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The Physics of Thermoelectric Energy Conversion

H Julian Goldsmid

Chapter 4

Electronic transport in semiconductors

4.1 Energy band theory
The treatment of charge transport in solids is derived from the free electron theory of
metals. Because of the interaction between the electrons and the crystal lattice, the
electrons are confined to states in specific bands of energy that are separated by
energy gaps. Moreover, the probability that an energy state contains an electron is
governed by quantum mechanics rather than classical statistics. It is found, at least
near the edges of the energy bands, that the carriers behave like free electrons except
that they must be assigned an effective mass m* that is different from the free
electron mass, m.

For our purposes, we may confine our attention to the two bands of highest
energy, the conduction and valence bands. Electrons can take part in the conduction
process only if they reside in energy states that are close to vacant states. This means
that conduction in a metal is due to electrons having a narrow range of energies.
There is a particular energy, the Fermi energy, at which there is a 50% probability of
a state being filled. It is the states within a few kT of the Fermi level, then, that are
responsible for the transport phenomena.

We are most interested in materials in which the Fermi level lies close to the edge
of a band. If this is the conduction band, the carriers may be regarded as quasi-free
electrons. On the other hand, if the Fermi level lies close to the upper edge of the
next-lower band, the valence band, the electrons behave as if their effective mass is
negative. It is convenient to regard these carriers in the valence band as if they have a
positive mass and a positive charge, and they are commonly known as positive holes
(or just as holes).

The density of electron states is much smaller near the band edge than it is deep
within a band. Thus, when conduction is due to carriers near the band edges, the
conductivity is much less than it is for a metal and the substance is known as a
semiconductor. Semiconductors are called n-type or p-type according to whether the
conduction is primarily due to electrons or holes. It is noted that n-type and p-type
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semiconductors have negative and positive Seebeck coefficients respectively. Typical
energy diagrams for n- and p-type semiconductors are shown in figure 4.1(a) and (b),
respectively. Figure 4.1(c) shows the case of an intrinsic semiconductor with the
Fermi level close to the middle of the energy gap.

For the time being we consider semiconductors in which the energy difference
between the valence and conduction bands is large enough for only one type of
carrier to be significant. The electrical conductivity and the Seebeck coefficient will
then depend on the Fermi energy, as measured from the band edge, the effective
mass, in so far as it determines the density of states in the band, and a quantity
known as the carrier mobility, μ, which is defined as the drift speed of the carriers in
unit electric field.

4.2 Mobility and effective mass
The energy diagrams in figure 4.1 do not show the whole picture. An electronic state
is characterised not only by its energy but also by its wave vector. In the simplest
case, the energy minimum occurs at zero wave vector. However, a minimum may
also be found at a non-zero value for the wave vector, crystal symmetry requiring
that similar minima are located at corresponding points in wave vector space. The
material is then called a multi-valley conductor.

In the quasi-free electron theory, the density of electron states at an energy E is
given by

π= *
g E E

m E E
h

( )d
4 (2 ) d

, (4.1)
3/2 1/2

3

where h is Planck’s constant. This equation must be modified in an NV-valley
conductor by setting m* equal to NV

2/3 times its value for a single valley. The single-
valley effective mass may exhibit directional dependence and is termed the inertial
mass mI to distinguish it from the density-of-states mass, m*.

The mobility depends on the inertial effective mass and on the relaxation time
associated with the scattering processes. It is assumed that any disturbance in the

Figure 4.1. Energy band diagrams for semiconductors: (a) n-type, (b) p-type and (c) intrinsic.
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carrier distribution will relax towards its equilibrium value with a characteristic
time, τ, which it will be supposed is dependent on the energy, E, and may be written
as τ0E

r, where r depends on the scattering process. It seems that for many of the
materials in which we are interested acoustic-mode lattice scattering is predominant,
in which case r is equal to −1/2. This is in spite of the fact that the bonding may have
an ionic as well as a covalent component.

