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Preface

For many years after their discovery in the early part of the nineteenth century the
thermoelectric effects were not much more than a scientific curiosity. They
eventually found application in the measurement of temperature and in the detection
of thermal radiation. However, thermoelectricity is now regarded as a serious means
for the conversion of heat into electricity and for heat pumping and refrigeration.
The present-day thriving thermoelectric industry has come about through the
dedicated research of materials scientists from all disciplines with a major contri-
bution coming from solid state physicists. Considerable advances have been made
since the introduction of semiconductor thermoelements in the middle of the
twentieth century but much more needs to be done and it is hoped that this book
will encourage a new generation of experimental and theoretical physicists to use
their talents in the study of thermoelectricity.

Julian Goldsmid
Kingston Beach, Tasmania, Australia

March 2017
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Chapter 1

The Seebeck and Peltier effects

1.1 Definition of the thermoelectric coefficients
In this book we shall review the physical aspects of an energy conversion process
that does not require any mechanical movement. The thermoelectric phenomena in
those solids that conduct electricity are a measure of the energy transported by the
charge carriers. These effects are thermodynamically reversible but they are
invariably accompanied by irreversible effects associated with electrical resistance
and thermal conduction. One of our aims is to show how the reversible processes can
be maximised and the irreversible processes minimised.

The effect that bears his name was discovered in 1821 by Thomas Seebeck. It is
manifest as an electromotive force (EMF) or voltage, V, which appears when the
junction between two dissimilar conductors (A and B) is heated. Strictly speaking,
the effect depends on the temperature difference, ΔΤ, between the two junctions
that are needed to complete the electrical circuit. The Seebeck coefficient is
defined as

=
Δ

a
V
T

. (1.1)AB

Although the effect occurs only when there is a junction between two materials, the
Seebeck effect is a characteristic of the bulk rather than surface properties.

The Seebeck effect is often used in the measurement of temperature. A
thermocouple for this purpose typically consists of two metals or metallic alloys.
For example, copper and constantan, with a differential Seebeck coefficient of about
40 μV K−1, are commonly employed. Since a thermocouple measures the temper-
ature difference between two junctions, the second junction must be placed in an
enclosure at some known temperature, such as a bath of melting ice at 0 °C.
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A closely related effect was discovered in 1834 by Jean Peltier. Peltier heating or
cooling occurs when an electric current, I, flows through the junction between two
conductors. The Peltier coefficient, πAB, is defined as

π = q
I

, (1.2)AB

where q is the rate of heating or cooling.
It is rather more difficult to demonstrate the Peltier effect than the Seebeck effect.

If the thermocouple branches are metallic, the reversible Peltier effect is usually
overshadowed by irreversible Joule heating. Thus, unless the electric current is very
small, the best that can be done is to show that the overall heating is less for the
current flow in one direction rather than the other. Of course, with the semi-
conductor thermoelements that are now available, it is easy to show that water can
be frozen with the current in one direction and boiled with the current in the opposite
direction.

1.2 The Kelvin relations
It is not surprising that the Seebeck and Peltier coefficients are inter-dependent.
Kelvin established two laws that relate αAB and πAB to one another and to a third
quantity, the Thomson coefficient, τ. The Thomson coefficient is the rate of heating
per unit length when unit current passes along a conductor for unit temperature
gradient. It may be expressed, therefore, as

τ = q x
I T x
d /d
d /d

. (1.3)

Unlike the Peltier and Seebeck effects, the Thomson effect exists for a single
conductor and is present for both branches of a thermocouple.

The relationships between the thermoelectric coefficients can be determined by
the principles of irreversible thermodynamics. These relationships, which are known
as Kelvin’s laws, are

π = a T , (1.4)AB AB

and

τ τ α− = T
T

d
d

. (1.5)A B
AB

It would clearly be helpful if we could assign Seebeck and Peltier coefficients to each
branch of a thermocouple so that αAB and πAB would be equal to (αA − αB) and
(πA − πB) respectively. We note that the thermoelectric coefficients are equal to zero
for all pairs of superconductors, so it is reasonable to suppose that the absolute
values of α and π are zero for any superconductor. This being so, we can obtain
the absolute values of α and π for any normal conductor by joining it to a
superconductor. Of course, this procedure is effective only below the critical
temperature of the superconductor. However, the absolute Seebeck coefficient of
the normal conductor can be extrapolated to higher temperatures [1, 2] using the
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second Kelvin relation, equation (1.5). This has actually been done for the metal
lead, which can be used as a reference material in establishing the absolute Seebeck
coefficients of other conductors.

The first of Kelvin’s laws, equation (1.4), is useful in that it tells us that one does
not need to specify both the Seebeck and Peltier coefficients. The Peltier coefficient
is, in fact, rather difficult to determine, whereas the Seebeck coefficient is one of the
easiest of physical properties to measure. Thus, it is common practice to develop the
theory of thermoelectric energy conversion in terms of the Seebeck coefficient. If and
when the Peltier coefficient is needed, it is replaced by αT.

1.3 Electrical resistance and thermal conductance
The Seebeck and Peltier effects are reversible and a thermoelectric energy convertor
would have the characteristics of an ideal heat engine were it not for the presence of
the irreversible effects of electrical resistance and heat conduction. If one attempts to
reduce the Joule heating in a thermocouple by increasing the cross-section area and
reducing the length one merely increases the heat conduction losses. In developing
the theory of thermoelectric generation and refrigeration one needs to include terms
that involve the electrical and thermal conductivities of the thermocouple materials.

The electrical conductivity, σ, is defined by the relation

σ = IL
VA

, (1.6)

where I is the electric current, V is the applied voltage, L is the length and A is the
cross-section area. As we shall see later, it is important to specify that the voltage is
that for isothermal conditions.

The other quantity of interest, the thermal conductivity, λ, is defined by

λ =
Δ
qL

A T
, (1.7)

where q is the heat that is transported for a temperature differenceΔT over a length L.
It is obvious that the Seebeck and Peltier coefficients should be as high as possible

and that the electrical conductivity should be large and the thermal conductivity
small. However, as we shall see later, these requirements cannot all be met in a given
material. Usually an increase in the thermoelectric coefficients is accompanied by a
decrease in the electrical conductivity. In the next chapter we shall show the relative
importance of the different properties and we shall introduce a quantity known as
the figure of merit, z. We shall show how the performance of thermoelectric
refrigerators and generators is related to z.

References
[1] Borelius G, Keesom W H, Johansson C H and Linde J O 1932 Proc. Ned. Akad. Wet. 35 10
[2] Christian J W, Jan J P, Pearson W B and Templeton I M 1958 Can. J. Phys. 36 627
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Chapter 2

The thermoelectric figure of merit

2.1 Coefficient of performance of thermoelectric heat pumps and
refrigerators

The possibility of using the Peltier effect as a means of refrigeration was recognised
in the nineteenth century. A refrigerator is a device for transporting heat from a
source at a temperature T1 to a sink at a higher temperature T2. The ratio of the
cooling power to the rate of working, i.e. the electrical power input, is known as the
coefficient of performance, ϕ. The value of ϕ generally falls as (T2 − T1) increases
and there is a maximum temperature difference, ΔTmax, that can be achieved with
any particular heat engine. It is desirable that both ϕ and ΔTmax should be large. It
was shown by Altenkirch in 1911 [1] that these quantities can be related to the
Seebeck coefficient and to the ratio of the electrical to thermal conductivity in each
of the branches of a thermocouple that is used as a refrigerator. Altenkirch’s theory
is still useful though, at the time that it was presented, no thermoelectric materials
were available that allowed worthwhile values of ΔTmax to be reached.

We discuss the performance of a thermoelectric refrigerator using the simple
model shown in figure 2.1. The diagram shows a single thermocouple situated
between a source of heat and a heat sink. The couple will generally consist of a
positive and a negative branch though occasionally one of the branches may be
a metal with a Seebeck coefficient that is close to zero. For example, a super-
conducting branch [2, 3] will not contribute to the thermoelectric effects but neither
will it impair the performance of the other, active, branch. The branches are usually
linked by metallic conductors.

When an electric current I flows through the couple there will be a Peltier cooling
effect IπAB, which will be of the order of a tenth of a watt per amp. Most practical
refrigerators will require several watts of cooling and this is achieved by connecting
many thermocouples thermally in parallel and electrically in series so as to avoid the
use of excessively large currents. However, the theory for a single couple is equally
valid for a multi-couple arrangement.
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We shall suppose that the thermocouple makes perfect thermal contact with the
source and sink and we shall ignore heat transport other than through the two
branches. It will be necessary to take account of the relative ratios of length, L, to
cross-section area, A, for the two arms. It will be supposed that the temperature
dependence of the Seebeck coefficient and of the electrical and thermal conductiv-
ities can be ignored. This is a reasonable approximation for thermoelectric
refrigerators since the temperature difference (T2 − T1) is generally much less than
the absolute temperature.

The Peltier cooling effect will be opposed by thermal conduction and by Joule
heating, half of which will be delivered to the heat source and half to the sink. Thus,
the overall rate of cooling is given by

α α= − − − −q T I I R K T T( ) /2 ( ), (2.1)1 p n 1
2

2 1

where R is the electrical resistance of the two branches in series and K is the thermal
conductance of the branches in parallel. R and K are given by

ο ο
= +R

L

A
L
A

, (2.2)
p

p p

n

n n

and

λ λ= +K
A

L
A

L
. (2.3)

p p

p

n n

n

The rate of expenditure of electrical energy, w, can be expressed as

α α= − − +w T T I I R( )( ) . (2.4)p n 2 1
2

Thence the coefficient of performance, ϕ, is given by

ϕ
α α

α α
= =

− − − −
− − +

q

w

T I I R K T T

T T I I R

( ) /2 ( )

( )( )
. (2.5)1 p n 1

2
2 1

p n 2 1
2

Figure 2.1. Basic thermoelectric refrigerator.
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It will be noticed from equation (2.1) that the cooling power contains a term that
increases linearly with the electric current and an opposing term that varies with the
square of the current. Thus, there is a particular current at which the cooling power
reaches a maximum. Also, because of heat conduction, the cooling power will be
negative when the electrical current is very small. This is illustrated in the schematic
plot of figure 2.2 in which the cooling power is plotted against the electric current.

2.2 The dimensionless figure of merit, ZT
It is evident from equation (2.5) that the coefficient of performance depends on the
electric current. It reaches its maximum value [4] when the current is equal to Iϕ
where

α α
=

− −
+ −ϕI

T T

R ZT

( )( )

{(1 ) 1}
. (2.6)

p n 2 1

m
1/2

Here Tm is the mean temperature and Z is equal to (αp − αn)
2/KR. When the current

is Iϕ the coefficient of performance becomes

ϕ = + −
− + +

T ZT T T
T T ZT

{(1 ) ( / )}
( ){(1 ) 1}

. (2.7)max
1 m

1/2
2 1

2 1 m
1/2

It is clear from this equation that the coefficient of performance rises as Z becomes
larger and this quantity is known as the figure of merit. Nowadays it is more
common to use the dimensionless figure of merit, ZT, rather than Z as a measure of
the quality of a thermocouple.

Figure 2.2. Plot of cooling power against electric current for a thermoelectric refrigerator. The current is given
as a fraction of that which yields maximum cooling. The cooling power is expressed as a fraction of the
maximum value if there were no temperature difference between the junctions. The actual temperature
difference is arbitrarily chosen as ΔTmax/2.
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For a given thermocouple, the figure of merit can be optimised by adjustment of
the length and cross-section area of the branches. ZT reaches its largest value when
KR has its minimum value. This occurs when

σ λ
σ λ

=
⎛
⎝⎜

⎞
⎠⎟

L A

L A
. (2.8)n p

p n

n n

p p

1/2

When this condition is satisfied the figure of merit is given by

α α
λ σ λ σ

=
−
+

Z
( )

{( / ) ( / ) }
. (2.9)

p n
2

p p
1/2

n n
1/2 2

There is a useful relationship between the maximum temperature difference, ΔTmax,
and the figure of merit. This relationship is

Δ =T
ZT

2
. (2.10)max

1
2

This follows from equation (2.7) when we set the coefficient of performance equal to
zero. The plot of ΔTmax against ZT1, for a sink temperature of 300 K, is shown in
figure 2.3. It will be seen that substantial temperature differences can be achieved
when ZT1 becomes of the order of unity.

It will be noted from its definition in equation (2.9) that the figure of merit
involves a combination of the properties of the two branches. However, in searching
for improved thermoelectric materials, it is convenient to consider the properties
of each branch separately. Thus, it is usual to define a figure of merit, z, for an
individual material, as α2σ/λ. Since this figure of merit involves the square of the
Seebeck coefficient, it is positive irrespective of whether the material is positive or
negative. There is no simple relationship between the figure of merit, Z, for a couple

Figure 2.3. Plot of ΔTmax against ZT1 for a thermoelectric refrigerator. The sink temperature, T2, is equal to
300 K.
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and the figures of merit zp and zn for the separate branches. However, it is often a
good approximation to set Z equal to the mean of the values of zp and zn. Therefore,
in discussing the selection and improvement of thermoelements, we shall invariably
make use of the single-material figure of merit.

Although the Peltier effect finds its most common use in refrigeration, it should
not be forgotten that a thermocouple can also be an effective heat pump. When a
Peltier device is used in this mode, the temperature of the heat source may be greater
than that of the sink. We can again make use of equation (2.1) with appropriate
signs for each of the terms on the right hand side. Here the coefficient of perform-
ance is equal to the ratio of the rate of heating at source to the electrical power. The
coefficient of performance can be considerably greater than unity, as it may also be
for operation in the refrigeration mode.

2.3 The efficiency of thermoelectric generators
We turn now to the use of the Seebeck effect in the generation of electricity. We shall
make the same assumption that there is no heat transfer between the source and sink
other than through the thermocouple. Again, we expect that an actual generator will
need a number of couples connected in series electrically and thermally in parallel.
The output power would be too small for most applications if only one or two
couples were employed. It will be supposed that the output from the generator is fed
into a resistive load, RL, the value of which can be adjusted. The arrangement is
shown in figure 2.4.

We are interested in the efficiency, η, defined as the ratio of the power delivered to
the load to the rate at which heat passes from the source to the sink. It must be
remembered that the current produced by the Seebeck effect will itself lead to heat
transfer between the source and sink through the Peltier effect. The electric current is
given by

α α
=

− −
+

I
T T

R R

( )( )
. (2.11)p n 1 2

L

The rate at which heat flows from the source is

α α= − + − −q IT K T T I R( ) ( )
1
2

. (2.12)1 p n 1 1 2
2

Figure 2.4. Simple thermoelectric generator connected to a resistive load, RL.
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and the power delivered to the load is

α α
=

− −
+

⎧⎨⎩
⎫⎬⎭w

T T

R R
R

( )( )
. (2.13)p n 1 2

L

2

L

The efficiency is obtained as w/q1 from equations (2.12) and (2.13).
The power output has its maximum value when the load resistance is equal to the

internal resistance of the generator. However, if this condition is applied the
efficiency can never exceed 50%. The efficiency is at its maximum when the load
resistance is chosen so that

= = +M
R
R

ZT(1 ) , (2.14)L
m

1/2

where Tm is the mean temperature. When RL satisfies this equation, the efficiency
has the value

η = − −
+

T T M
T M T T

( )( 1)
( / )

. (2.15)1 2

1 2 1

It will be noticed that, as M approaches infinity, the efficiency approaches the
Carnot cycle value of (T1 − T2)/T1. In figure 2.5 we show how the maximum
efficiency varies with ZTm for a heat sink temperature, T2, of 300 K. It will be seen
that, for ZTm equal to unity and a temperature difference of 100 degrees, the
efficiency is about 5%. This may be compared with an efficiency of 25% for a Carnot
cycle working between the same temperatures.

Figure 2.5. Plot of efficiency against ZTm for thermoelectric generation. The heat sink temperature, T2, is set
at 300 K.
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2.4 Multi-stage arrangements
If a thermoelectric generator is operating between widely different source and sink
temperatures it is unlikely that a single pair of thermoelectric materials will cover the
whole range. Thus, the generator may consist of a number of stages arranged in a
thermal series. Alternatively, the branches of a single couple may be segmented,
though this raises problems of compatibility.

Multi-stage units are sometimes employed in thermoelectric refrigeration if the
required temperature difference is greater than can be achieved with a single stage.
In principle, any required source temperature can be reached by this means but, in
practice, it is difficult to obtain a temperature difference that is greater than, say,
twice that for a single stage device.

