setting xo = 0 and staying in
one dimension gives

∫γ π
γ πΨ̃ = =γ γ

−∞

∞
− − ℏ − ℏp xe e e( )

1
d 2 , (4.89)x ipx p1

2
1
2

2 2 2 2 2

so that the momentum distribution is also Gaussian. Since the particle is free the
time-dependent wave packet that satisfies the Schrödinger equation (4.16) and that
coincides with the preparation (4.86) at t = 0 is obtained by writing

∫ π
Ψ =

ℏ
Ψ̃

−∞

∞
− ℏx t

p
p e( , )

d
2

( ) , (4.90)( )i px E tp

where Ψ̃ p( ) is given by (4.89) and =E p m/2p
2 . In effect, the wave function is a linear

superposition of free particle momentum eigenfunctions, but is not itself an
eigenfunction of momentum. Inserting (4.89) into (4.91) gives

∫γ π
π

Ψ =
ℏ

γ

−∞

∞
− ℏ − ℏx t

p
e e( , ) 2

d
2

. (4.91)( )p i px E t1
2 p

2 2 2

Since =E p m/2p
2 , the integral (4.91) is also Gaussian in p and its evaluation gives

γ

π γ
Ψ =

+ ℏ
γ− + ℏ

⎜ ⎟⎛
⎝

⎞
⎠

( )x t
i t
m

e( , ) .
(4.92)
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From (4.92) the time-dependent spatial probability density is given by
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The result (4.93) shows that the probability density remains a normalized Gaussian
distribution, but the γ2 in (4.86) is replaced by the time-dependent shape factor Γ t( )2 ,
where

γ
γ

Γ = + ℏ
t

t
m

( ) . (4.94)2 2
2 2

2 2

Even if γ ≈ 0 initially, so that the initial uncertainty in location is Δ ≈x 0, as time
passes the probability density (4.93) becomes less sharply peaked. The width of the
Gaussian grows, signaling a growing uncertainty in the location determined by the
increasing value of Γ in (4.94). After sufficient time has passed, the argument of the
exponential tends to zero and the probability density becomes the same everywhere.
This is a direct outgrowth of the uncertainty principle. If the particle’s initial
uncertainty in position is very small, i.e. γ ≈ 0, it will possess a large initial
uncertainty in momentum, γΔ = ℏp(0) /( 2 ), and the uncertainty in its position
will therefore grow rapidly since Newtonian dynamics gives Δ ≈ Δx p t m(0) / . This is
consistent with (4.94) since at later times γΔ = Γ ≈ ℏ ≈ Δx t t t m p t m( ) ( ) / (0) / for
γ ≈ 0. The spreading of the wave packet is also a reflection that the individual
momentum eigenfunctions that make up the wave packet have phases that travel at
different speeds since − = −px E t p x p m t( ( /2 ) )p . The constituent momentum
eigenfunctions therefore separate, resulting in a dispersing wave packet.
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