4.3 Dependence of the transport properties on the Fermi energy
The density of charge carriers in any particular metal is more-or-less a fixed quantity
but this is not so for a semiconductor. The carrier density and, indeed, the sign of the
majority carriers can be controlled by the addition of impurities. Impurities that
increase the electron concentration are called donors and those that increase the hole
concentration are known as acceptors. An intrinsic semiconductor contains either no
impurities or an equal number of donors and acceptors. In some materials, vacancies
on lattice sites can act in the same way as foreign atoms. One of the effects of these
impurities is to change the position of the Fermi level. We shall find it convenient to
regard the Fermi energy, EF, as the independent variable.

We make use of the Boltzmann equation that relates the disturbance in the
electron distribution to the applied electric field and temperature gradient. It is
supposed that this disturbance is small and that it relaxes towards the equilibrium
distribution according to the equation

τ
−

= + −⎡
⎣⎢

⎤
⎦⎥

f E f E
u

f E

E
E
x

E E
T

T
x

( ) ( ) d ( )

d
d
d

( ) d
d

, (4.2)0 0 F F

where u is the velocity of the carriers in the x direction and f(E) is the Fermi
distribution function that has the equilibrium value f0(E) given by

=
+−( )

f E( )
1

exp 1
. (4.3)E E

kT

0 F

The transport properties can be found from the relations between the gradients of
the electric potential and temperature, the electric current density, i, and the heat
flux density, j. The expressions for the electric current and heat flux densities are

∫= ∓
∞

i euf E g E E( ) ( )d , (4.4)
0

and

∫= −
∞

j u E E f E g E E( ) ( ) ( )d . (4.5)
0

F

In equation (4.4) the upper sign is applicable when the carriers are electrons and the
lower sign applies for hole conduction. In the latter case the energy is measured
downwards from the band edge.

The Physics of Thermoelectric Energy Conversion

4-3



The electrical conductivity is found by setting the temperature gradient equal to
zero, while the Seebeck coefficient and electronic thermal conductivity require the
electric current to be zero. In solving these equations, it may be assumed that the
disturbance in the distribution of the carriers is small enough that any alteration in u
is much less than the equilibrium velocity. We also replace the disturbed distribution
function f(E) by f(E) − f0(E) since the electrical and thermal flows are zero in
equilibrium.

It is convenient to express the transport coefficients in terms of integrals defined as

∫ τ= −
*

∞
+K

T
m

g E E
f E

E
E

2
3

( )
d ( )

d
d . (4.6)s

0
e

s 1 0

This expression, in turn, may be written as

π τ= * + + + +
+ +

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟K

h
m T s r kT F

8
3

2
( )

3
2

( ) , (4.7)s r
s rs 2

3/2
1/2

0
3/2

1/2

where

∫ξ ξ ξ ξ=
∞

F f( ) ( )d . (4.8)n
0

n
0

Here ξ is the reduced energy, E/kT. We shall also use the symbol η to represent the
reducedFermi energy,EF/kT. The values ofFare knownas theFermi–Dirac integrals.

It is found that the electronic parameters that appear in the figure of merit are

σ = e
T

K , (4.9)
2

1

α = ± −
⎛
⎝⎜

⎞
⎠⎟eT

E
K
K

1
, (4.10)F

1

0

and

λ = −
⎛
⎝⎜

⎞
⎠⎟T

K
K
K

1
. (4.11)e 2 2

1
2

0

It must be remembered that the total thermal conductivity, λ, is the sum of the
electronic component given by equation (4.11) and a lattice component, λL.

4.4 Degenerate and non-degenerate conductors
There are good approximations for the Fermi–Dirac integrals when the Fermi
energy is either very much less than or very much greater than zero. If EF > 4kT the
material is said to be degenerate and the metallic approximation is used. In this case

η η η π η π=
+

+ + − − + ⋯
+

− −F
n

n n n n( )
1 6

( 1)( 2)
7
360

. (4.12)
n

n n
n

1
1

2
3

4
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One must include as many terms as are needed for the parameter in question to have
a non-zero value. Thus, the electrical conductivity requires only the first term so that

σ π τ= * +⎛
⎝⎜

⎞
⎠⎟h

e m E
8
3

2
( ) . (4.13)r

2

3/2
2 1/2

0 F
3/2

The electronic thermal conductivity needs the first two terms on the right-hand side
of equation (4.12) to be included. Then it is found that

λ
σ

π=
⎛
⎝⎜

⎞
⎠⎟T

k
e3

. (4.14)e
2 2

For most metals the electronic thermal conductivity is much larger than the lattice
contribution. Thus, equation (4.14) embodies the Wiedemann–Franz law which
states that the ratio of the thermal conductivity to the electrical conductivity is the
same for all metals, at any given temperature. The ratio λe/σT is known as the
Lorenz number, L.