Let us suppose that we have N stages. There is no reason why the coefficient of
performance should be the same for all the stages but we shall assume that it is
arranged for this to be the case and that for each stage the coefficient of performance
is ϕ1. Then the Nth and final stage will extract heat from the source at the rate q1 and
deliver heat at the rate q1(1 + 1/ϕ1) to the (N − 1)th stage. This stage has to remove
not only the heat from the source but also the power consumed by the Nth stage.
Thus, the (N − 2)th stage has to extract heat at the rate q1(1 − ϕ1)

2. It is then found

Figure 2.6. (a) Commercial four-stage cascade (courtesy of II-VI Marlow). (b) Schematic representation of a
two-stage cascade. Note that the performance will fall short of the theoretical predictions because of thermal
resistance between stages and heat loss through the electrical connections.
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that the rate at which heat is rejected by the first stage to the heat sink is q1(1 + 1/
ϕ1)

N. This must be equal to q1 plus the total electrical power consumed. The overall
coefficient of performance is then

ϕ =
+ −

ϕ( )
1

1 1
.

(2.16)1
N

1

We illustrate the use of this relationship for a multi-stage cooler, or cascade, made
up of thermocouples with ZTm equal to 0.5 at all temperatures. This is a
conservative value at room temperature but may well represent typical behaviour
at the low-temperature end of the cascade.

Figure 2.6(a) portrays a commercial four-stage unit while figure 2.6(b) shows the
essentials of a two-stage cascade. With the assumed value of ZTm and T2 equal to
300 K, the maximum temperature difference for a single stage would be about 55°.
For such a temperature difference, the coefficient of performance would, of course,
be zero. On the other hand, for a two-stage cascade with the same temperature
difference, the value of ϕ1 for each stage would be about 0.5 and the overall
coefficient of performance would have the respectable value of 0.125. It is clear that
there are advantages in using a cascade when the required temperature difference is
close to the maximum for a single stage. Multi-stage Peltier coolers that yield
temperatures well below 200 K are commercially available as shown in table 2.1.
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Table 2.1. ΔTmax for commercial multi-stage modules (data supplied by J Sharp
of II-VI Marlow).

Number of stages ΔTmax for zero load with T2 = 300 K

1 73°
2 107°
3 123°
4 130°
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Chapter 3

Measuring the thermoelectric properties

3.1 Adiabatic and isothermal electrical conductivity
The measurement of the electrical conductivity of a thermoelectric material is not
without its problems. If one measures the resistance between the ends of a sample,
there is the danger of including a contribution from the contacts. This difficulty can
be overcome if inset probes are used as in figure 3.1. However, it is not always
necessary to use inset probes since it has been found that negligible contact
resistances can be achieved for many thermoelectric materials provided that the
sample length is not too small.

A more subtle problem is peculiar to thermoelectric materials [1]. The passage of
an electric current not only produces a voltage drop due to the electrical resistance
but it also leads to a temperature gradient through the Peltier effect. This temper-
ature difference, in turn, produces a Seebeck voltage. This problem is most evident
for good thermoelectric materials and, as we shall see later, can be used to advantage
in the determination of the figure of merit. Here, however, we shall discuss the
determination of the isothermal electrical conductivity.

The resistive voltage appears immediately on the introduction of an electric
current but the Seebeck voltage takes some time to develop, depending on the
thermal capacity of the system. Thus, if the electrical resistance is determined using
an alternating current of sufficiently high frequency, it is the isothermal value that is
obtained. Figure 3.2 shows an alternating current bridge with inset probes which has
been used successfully on thermoelectric materials [2]. This apparatus was adapted
from the classical Wheatstone bridge, using a vibration galvanometer rather than a
direct-current galvanometer. The potential difference between the inset probes on
the sample is compared with that between two points on the slide wire. Balance is
obtained first with the switches in the S position and then with the switches moved to
M. The variable resistors, B1 and B2, allow the balance points for the two probes to
be located within the length of the slide wire. P and Q are standard resistors and the
resistance per unit length of the slide wire is also a known quantity.
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It is generally accepted that direct current measurements are more precise than
those in which alternating current is employed. In particular, it is desirable to be able
to use a direct current potentiometer if the Hall effect and the magnetoresistance are
also being studied. Precise measurement of these effects has been carried out using a
chopper system [3]. Here the current and the potential difference between probes
attached to the sample are periodically reversed. The experimental arrangement
is shown in figure 3.3. Additional probes are attached to the sample if the Hall
coefficient is being measured.

One of the difficulties in using a chopping method is that transient voltages are
generated upon switching the current. This difficulty is overcome by ensuring that
the potential probes are isolated during the brief time that the switching actually
occurs.

It is noteworthy that the four-probe method, which has been such a useful tool in
the study of semiconductors, is also of some value for thermoelectric materials,

Figure 3.1. Use of inset probes in measuring the electrical conductivity.

Figure 3.2. Alternating current bridge for measuring the electrical conductivity.
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though probably not when high precision measurements are needed. There are two
arrangements as shown in figure 3.4. When the probes are in line the electrical
conductivity is found from the relationship

σ
π

= I
aV2

, (3.1)

where I is the current between the outer probes and a is the spacing between adjacent
probes. V is the potential difference between the inner probes. Ideally, the measure-
ment should be made with an alternating current.

Figure 3.4 also shows an alternative arrangement in which the probes are located
at the corners of a square. The current is passed between probes on adjacent corners.
This arrangement has the advantage that the Hall coefficient can also be determined
by passing the current between diagonally opposite corners. The square config-
uration also allows somewhat smaller samples to be used, but the general rule
applies that the specimen should be substantially greater than the space occupied by
the probes.

One of the most important objections to the use of the four-probe method is that
equation (3.1) is not applicable for anisotropic materials. A correction can be made

Chopper

S1 S2

sample
standard

DC potentiometer

specimen

Figure 3.3. Chopper system for determining the isothermal resistivity. S1 and S2 are two-pole, two-way selector
switches.

Figure 3.4. The four-probe method for determining the electrical conductivity.
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if the anisotropic material is in the form of a single crystal but the method is of little
use if it is polycrystalline. Unfortunately, some of the most widely used thermo-
electric materials are in the form of anisotropic polycrystals.

3.2 Problems of measuring the thermal conductivity
It has long been recognised that it is much more difficult to make precise measure-
ment of the thermal conductivity than the electrical conductivity. This is because
there is no equivalent of an electrical insulator when we are dealing with heat
conduction. Although it is true that there is no conduction of heat in a vacuum there
is always heat transfer by radiation to be taken into account.

It may take a long time to reach thermal equilibrium in some systems but, even
so, static methods have often been preferred over dynamic techniques for measuring
the thermal conductivity, in the belief that they are more reliable. However, as we
shall see, some dynamic methods are now regarded with favour.

In a steady-state method the sample is held between a heat source and a sink. The
rate of heat flow can be determined from the power fed into the source or from
the heat passing into the sink. These two alternatives will only be equivalent to one
another if due account is taken of heat transfer by radiation and by convection and
conduction through the surrounding air, if the space is not evacuated. It is necessary
to determine the temperature gradient along the test sample. This can be done by
finding the temperatures of the source and sink. Alternatively, the temperature at
different points on the sample can be determined but it must be remembered that a
thermometer pressed against the surface will not generally yield the true temper-
ature. A more reliable result is obtained if the thermometer, usually a thermocouple,
is embedded in a small hole, with contact being improved, perhaps, by spark
welding.

There is also the question of the form factor for the sample. For electrical
measurements, it is usually best to work with samples that have a large ratio of
length to cross-section area. On the other hand, when the thermal conductivity is
low, as it often is for good thermoelectric materials, a much smaller ratio of length to
cross-section area is preferred. This sometimes means that different samples are
needed for assessing the thermal and electrical conductivities. If different specimens
are used, it is important that both are characteristic of the same material.

There are some advantages in using a comparison method rather than an absolute
determination of the thermal conductivity. However, the comparison material
should have a similar thermal conductivity to the material that is being tested and
there is not always a standard substance for which the thermal conductivity is known
with the required accuracy. Furthermore, comparison methods are usually slower
than absolute techniques because of the increased length of the thermal path.

An example of lateral thinking being brought to bear on thermal conductivity
measurement is to be found in the method used by Ioffe [4], one of the pioneers in
the application of thermoelectricity. A discussion of Ioffe’s system highlights some
of the problems of thermal conductivity measurement and how to solve them. The
principles of the method are shown in figure 3.5.
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In the Ioffe method, the test specimen is sandwiched between two copper blocks.
The acrylic shield attached to the larger block carries a screw that is used to ensure
good contact on both faces of the sample. Electrical conduction between the sample
and the lower block is prevented by a thin layer of mica but, of course, this
introduces some undesirable thermal resistance. In use, the lower block is immersed
in a cooling bath at some temperature, T1. The temperature, T2 of the upper block is
then observed as a function of time. An approximate value for the thermal
conductivity, λ, is found from the equation

λ− = −C
T
t

T T
A
L

d
d

( ) , (3.2)2
2

2 1

where C2 is the thermal capacity of the upper block and A/L is the ratio of cross-
section area to length for the sample. This equation does not take account of the fact
that part of the heat entering the lower block comes from the sample. This factor can
be included by adding one-third of the heat capacity of the sample to C2. This
correction requires knowledge of the specific heat of the substance under test, but
this quantity does not have to be very accurate if the sample is much smaller than the
upper block.

When equilibrium is established, it is found that the two copper blocks are still at
different temperatures and this allows us to estimate the heat loss to the surround-
ings. There is also some transfer of heat through the air surrounding the sample and
this can be determined by substituting a specimen of known thermal conductance for
the test material. One must also correct for the thermal resistance between the
sample and the two copper blocks, the correction being found by using different
lengths, L. It has also been shown [5, 6] by a more refined theoretical treatment that
one should neither make measurements too soon after immersing the lower block in
the coolant nor when the upper block has come close to its equilibrium temperature.

In the search for new materials it is often necessary to find the thermal
conductivity of very small specimens. Nowadays, this problem is solved by using
the 3ω method [7]. In this technique, a thin metal strip is deposited on the sample as

Figure 3.5. The Ioffe method for the measurement of thermal conductivity.
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shown in figure 3.6. The strip is in good thermal contact with the substrate but
electrically isolated from it. The outer arms are used for the introduction of an
alternating electric current at a frequency ω while the inner arms pick up a potential
difference. It is noted that the temperature dependence of the electrical conductivity
allows the metal strip to act as a thermometer.

The electric current heats the strip, producing a temperature wave of frequency
2ω since heating occurs twice during each cycle. As the temperature wave travels
radially outwards it suffers exponential damping. If the width of the strip is less than
one-fifth of the thickness of the substrate, there is no significant interference from the
reflected thermal wave. The observed potential difference will have a component
with a frequency ω associated with the flow of current, and another component of
frequency 2ω associated with the change of resistance due to the temperature wave.
When these two components are combined there will be a resultant at a frequency
3ω. The potential difference V3 is observed at two different frequencies, ω1 and ω2.
The thermal conductivity is given by

λ ω ω
π

=
−

V
lR V V

R
T

ln( / )
4 ( )

d
d

, (3.3)
3

1 2
2

3,1 3,2

where R is the electrical resistance.
It is noteworthy that, although the 3ω technique involves thermal diffusion, it is

essentially the thermal conductivity that is measured.
True thermal diffusivity methods have also been used on thermoelectric materials,

particularly at elevated temperatures, since they allow the radiation losses to be
eliminated. The thermal diffusivity, κ, is defined as

κ λ=
c

, (3.4)
V

where cV is the specific heat per unit volume.
Early thermal diffusivity measurements used the Ångström method [8] in which a

sinusoidal variation of temperature is applied at one end of a long bar. The variation

Figure 3.6. Experimental arrangement in the 3ωmethod. An alternating current at a frequency ω is introduced
between the outer arms. The potential difference between the inner probes is found using a lock-in amplifier.
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of temperature with time is observed at two points separated by a distance l. If there
is no heat transfer by radiation it is found that

κ ω
α

ω
β

= =l l
2 ln 2

, (3.5)
2

2

2

2

where α is the ratio of the amplitudes of the temperature wave at the two points and
β is the phase difference. These equations must be modified if there is any radiative
transfer but, even when this is a factor, it still remains true that

κ ω
β α

= l
2 ln

. (3.6)
2

Ångström’s method has been used for thermoelectric materials with the thermal
wave being generated by the Peltier effect and the specimen acting as its own
thermometer [9]. However, it is rare to find a specimen that is long enough for the
Ångström conditions to be satisfied. Nevertheless, the measurement of the thermal
diffusivity is still favoured as a means of overcoming the problem of radiation losses.
It is now more usual to employ thin samples with laser heat sources [10]. Typically,
one of the faces is irradiated by a pulsed laser and the temperature at the opposite
face is observed as a function of time using, say, an infrared detector. In one
technique, the time, t1/2, for the back surface to reach half the steady state rise of
temperature, is observed. If the thickness is d, the thermal diffusivity is found from
the equation

κ
π

= d
t

1.37
. (3.7)

2

2
1/2

3.3 The Seebeck coefficient
In some ways the Seebeck coefficient is the easiest of the thermoelectric parameters
to measure, since it does not require the use of a sample of any particular shape or
size. However, there are dangers to be avoided.

For example, let us suppose that a temperature gradient is established for a
particular sample. Then this gradient and the electrical potential gradient can both
be determined in principle using fine wire thermocouples. If the thermocouples are
made from, say, copper and constantan, the result should be the differential Seebeck
coefficient between the test material and copper, assuming that the copper wires are
used in the potential measurement. However, there may be a gradient of temper-
ature within the thermocouple junctions and the observed temperature difference
may not be equal to that on which the thermoelectric voltage depends.

It is, in fact, not necessary to attach thermocouples or measuring probes to the
test specimen. It is sufficient to press copper blocks at different temperatures against
the surface of the specimen. Because of the high thermal conductivity of copper,
virtually all the temperature gradient will occur in the test material. However, even
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though this method is so simple it has been found to yield incorrect results. For
example, in an attempt to improve the electrical contact, some workers have
electroplated the surfaces of their specimens. This has allowed some of the temper-
ature drop to occur in the metallic part of the circuit with a loss of a fraction of the
Seebeck voltage.

It is not actually necessary to determine the temperature difference that gives rise
to the Seebeck voltage. This is evident from the elegant technique developed by
Cowles and Dauncey [11] in which the ratio of the Seebeck coefficient of an
unknown material is compared with that of a chromel–alumel thermocouple. Their
apparatus is shown in figure 3.7.

The principle of the method is that the ratio of the thermal electromotive force
(EMF) from the sample to that from a chromel–alumel couple is equal to the ratio of
the calibrated variable resistor, R2, to the fixed standard resistor, R1. Balance is first
obtained with the switches in the S position by adjustment of the resistor, R3. Then,
balance is again obtained with the switches in the position M by adjustment of R2.
The measurement is completed when balance is reached with the switches in both the
S and M positions. In practice, this is a rapid procedure. The Seebeck coefficient is
given with respect to chromel. The reversing switch is provided so that materials
with both positive and negative Seebeck coefficients can be tested.

Very often it is necessary to determine the Seebeck coefficient as a function of
temperature. This can be achieved by maintaining one end of the sample at a fixed
temperature while the other end is gradually heated. Continuous measurements are
made of the temperature difference and the EMF between the two ends. The
Seebeck coefficient is given by the slope of the plot of the EMF against temperature

Figure 3.7. Circuit used in the measurement of the Seebeck coefficient [11].
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difference. The method is not as accurate as one in which a small temperature
difference is applied at each temperature but it is much more rapid.

3.4 Direct determination of the figure of merit
The thermoelectric figure of merit can be calculated from the measured values of the
Seebeck coefficient and the electrical and thermal conductivities. However, provided
that ZT is not too small, its value can be found directly by comparing the adiabatic
and isothermal conductivities, as was first demonstrated by Harman [12].

Suppose that a sample of material is maintained in a vacuum at a uniform
temperature and that its electrical resistance is RI. Then let the electrical resistance
be measured again when equilibrium has been reached after the passage of a steady
current I. This current produces a temperature difference ΔT through the Peltier
effect, where

αΔ =T
TI
K

, (3.8)

K being the thermal conductance, it being assumed that all the heat transfer occurs
within the sample. There will then be a Seebeck voltage equal to αΔT which will be
superimposed on the familiar resistive voltage, IRI. The adiabatic resistance RA is
equal to RI + α2T/K and, thus,

α= + = +R
R

T
K

ZT1 1 . (3.9)A

I

2

We can, therefore, find ZT by measuring the ratio RA to RI unless ZT is so small
that its determination becomes too inaccurate.