The same two terms in equation (4.12) are also needed for the Seebeck coefficient.
It is found that

α π
η

= ∓
+( )k

e

r

3
. (4.15)

3
2

2

It is clear that, as η becomes large, the Seebeck coefficient has a magnitude that is
much less than k/e, which is consistent with the fact that most metals have values of
α of the order of only a few μV K−1.

We are actually much more interested in materials for which η is close to zero or
negative. When η is less than −2 we may use the classical approximation in which the
Femi–Dirac integrals become

η η= Γ +F n( ) exp( ) ( 1). (4.16)n

The gamma function Γ is such that Γ(n + 1) is equal to nΓ(n). When n is an integer,
Γ(n + 1) is equal to n! and Γ(1/2) is equal to π1/2. Thus, we can easily calculate the
gamma function for both integral and half-integral values of n.

If we use the classical approximation the integrals Ks become

π τ η= * Γ + ++ + ⎜ ⎟⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠K

h
m T kT s r

8
3

2
( ) ( )

5
2

exp( ). (4.17)s r
s 2

3/2
1/2

0
3/2

Then the Seebeck coefficient is

α η= ∓ − +⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥

k
e

r
5
2

. (4.18)

It will be seen that the Seebeck and Peltier coefficients are a measure of the total
energy transported by the charge carriers weighted according to the scattering
parameter, r. It is noted that the range for which this equation is valid covers
Seebeck coefficients of greater magnitude than 4k/e, if we suppose that r is −1/2.
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Since k/e is 86.4 μV K−1, this means that the magnitude of the Seebeck coefficient
should exceed about 350 μV K−1 if classical statistics are to apply. For most of the
thermoelectric materials that are used today, the Seebeck coefficient has a smaller
value than this, so the classical condition cannot often be used, except as a gross
approximation.

In the classical range the electrical conductivity is given by

σ π τ η= * Γ ++ ⎜ ⎟⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠h

e m kT r
8
3

2
( ) ( )

5
2

exp( ). (4.19)r
2

3/2
2 1/2

0
3/2

It is common practice to express the electrical conductivity as

σ μ= ne , (4.20)

where n is the carrier concentration and μ is the mobility. The expression for the
carrier concentration is

π η= *⎛
⎝⎜

⎞
⎠⎟n

m kT
h

2
2

exp( ), (4.21)
2

3/2

where the quantity 2(2πm*kT/h2)3/2 is known as the effective density of states. If we
substitute the carrier concentration in equation (4.19) we find that the mobility is
given by

μ
π

τ= Γ +
*

⎜ ⎟⎛
⎝

⎞
⎠r

e kT
m

4
3

5
2

( )
. (4.22)

r

1/2
0

It is noteworthy that the mobility does not depend directly on the Fermi energy in
the classical region.

The expression for the Lorenz number in a non-degenerate conductor is

= +⎜ ⎟⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠L

k
e

r
5
2

, (4.23)
2

which is of the same order as the value given by equation (4.14) for a metal, though
somewhat smaller.

Although it is better to use the classical rather than the degenerate approximation
for most thermoelectric materials, neither is really applicable. Thus, one must
generally use the full expressions for the Fermi–Dirac integrals, Fn. Tables of these
integrals for integral and half-integral values of n may be found elsewhere [1–3].

4.5 Optimising the Seebeck coefficient
If we were restricted to metallic conductors the figure of merit would rise
continuously with the Seebeck coefficient. This is because the ratio of electrical to
thermal conductivity would always have the same value. However, in reality, as the
carrier concentration falls, the thermal conductivity becomes greater than the value
expected from the Wiedemann–Franz law. This is because of the influence of heat
conduction by the lattice. We shall discuss the lattice conductivity in the next chapter
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but here we take note of its existence since it affects the preferred value for the
Seebeck coefficient.

If the lattice conductivity were very large compared with the electronic
thermal conductivity, as it is for many semiconductors, the figure of merit would
be proportional to a quantity known as the power factor, which is defined as α2σ. As
shown in figure 4.2, the power factor falls off slowly as the Fermi level moves into
the band and the Seebeck coefficient decreases. It also falls rapidly as the Fermi level
moves into the band gap due to decrease in the carrier concentration. The maximum
power factor occurs when the Fermi level is very close to the band edge.

When we take account of the lattice conductivity in calculating the figure of merit
it is clear that the optimum Fermi energy will become more negative than that for
the maximum power factor. This is apparent from the curves shown in figure 4.3.
Here the dimensionless figure of merit is plotted against the reduced Fermi energy
for different values of (zT)max. As (zT)max becomes larger, so also does the optimum
Fermi level move further into the energy gap. This means that the optimum Seebeck
coefficient becomes of greater magnitude, as shown in figure 4.4.

The value of zT for any particular Fermi energy depends on the carrier mobility,
the density-of-states effective mass and the lattice thermal conductivity. These three
parameters can be embodied in a single quantity β which is given by [4]

β σ
λ

=
⎛
⎝⎜

⎞
⎠⎟

k
e

T
, (4.24)

2
0

L

where

σ μ π= *⎛
⎝⎜

⎞
⎠⎟e

m kT
h

2
2

. (4.25)0 2

3/2

It may be noted that (zT)max reaches a value of about 1 when β is equal to 0.4.

Figure 4.2. Plot of power factor against reduced Fermi energy for r = −1/2. The power factor is expressed as a
fraction of its maximum value.
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4.6 Bipolar conduction
As the temperature is raised it becomes possible for electrons to be thermally
activated from the valence band to the conduction band. The concentration of
electron–hole pairs depends on the size of the energy gap, Eg. Provided that Eg is
small enough, these carriers may become more numerous than those due to donor or
acceptor impurities. With increase of temperature the conductor passes from the
extrinsic region into the region of mixed conduction and finally becomes intrinsic.
The presence of both electrons and holes in the same conductor can have a profound
effect on the thermoelectric properties.

Figure 4.3. Plots of zT against reduced Fermi energy for various values of (zT)max.

Figure 4.4. Plots of zT against Seebeck coefficient for various values of (zT)max. The graphs are for n-type
material but would be identical for p-type material apart from the sign of the Seebeck coefficient.
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There will be contributions in and ip to the electric current density from the
electrons and holes respectively. These contributions satisfy the equation

σ α= −
⎛
⎝⎜

⎞
⎠⎟i

V
x

T
x

d
d

d
d

, (4.26)n,p n,p n,p

where σn,p and αn,p are the partial conductivities and Seebeck coefficients. The
electrical conductivity is found by setting dT/dx equal to zero and, not surprisingly,
it has the value

σ σ σ= + . (4.27)n p

The Seebeck coefficient is obtained when we set in + ip equal to zero, whence

α
α σ α σ

σ σ
=

+
+

. (4.28)
n n p p

n p

This equation tells us that the overall Seebeck coefficient is a weighted average of the
partial Seebeck coefficients, which will be of opposite sign. This means that the
Seebeck coefficient of a mixed or intrinsic semiconductor is likely to be very small.

There is a remarkable result if we determine the electronic thermal conductivity
when both types of carrier are present. Then the heat flux densities for the two
carriers are given by

α λ= −j Ti
T
x

d
d

. (4.29)n,p n,p n,p n,p

The thermal conductivity is defined for the condition of zero total electric current.
Thus,

λ λ λ
σ σ

σ σ
α α= + +

+
− T( ) . (4.30)e n p

n p

n p
n p

2

The third term on the right-hand side of equation (4.30) is the contribution to the
thermal conductivity from the bipolar effect and may be an order of magnitude
greater than the partial conductivities of the single carriers [5].