In a typical arrangement, the sample is suspended by its leads in a vacuum, as
shown in figure 3.8(a). If, as is usual, all the thermoelectric parameters are sought,
the potential probes consist of thermocouples, so that the temperature gradient can
be found. Figure 3.9 shows schematically how the potential difference changes with

Figure 3.8. Configurations for direct measurement of the figure of merit: (a) free sample and (b) sample
attached to a heat sink.
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time after switching the current on and off. The thermal gradient due to the Peltier
effect changes rapidly after switching and some data collection system with a fast
response is needed. Alternatively, the EMF can be found using both direct and
alternating currents.

It is often convenient to mount the sample on a heat sink, as shown in figure
3.8(b), particularly when the temperature dependence of the figure of merit is being
found. However, as we shall see, the losses are greater for this configuration. Often
the potential leads are actually attached to the metal blocks at either end of the
sample but this is only permissible when it has been established that the electrical
contact resistance is negligible.

There are a number of loss terms that have to be accounted for. Thus, there will
be conduction of heat through the current leads and the potential probes. There will
also be radiation between the surroundings and both the sample and the end caps.
However, the Harman technique has the advantage over conventional ways of
measuring the thermal conductivity in that there are no heater losses to be
considered.

We discuss the losses for the arrangement in figure 3.8(a). The temperature
difference ΔT between the ends is taken to be small compared with the absolute
temperature. The radiation loss to or from each end cap can be written as βcAcΔT/2.
Furthermore, the loss by conduction along the lead wires and probes can be
expressed as KlΔT/2. The radiation loss per unit length from a part of the sample
at temperature T will be βP(T − T0), where β is characteristic of the surface of the
specimen, P is the perimeter and T0 is the temperature of the surroundings. On
solving the differential equation we find that the dependence of ΔT on the current I
can be described by

α λ β β
Δ

= + + +IT
T

A
L

PL A K
12 2 2

. (3.10)c c l

The first term on the right-hand side of this equation corresponds to the heat
conducted through the sample while the remaining terms are related to the losses.

Figure 3.9. Schematic plot of potential difference against time in the measurement of the figure of merit using
the Harman method. The current is switched on at A and switched off at B. VI and VA are the isothermal and
adiabatic voltages, respectively.
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The loss terms are somewhat larger if the experimental arrangement in figure
3.8(b) is used. In this case equation (3.10) becomes

α λ β β
Δ

= + + +IT
T

A
L

PL
A K

3
. (3.11)c c l

In either version of the method the losses can be determined by using samples of
different length and shape.

It is, perhaps, surprising that no mention has been made of the influence of Joule
heating. In fact, it can be shown [13] that the Joule effect certainly raises the average
temperature of the measurement but it does not otherwise affect the value of ZT.

There is, however, another unexpected source of error. This can arise when the
sample is inhomogeneous [14]. An extreme case of this source of error is found for a
sample that is made up of equal parts of materials with positive and negative
Seebeck coefficients. In this situation the average Seebeck coefficient may be close
to zero but there will still be localised Peltier heating and cooling. Any attempt to
determine, say, the thermal conductivity by the Harman method will then lead to a
substantial error. Indeed there will be an error for any sample in which the Seebeck
coefficient is not uniform. Nevertheless, the Harman technique remains one of the
most useful methods for testing thermoelectric materials.
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Chapter 4

Electronic transport in semiconductors

4.1 Energy band theory
The treatment of charge transport in solids is derived from the free electron theory of
metals. Because of the interaction between the electrons and the crystal lattice, the
electrons are confined to states in specific bands of energy that are separated by
energy gaps. Moreover, the probability that an energy state contains an electron is
governed by quantum mechanics rather than classical statistics. It is found, at least
near the edges of the energy bands, that the carriers behave like free electrons except
that they must be assigned an effective mass m* that is different from the free
electron mass, m.

For our purposes, we may confine our attention to the two bands of highest
energy, the conduction and valence bands. Electrons can take part in the conduction
process only if they reside in energy states that are close to vacant states. This means
that conduction in a metal is due to electrons having a narrow range of energies.
There is a particular energy, the Fermi energy, at which there is a 50% probability of
a state being filled. It is the states within a few kT of the Fermi level, then, that are
responsible for the transport phenomena.

We are most interested in materials in which the Fermi level lies close to the edge
of a band. If this is the conduction band, the carriers may be regarded as quasi-free
electrons. On the other hand, if the Fermi level lies close to the upper edge of the
next-lower band, the valence band, the electrons behave as if their effective mass is
negative. It is convenient to regard these carriers in the valence band as if they have a
positive mass and a positive charge, and they are commonly known as positive holes
(or just as holes).

The density of electron states is much smaller near the band edge than it is deep
within a band. Thus, when conduction is due to carriers near the band edges, the
conductivity is much less than it is for a metal and the substance is known as a
semiconductor. Semiconductors are called n-type or p-type according to whether the
conduction is primarily due to electrons or holes. It is noted that n-type and p-type
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semiconductors have negative and positive Seebeck coefficients respectively. Typical
energy diagrams for n- and p-type semiconductors are shown in figure 4.1(a) and (b),
respectively. Figure 4.1(c) shows the case of an intrinsic semiconductor with the
Fermi level close to the middle of the energy gap.

For the time being we consider semiconductors in which the energy difference
between the valence and conduction bands is large enough for only one type of
carrier to be significant. The electrical conductivity and the Seebeck coefficient will
then depend on the Fermi energy, as measured from the band edge, the effective
mass, in so far as it determines the density of states in the band, and a quantity
known as the carrier mobility, μ, which is defined as the drift speed of the carriers in
unit electric field.

4.2 Mobility and effective mass
The energy diagrams in figure 4.1 do not show the whole picture. An electronic state
is characterised not only by its energy but also by its wave vector. In the simplest
case, the energy minimum occurs at zero wave vector. However, a minimum may
also be found at a non-zero value for the wave vector, crystal symmetry requiring
that similar minima are located at corresponding points in wave vector space. The
material is then called a multi-valley conductor.

In the quasi-free electron theory, the density of electron states at an energy E is
given by

π= *
g E E

m E E
h

( )d
4 (2 ) d

, (4.1)
3/2 1/2

3

where h is Planck’s constant. This equation must be modified in an NV-valley
conductor by setting m* equal to NV

2/3 times its value for a single valley. The single-
valley effective mass may exhibit directional dependence and is termed the inertial
mass mI to distinguish it from the density-of-states mass, m*.

The mobility depends on the inertial effective mass and on the relaxation time
associated with the scattering processes. It is assumed that any disturbance in the

Figure 4.1. Energy band diagrams for semiconductors: (a) n-type, (b) p-type and (c) intrinsic.
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carrier distribution will relax towards its equilibrium value with a characteristic
time, τ, which it will be supposed is dependent on the energy, E, and may be written
as τ0E

r, where r depends on the scattering process. It seems that for many of the
materials in which we are interested acoustic-mode lattice scattering is predominant,
in which case r is equal to −1/2. This is in spite of the fact that the bonding may have
an ionic as well as a covalent component.

4.3 Dependence of the transport properties on the Fermi energy
The density of charge carriers in any particular metal is more-or-less a fixed quantity
but this is not so for a semiconductor. The carrier density and, indeed, the sign of the
majority carriers can be controlled by the addition of impurities. Impurities that
increase the electron concentration are called donors and those that increase the hole
concentration are known as acceptors. An intrinsic semiconductor contains either no
impurities or an equal number of donors and acceptors. In some materials, vacancies
on lattice sites can act in the same way as foreign atoms. One of the effects of these
impurities is to change the position of the Fermi level. We shall find it convenient to
regard the Fermi energy, EF, as the independent variable.

We make use of the Boltzmann equation that relates the disturbance in the
electron distribution to the applied electric field and temperature gradient. It is
supposed that this disturbance is small and that it relaxes towards the equilibrium
distribution according to the equation

τ
−

= + −⎡
⎣⎢

⎤
⎦⎥

f E f E
u

f E

E
E
x

E E
T

T
x

( ) ( ) d ( )

d
d
d

( ) d
d

, (4.2)0 0 F F

where u is the velocity of the carriers in the x direction and f(E) is the Fermi
distribution function that has the equilibrium value f0(E) given by

=
+−( )

f E( )
1

exp 1
. (4.3)E E

kT

0 F

The transport properties can be found from the relations between the gradients of
the electric potential and temperature, the electric current density, i, and the heat
flux density, j. The expressions for the electric current and heat flux densities are

∫= ∓
∞

i euf E g E E( ) ( )d , (4.4)
0

and

∫= −
∞

j u E E f E g E E( ) ( ) ( )d . (4.5)
0

F

In equation (4.4) the upper sign is applicable when the carriers are electrons and the
lower sign applies for hole conduction. In the latter case the energy is measured
downwards from the band edge.
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The electrical conductivity is found by setting the temperature gradient equal to
zero, while the Seebeck coefficient and electronic thermal conductivity require the
electric current to be zero. In solving these equations, it may be assumed that the
disturbance in the distribution of the carriers is small enough that any alteration in u
is much less than the equilibrium velocity. We also replace the disturbed distribution
function f(E) by f(E) − f0(E) since the electrical and thermal flows are zero in
equilibrium.

It is convenient to express the transport coefficients in terms of integrals defined as

∫ τ= −
*

∞
+K

T
m

g E E
f E

E
E

2
3

( )
d ( )

d
d . (4.6)s

0
e

s 1 0

This expression, in turn, may be written as
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where

∫ξ ξ ξ ξ=
∞

F f( ) ( )d . (4.8)n
0

n
0

Here ξ is the reduced energy, E/kT. We shall also use the symbol η to represent the
reducedFermi energy,EF/kT. The values ofFare knownas theFermi–Dirac integrals.

It is found that the electronic parameters that appear in the figure of merit are

σ = e
T

K , (4.9)
2

1
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⎠⎟eT

E
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1
. (4.11)e 2 2

1
2

0

It must be remembered that the total thermal conductivity, λ, is the sum of the
electronic component given by equation (4.11) and a lattice component, λL.

4.4 Degenerate and non-degenerate conductors
There are good approximations for the Fermi–Dirac integrals when the Fermi
energy is either very much less than or very much greater than zero. If EF > 4kT the
material is said to be degenerate and the metallic approximation is used. In this case

η η η π η π=
+

+ + − − + ⋯
+

− −F
n

n n n n( )
1 6

( 1)( 2)
7
360

. (4.12)
n

n n
n

1
1

2
3

4
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One must include as many terms as are needed for the parameter in question to have
a non-zero value. Thus, the electrical conductivity requires only the first term so that

σ π τ= * +⎛
⎝⎜

⎞
⎠⎟h

e m E
8
3

2
( ) . (4.13)r

2

3/2
2 1/2

0 F
3/2

The electronic thermal conductivity needs the first two terms on the right-hand side
of equation (4.12) to be included. Then it is found that

λ
σ

π=
⎛
⎝⎜

⎞
⎠⎟T

k
e3

. (4.14)e
2 2

For most metals the electronic thermal conductivity is much larger than the lattice
contribution. Thus, equation (4.14) embodies the Wiedemann–Franz law which
states that the ratio of the thermal conductivity to the electrical conductivity is the
same for all metals, at any given temperature. The ratio λe/σT is known as the
Lorenz number, L.

The same two terms in equation (4.12) are also needed for the Seebeck coefficient.
It is found that

α π
η

= ∓
+( )k

e

r

3
. (4.15)

3
2

2

It is clear that, as η becomes large, the Seebeck coefficient has a magnitude that is
much less than k/e, which is consistent with the fact that most metals have values of
α of the order of only a few μV K−1.

We are actually much more interested in materials for which η is close to zero or
negative. When η is less than −2 we may use the classical approximation in which the
Femi–Dirac integrals become

η η= Γ +F n( ) exp( ) ( 1). (4.16)n

The gamma function Γ is such that Γ(n + 1) is equal to nΓ(n). When n is an integer,
Γ(n + 1) is equal to n! and Γ(1/2) is equal to π1/2. Thus, we can easily calculate the
gamma function for both integral and half-integral values of n.

If we use the classical approximation the integrals Ks become

π τ η= * Γ + ++ + ⎜ ⎟⎛
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Then the Seebeck coefficient is

α η= ∓ − +⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
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⎤
⎦⎥

k
e

r
5
2

. (4.18)

It will be seen that the Seebeck and Peltier coefficients are a measure of the total
energy transported by the charge carriers weighted according to the scattering
parameter, r. It is noted that the range for which this equation is valid covers
Seebeck coefficients of greater magnitude than 4k/e, if we suppose that r is −1/2.
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Since k/e is 86.4 μV K−1, this means that the magnitude of the Seebeck coefficient
should exceed about 350 μV K−1 if classical statistics are to apply. For most of the
thermoelectric materials that are used today, the Seebeck coefficient has a smaller
value than this, so the classical condition cannot often be used, except as a gross
approximation.

In the classical range the electrical conductivity is given by

σ π τ η= * Γ ++ ⎜ ⎟⎛
⎝⎜
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2
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2
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2 1/2

0
3/2

It is common practice to express the electrical conductivity as

σ μ= ne , (4.20)

where n is the carrier concentration and μ is the mobility. The expression for the
carrier concentration is

π η= *⎛
⎝⎜

⎞
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m kT
h

2
2

exp( ), (4.21)
2

3/2

where the quantity 2(2πm*kT/h2)3/2 is known as the effective density of states. If we
substitute the carrier concentration in equation (4.19) we find that the mobility is
given by

μ
π
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It is noteworthy that the mobility does not depend directly on the Fermi energy in
the classical region.

The expression for the Lorenz number in a non-degenerate conductor is

= +⎜ ⎟⎛
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k
e

r
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2

, (4.23)
2

which is of the same order as the value given by equation (4.14) for a metal, though
somewhat smaller.

Although it is better to use the classical rather than the degenerate approximation
for most thermoelectric materials, neither is really applicable. Thus, one must
generally use the full expressions for the Fermi–Dirac integrals, Fn. Tables of these
integrals for integral and half-integral values of n may be found elsewhere [1–3].

4.5 Optimising the Seebeck coefficient
If we were restricted to metallic conductors the figure of merit would rise
continuously with the Seebeck coefficient. This is because the ratio of electrical to
thermal conductivity would always have the same value. However, in reality, as the
carrier concentration falls, the thermal conductivity becomes greater than the value
expected from the Wiedemann–Franz law. This is because of the influence of heat
conduction by the lattice. We shall discuss the lattice conductivity in the next chapter
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but here we take note of its existence since it affects the preferred value for the
Seebeck coefficient.

If the lattice conductivity were very large compared with the electronic
thermal conductivity, as it is for many semiconductors, the figure of merit would
be proportional to a quantity known as the power factor, which is defined as α2σ. As
shown in figure 4.2, the power factor falls off slowly as the Fermi level moves into
the band and the Seebeck coefficient decreases. It also falls rapidly as the Fermi level
moves into the band gap due to decrease in the carrier concentration. The maximum
power factor occurs when the Fermi level is very close to the band edge.

When we take account of the lattice conductivity in calculating the figure of merit
it is clear that the optimum Fermi energy will become more negative than that for
the maximum power factor. This is apparent from the curves shown in figure 4.3.
Here the dimensionless figure of merit is plotted against the reduced Fermi energy
for different values of (zT)max. As (zT)max becomes larger, so also does the optimum
Fermi level move further into the energy gap. This means that the optimum Seebeck
coefficient becomes of greater magnitude, as shown in figure 4.4.

The value of zT for any particular Fermi energy depends on the carrier mobility,
the density-of-states effective mass and the lattice thermal conductivity. These three
parameters can be embodied in a single quantity β which is given by [4]

β σ
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e
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2
2

. (4.25)0 2

3/2

It may be noted that (zT)max reaches a value of about 1 when β is equal to 0.4.

Figure 4.2. Plot of power factor against reduced Fermi energy for r = −1/2. The power factor is expressed as a
fraction of its maximum value.
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4.6 Bipolar conduction
As the temperature is raised it becomes possible for electrons to be thermally
activated from the valence band to the conduction band. The concentration of
electron–hole pairs depends on the size of the energy gap, Eg. Provided that Eg is
small enough, these carriers may become more numerous than those due to donor or
acceptor impurities. With increase of temperature the conductor passes from the
extrinsic region into the region of mixed conduction and finally becomes intrinsic.
The presence of both electrons and holes in the same conductor can have a profound
effect on the thermoelectric properties.

Figure 4.3. Plots of zT against reduced Fermi energy for various values of (zT)max.