It is concluded that mixed conduction should be avoided in thermoelectric
materials since it not only reduces the Seebeck coefficient but also increases the
thermal conductivity.

4.7 Band engineering and nanostructure effects
Here we discuss some of the ways in which the power factor for a given Fermi energy
might be improved.

It is evident from equation (4.10) and, particularly, its classical form, equation
(4.18), that the Seebeck coefficient has a potential energy component and a
contribution from the kinetic energy. The kinetic energy component is weighted
according to the form of scattering for the charge carriers. In most high mobility
semiconductors the scattering parameter, r, is equal to −1/2 and the relaxation time is
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greatest for the carriers of the lowest energy. On the other hand, if ionized-impurity
scattering becomes dominant, r rises to+3/2, and the high-energy carriers are the least
strongly scattered. There is then a substantial rise in the kinetic energy that is
transported by the charge carriers. Of course, this is accompanied by a decrease in the
mobility but, as shown by Ioffe [6], the overall effect could be advantageous. In
practice it appears that this effect has never been used to advantage. It would seem to
bemost beneficial in semiconductors with narrow energy gaps since then the potential
energy of either type of carrier cannot be equal to more than about half the gap.

Another way of improving the power factor involves the introduction of addi-
tional energy states. This may come about through the addition of specific impurities
that give rise to states above the edge of the main band. There is also the possibility
of selecting materials in which there are additional bands with edges not too far
removed from the edge of the original band.

It was proposed by Hicks and Dresselhaus [7] that it might be advantageous to
make use of nanostructured semiconductors. Nanostructures can be two-dimensional
in the form of thin sheets, one-dimensional as nanowires or nanotubes, or even
zero-dimensional as nanodots. In all cases, the band structure becomes modified.

Following the theory of Hicks and Dresselhaus we consider the case of a
conduction band with a parabolic density of states. The simplest situation is that
of a two-dimensional sheet of thickness d that is of the order of a few interatomic
spacings. This means that the dispersion relation is changed from

= ℏ +
ℏ

+ ℏ
E

k
m

k

m
k
m2 2 2

, (4.31)x
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y
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2 2 2 2 2 2
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. (4.32)x
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We introduce a quantity η* which is related to the reduced Fermi energy η by the
relation

η η π* = − ℏ
m d kT2

. (4.33)
x

2 2

2

In terms of this quantity the Seebeck coefficient is given by

α η= − − *
⎛
⎝⎜

⎞
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k
e

F
F
2

, (4.34)1

0

where the relaxation time has been supposed to be constant. The electrical con-
ductivity is

σ
π

μ=
ℏ

⎛
⎝⎜

⎞
⎠⎟d

kT
m m F e

1
2

2
( ) . (4.35)x y x2

1/2
0
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When the expression for the electronic thermal conductivity is also included, the
dimensionless figure of merit becomes

η
=

− *

+ −
β *

( )
zT

F

F

2

3 4
. (4.36)
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F
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1

1

0

2
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where β* is given by

β
π

μ
λ

* =
ℏ

⎛
⎝⎜

⎞
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kT
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e
1

2
2

( ) . (4.37)x y
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2
1/2

2

L

Equation (4.36) does not become significantly different from its three-dimensional
equivalent until d is very small. Eventually, when d is small enough, the effective
density of states rises and this allows zT to become greater.

Hicks and Dresselhaus applied their ideas to the most widely used thermoelectric
material, bismuth telluride. They assumed a rather moderate maximum value of zT
equal to 0.52 for the bulk compound and ignored any possible change in the lattice
conductivity. They predicted that zT would become substantially greater than unity
for specimens of less than 5 nm thickness. An even greater improvement would be
expected for one-dimensional materials and quantum dots and similar behaviour has
been predicted for other substances.

In the event, it seems that there are very few instances where it can be claimed that
the electronic properties have been enhanced by adopting nanostructures. This is
possibly due to the difficulty in dealing with materials that have a sufficiently small
thickness. Nevertheless, there are numerous examples of materials that have been
improved through incorporating nanostructures but this has usually been attributed
to a reduction in the lattice conductivity.
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