Figure 4.4. Plots of zT against Seebeck coefficient for various values of (zT)max. The graphs are for n-type
material but would be identical for p-type material apart from the sign of the Seebeck coefficient.
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There will be contributions in and ip to the electric current density from the
electrons and holes respectively. These contributions satisfy the equation

σ α= −
⎛
⎝⎜

⎞
⎠⎟i

V
x

T
x

d
d

d
d

, (4.26)n,p n,p n,p

where σn,p and αn,p are the partial conductivities and Seebeck coefficients. The
electrical conductivity is found by setting dT/dx equal to zero and, not surprisingly,
it has the value

σ σ σ= + . (4.27)n p

The Seebeck coefficient is obtained when we set in + ip equal to zero, whence

α
α σ α σ

σ σ
=

+
+

. (4.28)
n n p p

n p

This equation tells us that the overall Seebeck coefficient is a weighted average of the
partial Seebeck coefficients, which will be of opposite sign. This means that the
Seebeck coefficient of a mixed or intrinsic semiconductor is likely to be very small.

There is a remarkable result if we determine the electronic thermal conductivity
when both types of carrier are present. Then the heat flux densities for the two
carriers are given by

α λ= −j Ti
T
x

d
d

. (4.29)n,p n,p n,p n,p

The thermal conductivity is defined for the condition of zero total electric current.
Thus,

λ λ λ
σ σ

σ σ
α α= + +

+
− T( ) . (4.30)e n p

n p

n p
n p

2

The third term on the right-hand side of equation (4.30) is the contribution to the
thermal conductivity from the bipolar effect and may be an order of magnitude
greater than the partial conductivities of the single carriers [5].

It is concluded that mixed conduction should be avoided in thermoelectric
materials since it not only reduces the Seebeck coefficient but also increases the
thermal conductivity.

4.7 Band engineering and nanostructure effects
Here we discuss some of the ways in which the power factor for a given Fermi energy
might be improved.

It is evident from equation (4.10) and, particularly, its classical form, equation
(4.18), that the Seebeck coefficient has a potential energy component and a
contribution from the kinetic energy. The kinetic energy component is weighted
according to the form of scattering for the charge carriers. In most high mobility
semiconductors the scattering parameter, r, is equal to −1/2 and the relaxation time is
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greatest for the carriers of the lowest energy. On the other hand, if ionized-impurity
scattering becomes dominant, r rises to+3/2, and the high-energy carriers are the least
strongly scattered. There is then a substantial rise in the kinetic energy that is
transported by the charge carriers. Of course, this is accompanied by a decrease in the
mobility but, as shown by Ioffe [6], the overall effect could be advantageous. In
practice it appears that this effect has never been used to advantage. It would seem to
bemost beneficial in semiconductors with narrow energy gaps since then the potential
energy of either type of carrier cannot be equal to more than about half the gap.

Another way of improving the power factor involves the introduction of addi-
tional energy states. This may come about through the addition of specific impurities
that give rise to states above the edge of the main band. There is also the possibility
of selecting materials in which there are additional bands with edges not too far
removed from the edge of the original band.

It was proposed by Hicks and Dresselhaus [7] that it might be advantageous to
make use of nanostructured semiconductors. Nanostructures can be two-dimensional
in the form of thin sheets, one-dimensional as nanowires or nanotubes, or even
zero-dimensional as nanodots. In all cases, the band structure becomes modified.

Following the theory of Hicks and Dresselhaus we consider the case of a
conduction band with a parabolic density of states. The simplest situation is that
of a two-dimensional sheet of thickness d that is of the order of a few interatomic
spacings. This means that the dispersion relation is changed from
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We introduce a quantity η* which is related to the reduced Fermi energy η by the
relation
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In terms of this quantity the Seebeck coefficient is given by
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When the expression for the electronic thermal conductivity is also included, the
dimensionless figure of merit becomes

η
=

− *

+ −
β *
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where β* is given by
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Equation (4.36) does not become significantly different from its three-dimensional
equivalent until d is very small. Eventually, when d is small enough, the effective
density of states rises and this allows zT to become greater.

Hicks and Dresselhaus applied their ideas to the most widely used thermoelectric
material, bismuth telluride. They assumed a rather moderate maximum value of zT
equal to 0.52 for the bulk compound and ignored any possible change in the lattice
conductivity. They predicted that zT would become substantially greater than unity
for specimens of less than 5 nm thickness. An even greater improvement would be
expected for one-dimensional materials and quantum dots and similar behaviour has
been predicted for other substances.

In the event, it seems that there are very few instances where it can be claimed that
the electronic properties have been enhanced by adopting nanostructures. This is
possibly due to the difficulty in dealing with materials that have a sufficiently small
thickness. Nevertheless, there are numerous examples of materials that have been
improved through incorporating nanostructures but this has usually been attributed
to a reduction in the lattice conductivity.
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Chapter 5

Heat conduction by the crystal lattice

5.1 Phonon conduction in pure crystals
The conduction of heat occurs in all solids whether or not they are electrical
conductors. Thermal energy is contained within the lattice vibrations and these are
responsible for the transport of heat. It is interesting to note that, although metals in
general are good heat conductors, the material with the highest thermal conductivity
is an electrical insulator, pure diamond.

When heat is supplied to a solid, the energy within the vibrational modes rises.
The heat that is needed to raise the temperature by one degree is the specific heat,
which, for our purposes may be expressed per unit volume, with the value cV.
A reasonably accurate, if over simplified, theory of the specific heat was provided by
Debye.

In the Debye theory, the material is taken to be in the form of an elastic
continuum. The dispersion curve, or the plot of frequency, ν, against wave number,
q, is linear as shown in figure 5.1(a). The velocity of the vibrational waves is given by
the slope of the plot and is constant. The total number of modes is equal to the
number of atoms, this setting a higher limit on the frequency and wave number.

The atomistic nature of a crystal has an effect on the dispersion curve, particularly
at the highest frequencies. This effect is shown in figure 5.1(b), which shows
schematically the situation for a linear chain. It has been assumed that the chain
consists alternately of atoms of different mass, in which case there are both acoustic
vibrations, where adjacent atoms are moving in the same direction, and optical
vibrations, where they can move apart. The diagram shows the acoustic branch and
an optical branch. If there are n atoms in the unit cell of a three-dimensional crystal,
then there will be three acoustic branches and 3(n − 1) optical branches, taking
account of both longitudinal and transverse waves.

When we are discussing the conduction of heat it is important to note that the
group velocity is given by the slope of the dispersion curve and can be very small for
the optical modes.
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The vibrational modes are distributed in wave vector space up to a total
determined by the number of atoms. In Debye’s theory, the number of modes
varies as the square of the frequency but, in reality, the vibrational spectrum may be
much more complex. Nevertheless, the Debye model is satisfactory for low
frequencies and, as it happens, the specific heat is not very sensitive to the details
of the spectrum.

The specific heat is determined from the energy contained within the vibrational
modes and the rate of change of this energy with temperature. The occupation of
these modes is determined by Bose–Einstein statistics for which the energy in a mode
of frequency ν is hν{exp(hν/kT) − 1}−1. Using the Debye model it is found that the
specific heat is proportional to (T/θD)

3FD(θD/T), where θD is known as the Debye
temperature and FD is given by
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ν ν
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At very low temperatures the Debye theory predicts that the specific heat should
vary as T 3 and indeed this is observed in practice, though at rather lower temper-
atures than expected. When T becomes greater than θD the specific heat should
become independent of temperature as also agrees with experiment. However,
observations show that somewhat different values of θD are needed to fit the results
at different temperatures so this quantity cannot really be regarded as a constant,
though it is still a useful parameter.

Debye [1] attempted to use his theory to explain Eucken’s law [2], which states
that the thermal conductivity of a pure non-metallic crystal varies inversely with the
absolute temperature. He showed that this law would follow if the lattice vibrational
waves scattered one another. His difficulty, though, was that there should be no
scattering between perfectly harmonic waves. This difficulty was solved by Peierls [3],
who introduced the idea of phonons, or quantised lattice vibrations.

Figure 5.1. Schematic dispersion curves for (a) the Debye continuum and (b) a diatomic linear chain.
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Peierls showed that phonons can scatter one another in two ways. In what is
called a normal process, two phonons, q1 and q2 interact to produce a third phonon
q3 which lies within the same unit cell in wave vector space. However, in an umklapp
process, the resultant of the addition of q1 and q2 is a phonon with a wave vector
outside this unit cell, which can be brought back into the cell by the addition of a
reciprocal lattice vector, that is a vector with the width of the unit cell. The processes
are illustrated in figure 5.2 for a simple two-dimensional crystal with a square lattice.

It is the umklapp processes that are responsible for the lattice conductivity being
finite. They are a consequence of an anharmonic component in the lattice vibrations.
Peierls showed that their probability increases with rise of temperature and their
effect is consistent with Eucken’s law.

At very low temperatures nearly all the phonons have very small wave vectors.
Also, it is apparent that umklapp processes cannot occur unless at least one of the
interacting phonons has a wave vector equal to at least half the width of the
reciprocal lattice cell, qmax/2. In fact, since the probability of any phonon having a
wave vector much greater than qmax/2 is exceedingly low, it is likely that both the
phonons involved in an umklapp process will have wave vectors close to qmax/2. On
this basis, Peierls was able to show that the mean free path of phonons at low
temperatures should be proportional to {exp(− θD/aT )}−1, where a lies close to 2. In
fact, it was found that the Eucken law persisted to lower than expected temperatures
and the exponential behaviour that resulted from the calculations of Peierls was not
immediately confirmed. Later it was realised that scattering of phonons on various
defects was masking the exponential effect.

Although the normal processes are momentum-conserving, it must not be thought
that they have no influence on the thermal resistance. They do act so as to
redistribute the energy within the phonon system. Thus, they may sometimes lead
to an increase in the number of phonons that can be scattered by other processes.

5.2 Prediction of the lattice conductivity
It is not easy to make an accurate prediction of the lattice conductivity of any pure
crystal. However, a useful approximate expression was derived by Keyes [4] and we
shall discuss his theory here.

Figure 5.2. The difference between a normal process (a) and an umklapp process (b). The diagrams show a
unit cell in wave vector space for a square lattice.
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We start with the well-established equation

λ = c vl
1
3

, (5.2)L V t

where the specific heat cV is defined for unit volume, v is the speed of sound and lt is
the phonon mean free path. Dugdale and MacDonald [5] suggested that the lattice
conductivity should bear some relationship to the thermal expansion coefficient, αT,
since both quantities are dependent on the anharmonicity. They proposed that the
anharmonicity should be represented by the dimensionless quantity, αTγΤ, where γ is
the Grüneisen parameter. They then suggested that the mean free path of the
phonons should be close to a/αTγΤ where a is the lattice constant. Thus, from
equation (5.2) we find that

λ
α γ

= c av
T3

. (5.3)L
V

T

At this stage we introduce the Debye equation of state, which relates the expansion
coefficient to the compressibility, χ. Then,

α χγ= c
3

. (5.4)T
V

Also, the speed of sound can be expressed in terms of the Debye temperature
through the relation

ρχ θ= =−v
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h
( )

2
, (5.5)1/2 D

where ρ is the density. Then, putting the atomic volume, V, equal to the cube of the
lattice constant, we obtain the equation
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where M is the atomic mass. It must be stressed that several approximations have
been used in the derivation of equation (5.6) but it is nevertheless a useful tool.

By making use of further approximate relationships we may obtain an equation
for λL that involves three easily determined properties, namely the melting temper-
ature, Tm, the density and the mean atomic weight, A. To this end we use equations
(5.5) and (5.6) to obtain Lawson’s equation [6]

λ
γ χ ρ

= a
T3

. (5.7)L 2 3/2 1/2

We also use the Lindemann melting rule [7]

ε
χ

=T
V

R
, (5.8)m

m
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where Tm is the melting temperature and R is the gas constant. This rule is based on
the approximation that all solids melt when the atomic vibrations are large enough
to reach a certain fraction, εm, of the lattice constant, εm having a universal value.
Thence we finally obtain the Keyes relation

λ
ρ=T B

T
A

, (5.9)L K
m
3/2 2/3

7/6

where

γ ε
=B

R

N3
, (5.10)K

3/2

2
m
3

A
1/3

and NA is Avogadro’s number. It is noted that BK contains the quantities εm and γ
that do not change much from one material to another. The Keyes relation is
consistent with the observation that the lattice conductivity is inversely proportional
to the temperature for pure crystals.

The Keyes relation suggests that the lattice conductivity should fall as the mean
atomic weight rises. This decrease may be offset to some extent by a rise in the density,
but the melting temperature is likely to become smaller as the atomic weight becomes
greater. It was observed by Ioffe and Ioffe [8] that the lattice conductivity falls with
increasing mean atomic weight for a number of systems, as shown in figure 5.3. The
elementary group IV semiconductors generally have high lattice conductivities with
somewhat lower values for the III–V compounds. The alkali halides have a much
lower range of lattice conductivities, particularly when the atomic weight ratio is
large. A small value for λL is, of course, most desirable for a thermoelectric material

Figure 5.3. Variation of lattice conductivity with mean atomic weight for different systems as observed by
Ioffe and Ioffe [8]. The ionic compounds are alkali halides with (a) atomic weight ratios greater than 1.5 and
(b) less than 1.5.
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but a highmobility for the charge carriers is equally desirable and this rules out some of
the substances that have small lattice conductivities.

5.3 Solid solutions
There are a number of reasons why one might wish to use a solid solution between
two semiconductors to improve the thermoelectric properties. For example, it might
be necessary to increase the energy gap of a given material so as to raise the
operating temperature without the onset of bipolar conduction. However, it was
Ioffe and his colleagues [9] who first suggested the use of solid solutions to reduce the
lattice conductivity. By solid solutions we mean alloys between isomorphous
elements or compounds.

It is not immediately obvious that the additional scattering of phonons in a solid
solution will lead to an increase in the figure of merit. The mean free path of the
charge carriers is usually greater than that of the phonons so one might expect the
reduction of the mobility to be more noticeable than that of the lattice conductivity.
It turns out, however, that the disorder produced on forming a solid solution may
have little or no effect on the carrier mobility. It seems that the carrier scattering is
not affected if the long range order is preserved. The phonons have a smaller
wavelength and are more strongly affected by disturbances in the short range order.

Sometimes there is an effect on the mobility when a solid solution is formed.
Airapetyants et al [10] suggested that the motion of electrons and holes can be
associated with the sub-lattices of electropositive and electronegative atoms respec-
tively. The carriers might then be scattered if there is a disturbance on the
appropriate sub-lattice. There is some experimental evidence to support this view
since, for example, it is common practice to use bismuth telluride–antimony telluride
alloys as positive thermoelements and bismuth telluride–bismuth selenide alloys as
negative materials. However, it cannot be claimed that the principle is generally
valid. What is certainly true is the proposition that the ratio of mobility to lattice
conductivity can be increased by employing solid solutions.

Plots of the reciprocal of the lattice conductivity against the concentration of the
second component in certain solid solutions are shown in figure 5.4. The relative
increase is greatest when silicon is added to germanium since both these elements
have exceptionally high values of the lattice conductivity. Nevertheless, there is a
useful increase in the lattice resistivity for alloys based on bismuth telluride and lead
telluride despite the fact that both these compounds already have rather small lattice
conductivities in the pure state.

In the next section we shall discuss the problem of point-defect scattering of
phonons in more detail. Here we mention the simple empirical rule for determining
the lattice conductivity of a solid solution A1−xBx that was employed by Ioffe.
According to this rule

λ λ λ λ
= + − −

⎡
⎣⎢

⎤
⎦⎥x x

1 1
4 (1 )

1 1
, (5.11)

L L0 Lm L0
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where λL0 is the lattice conductivity when x = 0 and λLm is its value when x = 1/2.
There are obvious difficulties when applying Ioffe’s rule to solid solutions between
components of very different lattice conductivities.

5.4 Mass-defect and strain scattering
We now consider the origin of the reduction of the lattice conductivity by point
defects. Scattering will occur whenever there is a local change of the speed of sound.
This may be due to a change of either the density or the elasticity. Thus, in a solid
solution there will always be mass-defect scattering associated with the added atoms.
There will also generally be strain scattering due to changes in the interatomic forces.

According to Rayleigh’s theory, the scattering cross-section, σ, for the point
defects is given by

σ
π χ

χ
ρ

ρ
= Δ + Δ⎛

⎝⎜
⎞
⎠⎟

c q4

9
, (5.12)

6
L
4 2

where c is the diameter of the defect and Δχ and Δρ are respectively the local changes
of the compressibility and density. Rayleigh’s theory is based on classical physics
and is not expected to be valid for the phonons of high frequency. However, these
phonons are very strongly scattered and, therefore, do not make much contribution
to the thermal conductivity. Most of the heat transport is due to the low frequency
phonons for which Rayleigh’s theory is a good representation. We shall also use the
Debye approximation for the vibrational spectrum for the same reason.

The problem that we have to face is that of including the normal processes in our
calculations. This problem has been tackled rather successfully by Callaway [11]. He
assumed that the action of the normal processes is to cause a disturbed phonon
distribution to relax towards a distribution that still carries momentum.

Figure 5.4. Lattice thermal resistivity for selected solid solutions at 300 K. x is the proportion of the added
component.
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We suppose that the equilibrium and disturbed distribution functions are N0 and
N respectively. Then the scattering processes will act on the distribution functions so
that

τ τ
= − − + −N

t
N N N Nd

d
, (5.13)0

R

N

N

where τN is the relaxation time for those processes that conserve momentum and τR
is that for those that do not. NN is the distribution to which the normal processes
on their own would relax. A key feature of Callaway’s theory is the introduction
of a constant vector l in the direction of the temperature gradient, which is such
that q · l = hν. The normal processes lead to a change in the distribution function
given by

− =
−

q . l
N N

kT
x

x
exp( )

(exp( ) 1)
. (5.14)N 0 2

Since the vector l must be proportional to the temperature gradient we may write it
as β− ℏ T v( / ) 2∇T, where β has the dimensions of time. We then find that there is an
effective relaxation time τeff, which is given by

τ
τ τ

β τ
τ
β τ

= +
+

=
+

1 1/ 1/
1 /

1/
1 /

, (5.15)
eff

R R

N

c

N

where τc would be the relaxation time if the normal processes were not momentum
conserving.

The quantity β can be derived from the condition that the normal processes
conserve momentum. It is found that this requirement is met if

∫ β
τ

τ
τ

βτ
τ

ω− −
−

=
θ ⎛

⎝⎜
⎞
⎠⎟

x
x

x
exp( )

(exp( ) 1)
d 0, (5.16)

T

0

/

N

c

N

c

N
2

4
2

D

where x is equal to ℏω/kT.
The determination of β from equation (5.16) is usually not easy but there are some

special cases for which the problem is simplified. Thus, if the scattering on point
defects is very strong the relaxation time τR is very much less than τN and not much
error is introduced if we treat the normal processes as if they were not momentum
conserving. The high temperature approximation used by Parrott [12] is of particular
interest in the context of thermoelectric materials and should hold when T > θD.

Parrott assumed that the relaxation time should vary as ω−2 for umklapp and
normal processes and as ω−4 for point-defect scattering. Also, ℏω/kT ≪ 1 for
the whole vibrational spectrum at high temperatures. It is then found that

λ
λ

= + + − + − −
− − − − −

⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣
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In this equation k0 is the relative strength of the normal to the umklapp processes
and λL0 is the lattice conductivity in the absence of point defects. The quantity y is
defined from the relation

ω
ω

= +
−⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟y

k
1

5
9

, (5.18)2 D

0

2
0

1

and

ω
ω π λ ω

=
⎛
⎝⎜

⎞
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k
v A2

, (5.19)D

0

2

2
L0 D

where the relaxation time for point-defect scattering is equal to 1/Aω4. k0 can be
found experimentally by measuring the thermal conductivity for one sample that
contains imperfections and another that is free of defects.

The parameter A can be calculated when the scattering is due to density
fluctuations on the basis of equation (5.12). It can be shown that

∑π= −
A

v N
x M M

M2
( )

, (5.20)3
i

i i av
2

av
2

where xi is the concentration of unit cells of mass Mi, Mav is the average cell mass,
and N is the number of cells per unit volume.

The value of A for strain scattering is more difficult to predict. The local elastic
constants change because of the misfit of the substituted atoms and because of the
change of bond strength.

Experimental data on solid solutions show that the decrease of the lattice
conductivity is often close to that predicted for mass-defect scattering. This is so
for bismuth–antimony telluride and for germanium–silicon alloys. In other cases,
for example in the PbTe–PbSe system, the observed lattice conductivity is smaller
than expected for mass-defect scattering, suggesting that strain scattering is also
significant.

5.5 Grain boundary scattering of phonons
There exists another way of reducing the lattice conductivity. It has long been known
that λL becomes smaller as the size of a crystal is reduced [13] but boundary scattering
was once regarded as a low-temperature phenomenon. However, it is now realised
that this form of scattering can be a significant effect at high temperatures [14]. It is
likely to have a stronger effect in solid solutions rather than pure elements or
compounds even though the former have lower lattice conductivities.

If we use a classical model, the density of phonon modes increases as the square of
the angular frequency, ω. On the other hand, the mean free path of the phonons
in a pure crystal varies as ω−2. Thus, we expect the contributions to the lattice
conductivity to be about the same for all frequencies. It is the lowest frequency
phonons that have the longest free path length and they can be affected by boundary
scattering even when the average free path for all phonons is small. This is

The Physics of Thermoelectric Energy Conversion

5-9



particularly so for solid solutions because mass-defect or strain scattering in these
materials has the greatest effect at the largest frequencies. Incidentally, this justifies
the use of a classical model, which is a very good approximation at low frequencies.
The effects of the different forms of scattering are shown in figure 5.5. It is clear that
the relative effect of boundary scattering is enhanced in solid solutions. Nevertheless,
boundary scattering is large enough in thin single crystals of silicon for the thermal
conductivity to be significantly reduced at ordinary temperatures.

The plot in figure 5.5 is obviously over-simplified since there will be phonon
frequencies at which two types of scattering are contributing to the thermal
resistance. These regions are rather narrow and the simple behaviour in figure 5.5
may not be too far from the true representation. If we accept this idea the expression
for the lattice conductivity is

λ
λ

λ
λ

= − l
L

1
2
3 3

. (5.21)L

S

0

S

t

In this equation λS is the lattice conductivity of a large crystal of the solid solution
and λ0 that in the absence of alloy scattering. The mean free path for phonon–
phonon scattering is lt and L is the effective grain size, which will presumably depend
on the nature of the interfaces at the grain boundaries. lt can be related to λ0 using
equation (5.2).

Equation (5.21) is applicable only when phonon–phonon scattering is strong
enough for it to be dominant over part of the frequency range. If alloy scattering is
very strong, equation (5.21) can be used until λL becomes equal to 2λS/3. On the
other hand, when alloy scattering is weak, equation (5.21) holds until λL is equal to
λS/3. It is, therefore, useful when the boundary scattering is such that the lattice
conductivity lies between one-third and two-thirds of its value for a large crystal.

It is interesting to discuss boundary scattering in material that has a large unit
cell [15]. Until now the assumption has been made that the Debye model can be used

Figure 5.5. Schematic plot showing the contributions of different groups of phonons in a fine grained solid
solution. The low frequency phonons are scattered by the grain boundaries and the high frequency phonons
are subject to alloy scattering. Phonon–phonon scattering is dominant at intermediate frequencies.
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and indeed this is satisfactory for the acoustic modes even when there are many
atoms in the unit cell. However, we should also consider the effect of the optical
modes.

It is still probable that most of the heat conduction is associated with the acoustic
phonons since they have the largest group velocity. Nevertheless, we should not
neglect the contribution of the optical phonons. It is easiest in this case to derive an
expression for the change in the thermal conductivity due to boundary scattering
rather than the relative effect as given in equation (5.21).

We introduce a frequency ω0 equal to (v/BL)1/2, at which umklapp scattering and
boundary scattering are equally effective. We then determine the contribution, λa, to
the lattice conductivity of the phonons up to this frequency with and without
boundary scattering. If we make use of the Debye model for the specific heat,

λ ω= vLc
1
9

, (5.22)a 0
3

with boundary scattering and

λ ω= vLc
1
3

, (5.23)a 0
3

in the absence of boundary scattering. The difference between these two expressions
yields the reduction in the thermal conductivity due to boundary scattering. This is

λ ωΔ = vLc
2
9

. (5.24)L V 0
3

We can determine ω0 if we make use of Lawson’s relation, equation (5.7), to estimate
the lattice conductivity when umklapp scattering is dominant. We find that

ω
ω
α ρ

= a C

L v T9
, (5.25)0

D
2

T
2 2

where C is the total specific heat per unit volume.
This theory has been applied successfully [16] in explaining the observed thermal

conductivity of the half-Heusler alloys with the formula TiNiSn1−xSbx for grain sizes
between 1 and 10 μm.

5.6 Phonon drag
It has been assumed thus far that the electrons and phonons can be treated separately
but this is sometimes invalid. When the flows of the two entities are linked we
encounter what is known as the phonon drag effect [17]. It is a phenomenon that is
usually observed at low temperatures, though it has been seen in semiconducting
diamond above 300 K.

The Kelvin relations remain valid when phonon drag is the dominant mechanism
and it is convenient to discuss the effect in terms of the Peltier coefficient. Suppose
that there is a carrier concentration, n, and that an electric field, E, is applied. The
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carriers receive momentum at the rate ∓neE per unit volume. This momentum may
be lost in collisions with impurities or it may be passed on to the phonons, where it
will remain until non-momentum conserving collisions occur. It will be assumed that
a fraction x of the electronic collisions involve phonons. We shall set the phonon
relaxation time for such collisions as τd. Then the excess momentum carried by the
phonons is

τ∆ = ∓p Exne . (5.26)d

The electric current density is neμE and the heat flux per unit area is v2Δp. Thus, the
phonon drag Seebeck coefficient is

α π τ
μ

= = ∓
T

xv
T

. (5.27)d
d

2
d

It must be emphasised that for the relevant phonons the relaxation time τd is strongly
dependent on temperature. It has been suggested that τd is proportional to T−5 [17].
Thus, if we let the mobility vary as T−3/2 we expect αd to vary as T−9/2. This accounts
for the fact that phonon drag is essentially a low temperature effect. However, it will
be noticed that equation (5.27) does not involve the carrier concentration and it
might be thought that the power factor could be increased merely by introducing
more charge carriers. Unfortunately, the phonon drag Seebeck coefficient becomes
less than expected from equation (5.27) as n increases. This is partly due to scattering
on the donor and acceptor impurities, which reduces x, but more importantly on a
saturation effect. With an increased carrier concentration more and more of the
momentum is fed back by the phonons into the electronic system. Herring showed
that equation (5.27) should be modified to allow for the saturation effect so as to
become

α μ
τ

τ
μ

= ∓ +
−⎛

⎝⎜
⎞
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T
xv

nexv
N k T

3
, (5.28)d 2

d

2
d

d

1

where Nd is the number of phonon modes interacting with the charge carriers. When
the figure of merit is calculated using equation (5.28) for the Seebeck coefficient
it appears that the phonon drag effect can only lead to values of zT that are
significantly less than unity [18].
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Chapter 6

Materials for Peltier cooling

6.1 Bismuth telluride and its alloys
Our aim in this and the next chapter is to show how the principles that have been
outlined previously are exemplified by existing thermoelectric materials. We shall
first look at the most widely used of these, bismuth telluride, which was demon-
strated to be suitable for thermoelectric refrigeration in the 1950s [1].

Crystals of bismuth telluride, with the formula Bi2Te3, have a hexagonal structure
and display quite different mechanical properties in the a and c directions.
Successive layers of bismuth and tellurium atoms are stacked as shown in figure 6.1.
The bismuth and tellurium atoms are linked by strong ionic–covalent bonds but the
neighbouring layers of tellurium atoms are held together by the weak van der Waals
force. Consequently, crystals of bismuth telluride are easily cleaved in a direction
perpendicular to the c axis.

The weak van der Waals bonding between the Te(1) layers is also evident from
the diffusion of certain elements through bismuth telluride. Thus, the diffusion
coefficient of copper in Bi2Te3 is several orders of magnitude greater in the plane of
the a axes than it is in the c direction [2], as shown in figure 6.2. In fact, diffusion of
copper along the cleavage planes is so rapid that the element can easily enter the
lattice at room temperature. This can have a disastrous effect on the thermoelectric
performance since copper is a donor impurity in Bi2Te3 and alters both the Seebeck
coefficient and the electrical conductivity.

When bismuth is combined with tellurium in melt-grown material the maximum
melting composition is not that with the stoichiometric proportions. At the
composition with the highest melting point there is an excess of bismuth atoms so
that undoped material is p-type rather than intrinsic. The excess of bismuth can be
compensated by the addition of a donor impurity such as iodine. If sufficient iodine
is added, the compound becomes n-type. Alternatively, the material can be made
more strongly p-type by the addition of an acceptor impurity, for example, lead.
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The Seebeck coefficient of extrinsic bismuth telluride is isotropic but the electrical
and thermal conductivities are both directionally dependent. The lattice conductivity
is about twice as large parallel to rather than normal to the cleavage planes, with a
similar anisotropy of the electrical conductivity in p-type samples. The electrical
conductivity is about four times greater in the a direction than the c direction for
n-type material. Thus, the figure of merit of randomly oriented polycrystalline
n-type material is smaller than that of a properly oriented single crystal. The figure
of merit is more or less the same for aligned and randomly oriented p-type material.

When bismuth telluride is grown from the melt, there is a tendency for the
cleavage planes to lie parallel to the growth direction. Material produced in this way,
even though not monocrystalline, yields thermoelements with the highest figure of
merit whether they be p-type or n-type. In fact, aligned polycrystals are preferable to
single crystals in that they have superior mechanical strength.

One of the favoured ways of producing thermoelectric materials is that of sintering
of the powdered compound, usually by a hot-pressing technique [3]. This does not
necessarily lead to grains that display any preferred orientation but alignment can be
achieved by extrusion at an elevated temperature [4, 5]. Reduction of the grain size, of

Figure 6.1. Layer structure of bismuth telluride.

Figure 6.2. Diffusion coefficient for copper in bismuth telluride as a function of temperature.
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course, makes possible significant reduction of the lattice conductivity by boundary
scattering of the phonons.

Most of the basic studies on the electronic properties of bismuth telluride have
been performed using single crystals, carefully prepared to avoid cleavage. While
aligned polycrystals are adequate when studying the thermoelectric parameters, they
are of little use when determining the Hall and magnetoresistance coefficients.
A detailed examination of the galvanomagnetic properties is one of the most
straightforward ways of determining the band structure.

The Hall and the magnetoresistance effects in samples of bismuth telluride with
different orientations were first investigated by Drabble and his colleagues [6, 7].
They found that the results could best be fitted by assuming that the energy minima
for both the valence and conduction bands are located on the planes in wave vector
space that contain the trigonal and bisectric directions. These directions are
indicated in figure 6.3, which shows the first Brillouin zone for Bi2Te3. Symmetry
then demands that there be six equivalent minima. The possibility of the minima
lying on the faces of the Brillouin zone, which would give three minima, has been
ruled out by further studies [8, 9].

The six-valley model for the band structure is probably one of the reasons that
bismuth telluride has turned out to be such a good thermoelectric material. It allows
the directionally dependent inertial effective mass to be small, leading to a high
carrier mobility, while the density-of-states mass is large. Not so favourable is the
rather small energy gap of about 0.13 eV, as revealed by the absorption edge in
the infra-red region [10]. The details of the band structure are given in table 6.1. The
similarity of the conduction and valence bands is consistent with the observation
that the maximum figure of merit is not much different for n-type and p-type Bi2Te3.
The electron and hole mobilities at 300 K are 0.12 and 0.051 m2 (V s)−1, respectively.
The density of states effective masses for the two types of carrier are 0.58m and
1.07m, giving the high values of 0.053 and 0.056 m2 (V s)−1 for μ(m*/m)3/2. These
values account for the fact that the power factors for both types of bismuth telluride
are rarely equalled by other materials.

It has been found that the variation with temperature of the Seebeck coefficient is
not quite consistent with a simple two band model. There is evidence [11] that there

Figure 6.3. First Brillouin zone for bismuth telluride. A bisectrix direction lies perpendicular to the trigonal
axis and one of the binary axes.
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is a second conduction band minimum with its edge about 0.03 eV above the main
edge. Nevertheless, the band structure described by table 6.1 accounts reasonably
well for the observed transport properties. The measurements on which it is based
were carried out at liquid nitrogen temperature so as to enhance the galvanomag-
netic coefficients over their room temperature values but it is thought that the band
parameters at room temperature are not substantially different.

In figure 6.4 we show the variation of the Seebeck coefficient with electrical
conductivity for p-type bismuth telluride at 300 K. The samples were oriented with
current flow along the cleavage direction. The samples of higher conductivity were
lead-doped and those of lower conductivity were doped with iodine. The behaviour of
intrinsic samples, in which the iodine addition just balances the non-stoichiometry
of undoped material, is indicated by the near-zero Seebeck coefficient on the left
of the diagram. There will be a very similar plot, apart from the sign of the Seebeck

Table 6.1. Band structure of Bi2Te3. aij/m is a reciprocal effective mass tensor referring to
axes lying in the reflection planes and an axis perpendicular to these planes.

Parameter Valence band Conduction band

Number of valleys 6 6
Location in k space on reflection planes on reflection planes
a11 19.8 26.8
a22 3.26 4.12
a33 4.12 3.72
a23 1.0 2.4
Energy gap (eV) 0.13–9.5 × 10−5(T − 293)

Figure 6.4. Seebeck coefficient at 300 K plotted against electrical conductivity for p-type bismuth telluride.
The diagram extends into the region of mixed conduction.
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coefficient, for n-type bismuth telluride with current flow perpendicular to the
trigonal axis.

It will be seen from figure 6.4 that the Seebeck coefficient in the extrinsic region
falls as the electrical conductivity rises. It turns out that the power factor reaches its
maximum value when the Seebeck coefficient is close to 200 μV K−1, as is clear from
figure 6.5, in which the ratio of the power factor to its peak value is plotted against
the Seebeck coefficient. The Seebeck coefficient at 300 K can never become higher
than about 260 μV K−1 because of the narrowness of the energy gap.

The plot of thermal conductivity against electrical conductivity in figure 6.6 is
particularly interesting. In the extrinsic range, that is for an electrical conductivity of
the order of 105 Ω−1 m−1 or greater, the thermal conductivity rises with σ, the slope
of the plot being close to what one expects from the Wiedemann–Franz law, bearing
in mind that the degenerate approximation is inapplicable. However, for smaller
electrical conductivities the thermal conductivity becomes much greater than
expected for a single type of charge carrier [12]. One can obtain the lattice conductivity
by extrapolation from the extrinsic region and one then finds that the electronic
thermal conductivity behaves as shown in figure 6.7. In this diagram the ratio
λe/(k/e)

2σT rises from its value of about 2 for a single type of carrier to about 16 in the
intrinsic region. Thus, near-intrinsic material is unsuitable for thermoelectric
energy conversion, not only because of its low Seebeck coefficient, but also because
of its high thermal conductivity.

Although the simple compound, Bi2Te3 was used in the earliest successful
demonstrations of thermoelectric refrigeration, the figure of merit can be increased
through the use of solid solutions [13–15]. The improvement comes about mainly
because of a decrease in the lattice conductivity. It is usual to use alloys of bismuth
telluride with either antimony telluride or bismuth selenide. The variation of lattice
conductivity with the bismuth telluride content is shown in figure 6.8.

Figure 6.5. Ratio of power factor to its maximum value plotted against Seebeck coefficient for p-type bismuth
telluride at 300 K.
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The variation of lattice conductivity in the Bi2Te3–Sb2Te3 system is straightfor-
ward but there is less regular behaviour in the Bi2Te3–Bi2Se3 system. The unexpected
maximum when the Bi2Te3 and Bi2Se3 concentrations are comparable may be an
indication of some degree of ordering. It is found that the variation of energy gap
with composition changes when the Bi2Se3 content reaches about one-third as shown
in figure 6.9 [16]. It has been suggested that this may indicate that, as the selenide
content rises, the selenium atoms first replace the Te(2) atoms and then the Te(1)
atoms. As it happens, the electron mobility appears to fall significantly as the Bi2Se3
concentration rises above 20% and alloys with higher selenide concentrations than
this are not yet employed in energy conversion. This may change when there is more
interest in thermoelectric generation since the increased energy gap may assist in
extending the operating temperature upwards.

Figure 6.6. Plot of thermal conductivity against electrical conductivity for bismuth telluride at 300 K.
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The typical compositions of the materials used in commercial thermoelectric
modules are Bi0.5Sb1.5Te3 and Bi2Te2.7Se0.3 for the p-type and n-type branches
respectively. For some time it was thought that the energy gap of Sb2Te3 must be too
small to allow the concentration of this compound to exceed 75%. However, samples
of Sb2Te3 with Seebeck coefficients of 240 μV K−1 have now been reported so the
energy gap in this compound should actually be comparable with that of Bi2Te3 [17].

Most of the applications of modules based on the bismuth telluride alloys have
been in the field of refrigeration but there is growing interest in thermoelectric
generation from heat sources at moderate temperatures. It is, therefore, important to
know how the figure of merit will change as the temperature is raised [18, 19].

Let us, for the moment, ignore the effect of the minority carriers, though we know
that they will become an increasing problem as the temperature is raised. If we

Figure 6.8. Lattice conductivity of bismuth telluride alloys at room temperature plotted against composition.
The values are given as a proportion of the value for the compound Bi2Te3.

Figure 6.9. Plot of energy gap against composition in the Bi2Te3–Bi2Se3 system.
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assume that the carrier mobility varies as T−3/2 and that the effective density of
states is proportional to T 3/2, then both the optimum electrical conductivity and the
optimum Seebeck coefficient should be more or less independent of temperature.
For a pure crystal we would expect the lattice conductivity to be inversely propor-
tional to the temperature but there will be a less rapid variation for the solid
solutions. It is thought that the total thermal conductivity should vary little with
temperature. This being so, zT should be approximately proportional to the
temperature.

This favourable conclusion must be modified when one takes account of bipolar
effects. Even for a wide gap one must increase the concentration of dopant to
maintain the Seebeck coefficient at its optimum level. The dopant level must be
increased still further when the energy gap is small. It would be helpful if the energy
gap were higher than it is for Bi2Te3 and in this context the change on adding Bi2Se3
depicted in figure 6.9 gives cause for optimism. Likewise, the reports of improved
Seebeck coefficients for Sb2Te3 suggest that one might be able to find an increased
gap in the Bi2Te3–Sb2Te3 system. At present we can expect a small increase of zT
for a modest rise of temperature above 300 K with a rather rapid decrease above,
say, 400 K.

Experimental determinations of zT above room temperature show considerable
differences between the observations of different workers. The highest values of
zT are probably found for bulk nanostructures, that is material with nano-sized
inclusions. Such materials have a value of about unity for zT at 300 K for n-type
samples and a somewhat higher value for p-type specimens. In spite of the different
methods of preparation all samples seem to display the same kind of behaviour.
Typical results for zone-melted material are shown in figure 6.10. The compositions
are not optimised for each temperature but it can be seen clearly that zT rises
with temperature above 300 K but falls when the temperature is greater than about
450 K.

Figure 6.10. zT plotted against temperature for bismuth telluride alloys. The n-type material is Bi2Te2.4Se0.6
and the p-type material is Bi0.5Sb1.5Te3. Original data cited in [18].
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It is not certain what the upper bound to the temperature of operation may be but
the melting temperature of 573 °C for bismuth telluride sets an obvious limit.
Commercial modules made from bismuth telluride alloys can be operated contin-
uously at 200 °C and intermittently at 230 °C. Table 6.2 shows the melting points of
some of the materials of interest in the context of thermoelectric energy conversion.

6.2 Bismuth–antimony
It has long been recognised that Bi has reasonably good thermoelectric properties
and these have been exploited in radiation thermopiles. In fact, if this element had an
energy gap as large as, say, that of bismuth telluride it would be the best n-type
material at 300 K. However, bismuth is actually a semi-metal and, even when
heavily doped with a donor impurity, the thermoelectric properties are impaired by
minority carriers.

Antimony is also a semi-metal but when it is alloyed with bismuth there is a
range of composition for which there is an energy gap, albeit a small one. This
allows Bi–Sb alloys to be used as low temperature n-type thermoelectric materials.
Moreover, the high electron mobility in Bi and Bi–Sb means that there are large
magnetic effects in quite modest fields. We shall discuss the longitudinal thermo-
magnetic effects in this chapter and deal with the transverse effects later.

The movement of the band edges when Sb is added to Bi is shown in figure 6.11
[20]. In Bi itself the light electron band overlaps a heavy hole band by about 50 meV.
The light electron and hole bands are interchanged when more than 4% Sb is added
and the overlap with the heavy hole band is removed at an Sb content of about 7%.
Semiconducting properties remain until the Sb content reaches about 22% when a
second heavy hole band overlaps the electron band. The maximum gap, which
occurs when the Sb concentration is about 16%, is not large enough to prevent
minority carrier problems at 300 K.

Table 6.2. Melting temperatures of selected elements and compounds.

Material Melting temperature (°C)

Bi 271
Zn4Sb3 563
Bi2Te3 573
Sb2Te3 629
Sb 631
Bi2Se3 710
SnTe 780
PbTe 917
Ge 937
PbSe 1065
PbS 1114
Si 1410
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Bismuth has the same type of crystal structure as bismuth telluride and its lattice
conductivity is smallest in the c direction. This also happens to be the direction of the
highest electrical conductivity so there is no doubt that it is the preferred flow
direction in a bismuth thermoelement. This requires the use of single crystals but
they are brittle and are easily cleaved perpendicular to the c axis. Thus, there is some
interest in polycrystalline Bi and Bi–Sb in spite of the fact that the figure of merit is
much smaller than that in properly aligned single crystals.

The thermoelectric properties of single crystal bismuth in the c and a directions as
a function of temperature are shown in figure 6.12 [21]. It will be seen that zT is an
order of magnitude greater along the trigonal direction than in the plane of the
binary axes. This is mainly because of the large difference between the Seebeck
coefficients in the two directions.

Figure 6.12(c) also shows that the highest thermal conductivity is normal to
the trigonal direction but it does not immediately allow us to separate the lattice
and electronic components. One of the best ways of doing this is by applying a high
transverse magnetic field. When the field, B, is such that (μB)2 ≫ 1, one might
expect the electronic thermal conductivity to approach zero. However, this does
not happen in the case of bismuth. The longitudinal temperature gradient produces
a transverse electric field through the Nernst effect and this, in turn, leads to heat
flow in the longitudinal direction through the Ettingshausen effect. This heat flow
does not vanish, however large the magnetic field. Figure 6.13 shows how the total
thermal conductivity in the binary direction changes with the strength of the
magnetic field when this is directed along the trigonal and bisectrix directions [22].
That there is a difference between the high field values of λ is a clear indication that
the electronic contribution to the thermal conductivity does not tend to zero. This
difference does allow us to determine the lattice conductivity since the ratio of
the magnetic field dependent part of the thermal conductivity in the two directions
is easy to estimate from the known band parameters. As expected, the lattice
conductivity is inversely proportional to the absolute temperature, with values of
2.9 and 2.0 W (m K)−1 at 300 K in directions normal to and parallel to the trigonal
axis respectively.

Figure 6.11. Schematic energy band diagram for Bi–Sb alloys (data from Lenoir et al [20]).
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Bismuth displays another interesting phenomenon, known as the umkehr effect,
in a transverse magnetic field. It is found that the Seebeck coefficient changes as the
direction of the field is reversed. For example, it was observed by Smith and his
colleagues [23] that one sample of Bi had a Seebeck coefficient of −150 μV K−1 with

Figure 6.12. Thermoelectric properties of Bi parallel to and perpendicular to the trigonal axis: (a) Seebeck
coefficient, (b) electrical resistivity, (c) thermal conductivity and (d) dimensionless figure of merit. (Based on
the observations of Gallo et al [21].)

Figure 6.13. Thermal conductivity of Bi in the binary direction at 115 K. The ratio of the thermal conductivity
to that in zero field is plotted against magnetic field strength. The magnetic field lies along the trigonal or
bisectrix directions.
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the magnetic field in a bisectrix direction. When the field was rotated through 180°,
the Seebeck coefficient changed sign with a value of 170 μV K−1. The umkehr effect
can occur for any crystal with a suitable symmetry and with non-spherical constant-
energy surfaces in wave vector space, but it is uncommon for it to be as profound as
it is for bismuth.

It would appear that there should be an advantage, from the thermoelectric
viewpoint, in using a Bi–Sb alloy rather than bismuth. The lattice conductivity for
the alloy should be smaller and the appearance of an energy gap should reduce the
adverse effect of the minority carriers. However, the addition of Sb seems to lower
the value of μ(m*/m)3/2. This is because the conduction band is non-parabolic close
to its edge and this reduces the effective mass and there is no corresponding rise in
the electron mobility [24]. Thus, the increase in zT on replacing Bi by Bi–Sb is rather
small. The only advantage is the reduction in the lattice conductivity. Figure 6.14
shows λ plotted against magnetic fields for different Bi–Sb alloys at 80 K [25]. The
temperature gradient is along a binary axis and the magnetic field in a bisectrix
direction. It is evident that the lattice conductivity must be much less than the value
of 11 W (m K)−1 for Bi having the same orientation.

One can produce p-type Bi and Bi–Sb by doping with tin but the n-type material
has a substantially higher figure of merit. The electron concentration can be
increased by doping with tellurium but the highest n-type figure of merit has been
observed for tin-doped material [26]. In fact, a single crystal of tin-doped Bi0.95Sb0.5
has yielded a value of z of about 3 × 10−3 K−1 in the trigonal direction over the range
of temperature 120 to 280 K. This compares favourably with what can be achieved
with n-type bismuth telluride but with that material aligned polycrystalline samples
rather than single crystals are satisfactory. It is probable that Bi–Sb would be
selected in preference to bismuth telluride only at low temperatures. It has been
observed by Wolfe and Smith [27] that zT reaches the respectable value of about
0.4 for Bi88Sb12 at 80 K. Even though p-type Bi–Sb is inferior to n-type material it is
still possibly good enough to be considered for use near liquid nitrogen temperature.

Figure 6.14. Thermal conductivity of Bi–Sb alloys at 80 K in a transverse magnetic field. The heat flow is
parallel to a binary axis and the magnetic field is in a bisectrix direction. Observations of Cuff et al [25].
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The longitudinal properties of both types of Bi and Bi–Sb can be improved by
applying a transverse magnetic field and, at low temperatures, the field does not have
to be impracticably large. Thus, at 160 K, Wolfe and Smith found that the figure of
merit of Bi88Sb12 could be doubled in a field of 0.6 T.
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Chapter 7

Generator materials

7.1 IV–VI compounds and alloys
One particular compound that has a high mean atomic weight is lead telluride,
PbTe. Its figure of merit is lower than that of bismuth telluride at 300 K but it has a
larger energy gap, 0.32 eV, compared with 0.13 eV. Equally important is the fact
that its melting temperature is more than 300° higher. Thus, although bismuth
telluride is the best choice for thermoelectric generation with low source temper-
atures, lead telluride is superior above this range.

PbTe has cubic rock salt structure, so the thermoelectric properties are isotropic.
It can be doped with donors, such as Zn, Cd, In, Bi or Cl, and acceptors that include
Na, Au, Ti and O. The carrier concentration can also be adjusted by departures
from stoichiometry [1]. The need to alter the concentration of dopant according to
the operating temperature is clear from figure 7.1 [2], which shows zT plotted against
temperature for two p-type samples of PbTe. The sample with a hole concentration
of 2 × 1025 m−3 is superior to that with a concentration of 6.5 × 1025 m−3 at 300 K
but the latter is the better above about 500 K.

When we compare the properties of PbTe and Bi2Te3 at 300 K, we find that PbTe
has the high carrier mobilities of 0.16 m2 (V s)−1 and 0.075 m2 (V s)−1, for electrons
and holes respectively. Although these mobilities are somewhat larger than the
values for bismuth telluride, the density of states effective masses are only 0.21m and
0.14m so that μ(m*/m)3/2 is no more than 0.0154 m2 (V s)−1 and 0.0039 m2 (V s)−1 for
n-type and p-type PbTe, respectively. These values are inferior to those for bismuth
telluride. At least some of the difference may be attributed to the fact that both the
valence and conduction bands in PbTe are of the 4-valley type whereas those in
Bi2Te3 have 6 valleys.

The idea of using solid solutions to reduce the lattice conductivity was first
demonstrated using alloys of PbTe with PbSe and there are a number of alloys of the
IV–VI compounds that have been used in thermoelectric generation [2]. Usually the
selected material comes from the general system PbxSn1−xTeySe1−y with the alloys
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represented by PbxSn1−xTe often being preferred. Of course one must balance the
reduction of the lattice conductivity with any change in the carrier mobility. There are
also changes in the band gap that must be taken into account [3]. Thus, in PbxSn1−xTe
the energy gap becomes smaller with increase of x until it falls to zero when x is equal
to about 0.7. As shown in figure 7.2, the energy gap rises again as x becomes greater
than 0.7 and there is an interchange between the valence and conduction bands. It is
found that n-type PbxSn1−xTe yields zT equal to about unity at 500 K.

There is much interest in more complicated alloys based on the IV–VI com-
pounds. The compositions containing Te, Ag, Ge and Sb are known by the acronym
TAGS and are useful p-type generator materials [4]. They can be regarded as alloys
of GeTe and AgSbTe2. AgSbTe2 has a rhombohedral structure and there is a phase
transition when about 20% is added to GeTe. This means that the alloys between
these two compounds are subject to considerable strain and, when the GeTe content
lies between 80% and 85%, the lattice conductivity is exceptionally small. TAGS
materials can be used in conjunction with n-type PbxSn1−xTe.

PbTe has been used to show that not all doping agents are equivalent to one
another. It seems that the addition of thallium gives rise to resonant levels [5]. If

Figure 7.1. Plots of zT against temperature for two samples of p-type PbTe with different hole concentrations
in the extrinsic range.

Figure 7.2. Schematic plot of energy gap against proportion of SnTe in Pb1−xSnxTe. This diagram corresponds
to a temperature of 12 K. The energy gap on the PbTe-rich side becomes larger as the temperature rises.
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additional levels are located at an optimum distance above the band edge, the
Seebeck coefficient for a given electrical conductivity is enhanced. As shown in
figure 7.3, the variation of zT with temperature is quite different for PbTe doped
with thallium and sodium.

Perhaps some of the most interesting observations on PbTe have been made
using nanostructured material. Harman and his colleagues [6] have worked with
PbTe/Te superlattices, measuring the Seebeck coefficient, the Hall coefficient and
the electrical conductivity. The superlattice periods were between 15 and 30 nm.
Figure 7.4 shows how the power factor was found to change with carrier concen-
tration. The results for the superlattice are compared with those for bulk PbTe.
There was a very significant increase in the power factor for the superlattice with
carrier concentrations in excess of 1025 m−3. This is one of the few cases in which it

Figure 7.3. Schematic plots of zT against temperature for PbTe doped with Tl and Na. The former introduces
resonant states above the band edge.

Figure 7.4. Variation of power factor with carrier concentration for a PbTe/Te superlattice.
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has been found that the adoption of a nanostructure has improved the electronic
properties as well as reducing the lattice conductivity.

Improvements have also been claimed for quantum dot superlattices made from
PbTe and PbTe–PbSe [7]. Samples were produced by molecular beam epitaxy on
BaF2 substrates and were found to have a zT value of about 1.6 at 300 K rising to
about 3 at 500 K. Presumably some credit for the high figure of merit must be
attributed to a reduction in the lattice conductivity but it does seem that nano-
structuring can also enhance the electronic properties in the PbTe system.

7.2 Silicon and germanium
Pure n-type silicon has a higher value of μ(m*/m)3/2 at room temperature than
bismuth telluride though the maximum power factor is not so good because the
mobility is usually reduced at the optimum carrier concentration by impurity
scattering. Impurity scattering is more evident for silicon because of its higher
electron mobility. Also, the high dielectric constant in bismuth telluride shields the
charge carriers from the Coulomb fields of the impurity ions. However, the main
reason why silicon is not a good thermoelectric material is the very high lattice
conductivity [8]. Its value of 145 W (m K)−1 at 300 K is greater than the total
thermal conductivity of many metals.

Germanium, too, has a large lattice conductivity, though at 64 m2 (V s)−1 it is
somewhat smaller than that of silicon. Nevertheless, germanium–silicon alloys have
been used as generator materials since they have a much lower lattice conductivity
than either of the elements [9]. Figure 7.5 shows the variation of λL with composition
at 300 K. Over much of the range of composition the lattice conductivity is of
the order of 10 W (m K)−1 but a rather lower value of about 5 W (m K)−1 has been
reported for Ge0.3Si0.7 [10]. In spite of the reduction in λL, the alloys of silicon and
germanium have values of zT at ordinary temperatures that are too small for
practical purposes, although it has been reported that a Si–Ge Peltier cooler has

Figure 7.5. Plot of lattice conductivity against concentration of Si in SixGe1−x alloys at 300 K. Schematic plot
based on the data of Steele and Rosi.
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been integrated into Si optoelectronic devices for dealing with hot spots [11]. The
Si–Ge alloys come into their own as generator materials above 600 K with zT
reaching about 0.5 and maintaining this value up to at least 1000 K [12]. The alloys
seem to be quite stable at 1300 K. The energy gaps of 1.15 eV and 0.65 eV for Si and
Ge, with intermediate values for the alloys, mean that minority carrier conduction
has little effect in the heavily doped generator materials.

There is, of course, the possibility of further reducing the lattice conductivity
by using fine grained material to introduce boundary scattering of the phonons.
Experiments on pure silicon have shown that boundary scattering has an effect on
the thermal conductivity at ordinary temperatures due to the substantial influence of
the low frequency phonons [13]. There is an even greater effect in Si–Ge alloys
because of the shift towards the low frequency region by alloy scattering. In spite of
reservations expressed by Slack and Hussein [14], fine-grained sintered Si–Ge has
proved to be a useful generator material.

The experience that has been gained on the use of silicon in microelectronic
devices makes this element particularly suitable for the study of nanostructures.
Despite the high lattice conductivity of bulk silicon, the value of λL for nanowires
can be very small. For example, a silicon nanowire with a diameter of 52 nm was
found to have a lattice conductivity of only 1.2 W (m K)−1 [15]. Since the power
factor for these nanowires was not much less than that of bismuth telluride,
zT reached 0.6 at 300 K.

7.3 Phonon-glass electron-crystals
The figure of merit can be improved either by increasing μ(m*/m)3/2 or by reducing the
lattice conductivity. A low value of the lattice conductivity may be obtained in any
particular material by the introduction of scattering centres for the phonons, for
example impurities, dislocations or grain boundaries. Alternatively, one may select a
material that has a small lattice conductivity even in its pure and perfect state. The
lowest lattice conductivity that one might hope for is that of a glass or amorphous
substance.Electrical conduction ina glass is unlikely to yield anacceptable power factor
but Slack [16] proposed that materials might exist that would appear to be amorphous
from the viewpoint of the phonons but crystalline in their electronic behaviour. These
materials have come to be referred to as phonon-glass electron-crystals (PGECs).

PGECs may be found among crystals that have cage-like structures in which
loosely bound impurity atoms may reside [17]. Two groups of crystals that embody
the PGEC principles are the clathrates and the skutterudites.

The first clathrates to be studied were complexes of H2O with trapped atoms or
molecules and were known to have very low thermal conductivities. They have very
large numbers of atoms in the unit cell, 46 H2O molecules in Type I clathrates and
136 molecules in Type II clathrates. We are interested in those clathrates that exhibit
semiconducting properties.

A characteristic of a PGEC is that the lattice conductivity should vary little with
temperature except at low temperatures when the specific heat is temperature-
dependent. It might typically have a value of about 0.5 W (m K)−1, which is the
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value for amorphous Ge, at medium to high temperatures. One of the simplest
clathrates is Cs8Sn44 in which the Cs ions are rather large and do not fit loosely into
the tin cages [18]. Consequently Cs8Sn44 has the fairly high lattice conductivity of
10 W (m K)−1 at about 7 K though the value becomes smaller as the temperature
rises, becoming less than 1 W (m K)−1 at 300 K. Other clathrates, such as
Sr8Ga16Si30, have smaller lattice conductivities which are far less dependent on
temperature.

One of the more widely studied clathrates is Ba8Ga16Sn30. A typical plot of
Seebeck coefficient against temperature for this compound is shown in figure 7.6
[19]. The variation below 500 K is as expected for an extrinsic semiconductor,
while the decrease above this temperature suggests the onset of minority carrier
conduction. An increased donor concentration would take the Seebeck coefficient
closer to the optimum value for high temperature operation. It has been reported
that zT for copper-doped Ba8Ga16Sn30 reaches 1.5 at 550 K, while, in p-type
Ba8Ga15.9Zn0.007Sn30, zT is equal to 1.07 at 500 K [20]. There is no doubt, then, that
the clathrates are useful thermoelectric generator materials.

The skutterudites are a class of material typified by CoAs3 [21]. They are
characterised by a unit cell that contains empty spaces. The unit cell consists of
eight near-cubic arrangements of Co atoms. Six of these cubes contain almost
square rings of As atoms leaving two voids that can be occupied by loosely bound
atoms known as rattlers. It is these rattlers that are responsible for the low lattice
conductivity. CoSb3 has the relatively high temperature-dependent lattice conduc-
tivity of about 9 W (m K)−1 at 300 K. In the widely studied skutterudite
La0.75Fe3CoSb12 the voids are partly filled with La atoms and the lattice
conductivity is much lower. In the closely related partly filled skutterudite,
La0.75Th0.2Fe3CoSb12, the lattice conductivity is only about 1 W (m K)−1, a value
that does not change much over a wide range of temperatures [22].

The electrons and holes in the skutterudites have a high effective mass and the
Seebeck coefficient is large at carrier concentrations that would lead to metallic
conductivity in most semiconductors. The figure of merit is small at room

Figure 7.6. Seebeck coefficient of the clathrate Ba8Ga16Sn30 plotted against temperature.
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temperature but can become large as the temperature rises. Thus, zT for
Ce0.9Fe3CoSb12 reaches unity at a temperature of about 600 K. One of the features
of the skutterudites is the large number of compositions that exist [23], many of them
having similarly high values of zT.

7.4 Other thermoelectric materials
There are a number of other materials that display worthwhile thermoelectric
properties. Thus, FeSi2 has been used as a generator material even though it does not
have a very large figure of merit. It is very stable, mechanically robust and composed
of cheap and plentiful elements [24]. It serves to remind us that the figure of merit is
not the only important parameter.

A material that does possess a large figure of merit is zinc antimonide [25]. The
compound Zn4Sb3 exists in three crystalline forms. The β-phase is stable from 263 K
to 765 K and is p-type with zT equal to 0.6 at about 500 K rising to about 1.3 at
700 K. There seem to be some problems with its mechanical stability because of the
existence of the different phases. Another compound, ZnSb, is more stable and was
used for the positive branches in some early generators. Its figure of merit was once
thought to be rather low but recent work using different doping agents has yielded
values of zT in excess of unity at 600 K.

Another group of materials that has attracted attention is the half-Heusler alloys.
The Heusler alloy, Cu2MnAl is ferromagnetic and has a structure in which the
copper atoms form a cubic lattice with Mn and Al in alternate cells. In the half-
Heuslers, half of the copper atoms would be missing. Among the half-Heusler alloys
with the general formula MNiSn, M being Hf, Zr or Ti, several have useful n-type
thermoelectric properties. In a typical compound, ZrNiSn, the power factor is
satisfactory but the lattice conductivity is about 10 W (m K)−1. This can be reduced
by changing the composition to that of the alloy Zr0.5Hf0.5NiSn [26]. Also, the high
power factor is a consequence of a large density of states effective mass rather than a

Figure 7.7. Thermoelectric properties of higher manganese silicide as a function of temperature.
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high mobility so there is the likelihood of reducing the lattice conductivity by grain
boundary scattering without affecting the electronic properties.

The thermoelectric properties of higher manganese silicide has been studied over
a wide range of temperature and has been used as an example to illustrate the
behaviour of a typical material. Figure 7.7 shows how the properties of a particular
sample vary with temperature [27]. The maximum Seebeck coefficient of 210 μVK−1

at about 800 K is consistent with an energy gap of 0.32 eV. The fact that the Seebeck
coefficient displays a maximum value indicates that an improved figure of merit at
the highest temperature should be achieved by increasing the doping level. It is
predicted that zT could rise to about 0.9 at 1000 K.

Finally, it may be mentioned that there are a number of organic materials that
show some promise for thermoelectric applications. For one particular sample,
designated as DMSO-mixed PEDOT-PSS, zT was reported to be 0.42 at room
temperature [28]. The power factor has the rather modest value of 0.5 mW (m K2)−1,
which is only about one-tenth of the value for bismuth telluride, but this is balanced
by the very small thermal conductivity of about 0.2 W (m K)−1. The ease of
processing would make organic thermoelectrics very attractive.
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Chapter 8

Transverse flow and thermomagnetic effects

8.1 Advantages of the transverse thermoelectric effects
Until now we have discussed longitudinal thermoelectric devices. However, it is
possible for a longitudinal flow of electric current to produce a transverse flow of
heat and for a longitudinal temperature gradient to give rise to a transverse electric
field. In other words, there can be transverse Peltier and Seebeck effects.

The utilisation of the transverse effects presents some problems arising partic-
ularly from the fact that the end contacts can act as transverse short circuits.
Nevertheless, there are some advantages that stem from the heat and electrical flows
being in perpendicular directions.

For example, suppose that we wish to make a thermal radiation detector. If we
use the longitudinal Seebeck effect the output voltage will depend on the temper-
ature difference, which, for a given heat flux, will depend on the length of the
thermoelements. On the other hand, if we use a transverse device the output depends
on the temperature gradient, which is independent of thickness. In other words, a
transverse thermal detector can be very thin in the heat flow direction and this means
that it can be very fast. The response time is proportional to the square of the length
of the thermal path. A detector is based on the simple transverse thermoelectric
generator shown in figure 8.1.

Let us suppose that the active area of the device has a cross-section LxLz and a
length in the heat flow direction, Ly. We find that the theory developed in chapter 2
for a longitudinal generator can be applied to the transverse device, though there are
some significant changes that must be made. In the first place we are dealing with a
single material rather than a thermocouple. Then, the expressions for the electrical
resistance and the thermal conductance must be adapted to take account of the
different flow directions for heat and electric charge. The electrical resistance in the x
direction, Rx, is ρxLx/LyLz and the thermal conductance in the y direction, Κy, is
λyLxLz/Ly. The transverse Seebeck coefficient, αxy is defined as the ratio of the
electric field Ex to the temperature gradient dT/dy, so the ratio of the thermoelectric
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voltage in the x direction to the temperature difference in the y direction is αxyLx/Ly.
It is noted that the transverse figure of merit is (αxyLx/Ly)

2/RxKy, which is equal to
αxy

2σx/λy. In a longitudinal thermoelectric device the product of electrical resistance
and thermal conductance in each element is equal to ρλ and is independent of
the length and cross-section area but this is not true for a transverse generator or
refrigerator. By using the transverse arrangement the electrical resistance and the
thermal conductance can be adjusted more or less independently.

A single thermocouple is essentially a low-voltage high-current device that is
matched to normal circuit requirements by using what was once called a thermopile,
with many thermocouples connected in series and the heat flows in parallel. It is
much easier to increase the voltage and decrease the current for a transverse device
since one merely changes the length in the direction of the electrical flow.

The independence of the electrical resistance and thermal conductance greatly
simplifies the design of a cascade. Let us consider a multi-stage refrigerator. We have
already discussed the pyramidal arrangement when the longitudinal Peltier effect is
employed. This allows the cooling power to be increased from stage to stage between
the source and sink. With a transverse Peltier cooler the cooling power can be
controlled by altering the thickness in the heat flow direction. Thus, a cascade may
then take the form shown in figure 8.2(a). Moreover, by using the transverse Peltier
effect one can realise the ideal of an infinite-staged cooler using an exponentially
shaped element as shown in figure 8.2(b).

Let us consider a section of the device in figure 8.2(b) of thickness Δy at a distance
y from the heat source. This section is one stage of the cascade. Its coefficient of
performance is given by

Figure 8.1. Transverse thermoelectric generator.
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ϕ =
Δ

+ −
+ +

T
T

z T
z T

(1 ) 1
(1 ) 1

, (8.1)y
trans

1/2

trans
1/2

where ztrans is the transverse figure of merit and ΔT is the temperature difference
across Δy. This means that the ratio of the heat flow emerging from the section to
that entering it is

= + Δ + +
+ −

+Δq

q
T

T
z T
z T

1
(1 ) 1
(1 ) 1

. (8.2)
y y
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trans
1/2
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Heat sink
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Figure 8.2. Transverse thermoelectric cascades. (a) A multi-staged refrigerator using elements of different
thickness and (b) an exponentially shaped single element.
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This, then, must be the ratio of the width in the z direction at y + Δy to that at y. If
we assume that ϕyTdT/dy is approximately constant we find that the length, Lz, in
the z direction is

= + +
+ −

⎛
⎝⎜

⎞
⎠⎟L L

z T
T z T

y
T
y

exp
(1 ) 1

((1 ) 1)
d
d

. (8.3)z z0
trans

1/2

trans
1/2

This equation describes the shape of the infinite-stage transverse cooler. In practice,
any tapering in the y-direction should give some improvement in performance
compared with that of a device having a uniform width.

8.2 Synthetic transverse materials
There are few crystals that possess a significant directional dependence of the Seebeck
coefficient. Even a substance like bismuth telluride, which displays a large anisotropy
of the electrical and thermal conductivity, has the same Seebeck coefficient in the a
and c directions unless both electrons and holes are present. The existence of the
transverse thermoelectric effects was first observed by Korolyuk et al [1] for a single
crystal of cadmium antimonide but such a material would have a very small
transverse figure of merit. As we shall see later, substantial transverse effects
in certain homogeneous crystals can be produced in a strong magnetic field,
but otherwise we have to make use of two-phase materials if we wish to obtain
worthwhile transverse figures of merit.

We consider the two-phase structure shown schematically in figure 8.3 [2]. The
two phases are chosen so that they have different Seebeck coefficients and the layer
thicknesses are such that RB ≫ RA and KA ≫ KB, where R represents electrical
resistance parallel to the layers and K is thermal conductance in the perpendicular
direction. In the x0 direction the thermal resistance will be dominated by material B
whereas in the y0 direction the electrical conduction will be dominated by material
A. In the x0 direction the Seebeck coefficient will be

α α α= +
+

K K
K K

/ /
1/ 1/

, (8.4)x
A A B B

A B
0

Figure 8.3. Synthetic transverse thermoelement made from layers of different conductors A and B.
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and, when KA ≫ KB, this approximates to αB. In the y0 direction the Seebeck
coefficient is

α α α= +
+

R R
R R

/ /
1/ 1/

, (8.5)y
A A B B

A B
0

which is approximately equal to αA.
Let us suppose that the thicknesses of the layers are dA and dB with dB/dA equal to

n. Then equations (8.4) and (8.5) become

α α λ α λ
λ λ

= +
+

n
n

/ /
1/ /

, (8.6)x
A A B B

A B
0

and

α
α ρ α ρ

ρ ρ
=

+
+

n

n

/ /

1/ /
. (8.7)y

A A B B

A B
0

We can also obtain expressions for the effective thermal conductivities and electrical
resistivities in the x0 and y0 directions. These are

ρ
ρ ρ

=
+
+

n

n 1
, (8.8)x

A B
0

ρ
ρ ρ

= +
+

n
n
1

1/ /
, (8.9)y

A B
0

λ
λ λ

= +
+

n
n
1

1/ /
, (8.10)x

A B
0

and

λ λ λ= +
+

+n
n

Z T
1

(1 ). (8.11)y
A B

AB m0

It is noted that the thermal conductivity in the y0 direction contains a term that
includes a figure of merit ZAB. This is because there will exist a Peltier effect due to
circulating currents in the layers. ZAB is the longitudinal figure of merit for a
thermocouple between the materials A and B with branch dimensions related to n. It
is given by

α α
λ λ ρ ρ

= −
+ +( )

Z
n n

( )

( ) /
. (8.12)AB

A B
2

A B A B

In the synthetic two-phase material that has been described, the transverse thermo-
electric coefficients would be zero with flow along the x0 and y0 directions. Non-zero
values result from the inclination of a specimen at some angle ϕ to the y0 direction.
The transverse Seebeck coefficient is then

α α α ϕ ϕ= −
ϕ ϕ ( )sin cos . (8.13)y x x y0 0
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A condition for a large transverse Seebeck coefficient is that there should be a large
difference between the longitudinal Seebeck coefficients of the two components.

The electrical resistivity and thermal conductivity of the composite material in the
appropriate directions are

ρ ρ ϕ ρ ϕ= +
ϕ ϕ

cos sin , (8.14)x x x y
2 2

0 0

and

λ λ ϕ λ ϕ= +
ϕ ϕ

sin cos . (8.15)y y x y
2 2

0 0

We can combine these equations to obtain the transverse figure of merit

α
λ ρ

=
ϕ ϕ ϕ ϕ

Z . (8.16)
y x

y y x x
trans

2
0 0

The optimum transverse figure of merit takes on a simple form when σAλA ≫ σBλB.
The expression is

α α

λ ρ λ ρ
= −

+ +⎡⎣ ⎤⎦( )
Z

Z T

( )

{ } [1 ]
. (8.17)trans

max A B
2

A A
1/2

B B AB m
1/2 2

It is evident that this expression is almost the same as that for a longitudinal couple
made from A and B apart from the term (1 + ZABTm) in the denominator. Thus, the
transverse and longitudinal figures of merit may not be much different from one
another. However, the transverse figure of merit will always be the smaller. The aim
in selecting a pair of materials for a synthetic transverse thermoelement is to satisfy
two conditions:

(a) they should have a high figure of merit when used as a conventional
thermocouple and

(b) they should have widely different values for the product of electrical and
thermal conductivity.

There is an optimum value for the angle ϕ which can be found from the equation

ϕ
ρ λ
ρ λ

=
+

+
⎧⎨⎩

⎫⎬⎭
n

n
Z Ttan

1
(1 ) . (8.18)opt

A B

B A
AB m

1/4

Also, there is an optimum value for n, the ratio of the thicknesses of the layers. Thus,

λ ρ λ ρ
λ ρ λ ρ

≈
+

⎛
⎝⎜

⎞
⎠⎟n

2 /( )

1 /( )
, (8.19)opt

B B A A

B B A A

1/2

but it does not seem that the value of n is critical. If the ratio of the thermal to
electrical conductivity is similar for A and B the optimum value of n is close to unity
and it is often satisfactory to make the layers of equal thickness.
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There have been a number of reports of successful experiments on synthetic
transverse thermoelements. Although it is difficult to make a satisfactory transverse
device from p-type and n-type bismuth telluride alloys, it has been suggested that
this might be possible if one were to combine crystalline bismuth seleno-telluride
with porous bismuth–antimony telluride [3]. The porosity of the latter would allow
the condition σnλn ≫ σpλp to be satisfied.

By accepting a somewhat lower longitudinal figure of merit one can also
approach the condition σAλA ≫ σBλB, using a semiconductor B combined with a
metal A. This has been done by Kyarad and Lengfellner [4] who made a synthetic
composite from n-type bismuth telluride and lead. They were able to obtain a
temperature difference of 22° from the transverse Peltier cooling effect.

Gudkin et al [5] made a synthetic transverse thermoelement from bismuth–
antimony telluride and the semi-metal Bi. When compared with Kyarad and
Lengfellner’s device, the longitudinal figure of merit for their pair of materials is
greater but the condition σAλA ≫ σBλB is less well satisfied. Gudkin et al observed
ΔTmax equal to 23° for a rectangular bar with a transverse figure of merit, ztrans, of
0.85 × 10−3 K−1. They were able to increase ΔTmax to 35° by using a trapezoidal
shaped element and could presumably have achieved a still greater value of ΔTmax

by making a better approximation to the exponential shape of equation (8.3).

8.3 The thermomagnetic effects
There are four transverse effects that appear on the application of a transverse
magnetic field. These effects are illustrated in figure 8.4. If the transverse electric
fields and temperature gradients are in the directions shown, with the magnetic field
directed away from the viewer, the four coefficients are regarded as positive.

The Hall coefficient, RH, is defined as the ratio of the transverse electric field to
the product of the longitudinal electric current density and the magnetic field B. The
directions of the Hall field, the electric current and the magnetic field are mutually

Figure 8.4. The transverse thermogalvanomagnetic effects. The magnetic field is directed into the page.
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perpendicular. The Hall coefficient is a useful parameter in the study of semi-
conductors since, when the charge carriers are all of one sign, it provides a measure
of their concentration. The sign of the Hall coefficient determines the sign of the
carriers.

The Nernst effect is the appearance of a transverse electric field on the application
of a longitudinal temperature gradient. The Nernst coefficient, N, is defined by the
relationship

=N
V y

B T x
d /d
d /d

. (8.20)
z

The sign of the Nernst coefficient is independent of that of the carriers but, in an
extrinsic conductor, it is a useful guide to the energy dependence of the relaxation
time.

We are particularly interested in the Ettingshausen effect which, as shown in
figure 8.4, is a transverse flow of heat resulting from a longitudinal electric current.
The Ettingshausen coefficient is defined by

=P
T y
i B

d /d
, (8.21)

x z

where ix is the electric current density in the x-direction.
The Ettingshausen and Nernst coefficients are related to one another in much the

same way as the Peltier and Seebeck coefficients. However, there is a slight
difference in the form of the relation because the Ettingshausen coefficient is defined
in terms of a temperature gradient rather than a heat flow. Consequently the
thermodynamic relationship for the transverse coefficients is

λ =P NT. (8.22)

It will be noticed that this equation includes the thermal conductivity λ since it is this
property that relates the temperature gradient to the heat flow.

Finally, the Righi–Leduc coefficient, S, is defined by

=S
T y

B T x
d /d
d /d

. (8.23)
z

In principle, the Ettingshausen and Nernst effects can be used for refrigeration and
generation, respectively [6]. However, the effects are rather small when there is only
one type of carrier. The origin of the Ettingshausen effect is explained in figure 8.5
(a) where we arbitrarily suppose that the carriers are electrons. The magnetic field
tends to move the electrons downwards but, because of the boundary conditions,
there can be no net transfer of charge. If we assume that the low energy carriers are
less strongly scattered than those of high energy it is still possible for the former to
move downwards, with this motion balanced by the upwards movement of the high
energy carriers. As one might imagine, this effect is not very large and it does not
offer much promise for energy conversion.
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The Ettingshausen effect is much stronger when both electrons and holes are
present. As shown in figure 8.5 (b), the presence of both types of carrier allows their
transverse flow to take place without there being an overall electric current. It is this
bipolar effect that is much more promising. We shall, therefore, derive an expression
for the Nernst coefficient in a mixed conductor.

It is necessary that the longitudinal electron and hole currents balance one
another so

σ σ
σ σ

α α= − =
+

−i i
T
x

( )
d
d

. (8.24)x xn, p,
n p

n p
p n

There will also be equal and opposite currents in the y direction due to the magnetic
field, Bz. The electron current will be given by

σ= +( )i E R i B , (8.25)y y x zn, H,n n, n

where Ey is the electric field due to the Nernst effect and RH,n is the partial Hall
coefficient for the electrons. Likewise, the hole current will be

σ= +( )i E R i B . (8.26)y y x zp, H,p p, p

By setting the transverse electric current equal to zero we find that

σ σ σ σ
σ σ

α α=
−

+
−

( )
E

R R
B

T
x( )

( )
d
d

. (8.27)y z
H,p p H,n n n p

p n
2 p n

Thus, the Nernst coefficient is

σ σ σ σ
σ σ

α α=
−

+
−

( )
N

R R

( )
( ). (8.28)nH,p p H,n n p

p n
2 p n

Figure 8.5. Origin of the Ettingshausen effect in (a) an extrinsic conductor and (b) an intrinsic conductor.
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In a high magnetic field the Hall mobilities RH,nσn and RH,pσp become equal to the
mobilities μn and μp as defined in chapter 4. Then equation (8.28) may be written as

μ μ σ σ
σ σ

α α=
−

+
−N

( )

( )
( ). (8.29)p n n p

p n
2 p n

It may be noted that the product NBz has the same dimensions as the Seebeck
coefficient and has been referred to as the thermomagnetic power.

In order to determine the effectiveness of the transverse thermomagnetic effects
for energy conversion we need expressions for the electrical and thermal conductiv-
ities in the applied magnetic field. The electrical conductivity is

σ σ
μ

σ
μ

=
+

+
+B B1 1

. (8.30)
z z

n

n
2 2

p

p
2 2

A quantity of importance to us is the isothermal electrical resistivity, ρi, which is
related to σ through the equation [7, 8]

σ
ρ

ρ
=

+ R B
. (8.31)

z

i

i
2

H
2 2

where RH is the effective Hall coefficient which, at the limit of a very high magnetic
field, becomes equal to (1/RH,p − 1/RH,n)

−1.
It is difficult to derive an exact expression for the electronic thermal conductivity in

a high magnetic field but a good approximation has been given by Tsidil’kovski [9].
His expression is

λ
λ
μ
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μ

σ σ α α

σ μ σ μ
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p p
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where λe,n and λe,p are the partial electronic thermal conductivities for the two types
of carrier. This quantity tends to zero in a very high magnetic field under the
condition that the transverse electric field is zero. When the transverse electric
current is zero, the total thermal conductivity in an infinite magnetic field becomes
equal to λL(1 + ZNET) where ZNE is the transverse thermomagnetic figure of merit.

Let us suppose that the concentrations of the electrons and holes are equal and
that the magnetic field is large enough for μn

2Bz
2 ≫ 1≪ μp

2Bz
2. Then, from equation

(8.29), the Nernst coefficient is

μ μ
μ μ

α α=
+

−N ( ). (8.33)
n p

n p
p n

Also, in a very high magnetic field the Hall coefficient becomes equal to zero. Then
the isothermal electrical resistivity is given by

ρ
σ
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where σn(0) and σp(0) are the partial electrical conductivities in the absence of a
magnetic field. We find that the thermomagnetic figure of merit of an intrinsic
conductor in a very high magnetic field becomes

μ μ α α
μ μ λ

=
−

+
Z

n e ( )

( )
, (8.35)NE

I n p p n
2

n p L

where nI is the intrinsic concentration of each type of carrier.
Of course, we cannot optimise the Fermi energy, as for a longitudinal thermo-

electric device, since we have imposed the condition that the material is intrinsic. It is
clear that the energy gap must be small or even slightly negative. If the energy gap
were large enough for classical statistics to apply, the concentration of each type of
carrier would be

π= −⁎ ⁎ ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( )n m m

mkT
h

E

kT
2

2
exp

2
, (8.36)I n p

3/2

2

3/2
g

and, for a very large magnetic field,

α α− =
+E kT

eT
( )

5
. (8.37)p n

g

Thus, in the classical region

∝ + −
⎛
⎝⎜

⎞
⎠⎟( )Z E kT

E

kT
5 exp . (8.38)NE g

2 g

Then, assuming the classical approximation, we find that ZNE falls continuously as
the gap increases. It is expected that acoustic-mode lattice scattering of the carriers
will predominate when the mobility is high, and for this condition ZNE has its
highest value when the energy gap is close to zero. If we suppose that the effective
mass is the same for both types of carrier, the Nernst–Ettingshausen figure of merit
reaches its maximum value when the valence and conduction bands overlap by
about 2kT as shown in figure 8.6.

Ideally, the electrons and holes should have the same high mobility, μ. Then,
equation (8.35) becomes

μα
λ

=Z
n e2

, (8.39)NE
I

2

L

where α is the partial Seebeck coefficient for either carrier.
One of the major advantages of the transverse thermomagnetic effects over

the longitudinal effects lies in the fact that a small or negative energy gap is no
disadvantage. There is also an improvement by a factor of 2 that arises because the
electrons and holes share a common lattice. Also, the partial Seebeck coefficients are
usually increased by applying a high magnetic field. On the other hand, there are few
materials that have a large enough carrier mobility for the condition μ2B2 ≫ 1 to be
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approached. Typically, rare earth permanent magnets have a field strength of about
1 T so it seems that we need mobilities that are much greater than 1 m2 (V s)−1,
if the device is to be practical. Indium antimonide has an electron mobility of about
7.7 m2 (V s)−1 at room temperature but the hole mobility is much smaller and the
other parameters are not very favourable. The most promising results have been
obtained using bismuth, particularly at low temperatures.

The basic parameters for bismuth at 80 K and 300 K are given in table 8.1 and the
calculated values for the Nernst–Ettingshausen figure of merit in a high magnetic
field at these temperatures are given in table 8.2. It will be seen that the value at
300 K for the best orientation is comparable with the longitudinal figure of merit of
bismuth telluride alloys. However, at this temperature it is difficult to provide the
necessary magnetic field. Thus, the thermomagnetic effects are most likely to be
useful at low temperatures.

Yim and Amith [10] used the moderately high magnetic field of 0.75 T in their
measurement of the transverse thermomagnetic figure of merit of bismuth between
70 K and 300 K. Their observation of the preferred orientation was consistent with
table 8.2. However, because of the limited field strength, ZNET at 300 K was no
more than 0.025. At 80 K, ZNET in the available field reached the value of 0.24, a
value significantly larger than that in table 8.2.

One may be able to improve the high field value of ZNET by using a Bi–Sb alloy
rather than the element bismuth. As shown in figure 6.14, the lattice conductivity is
substantially reduced when antimony is added to bismuth. Unfortunately, this
beneficial effect is accompanied by a fall in the carrier mobility. This not only
reduces ZNET but it also makes the high field condition more difficult to achieve.
Thus, it was found by Yim and Amith that a Bi0.99Sb0.01 alloy had a marginally
higher value of ZNE than Bi below about 130 K but, if the magnetic field was

Figure 8.6. Dimensionless Nernst–Ettingshausen figure of merit as a fraction of its maximum value plotted
against the energy gap. It is assumed that the electrons and holes have the same effective mass and that
μ2B2 ≫ 1 for both types of carrier.

The Physics of Thermoelectric Energy Conversion

8-12



restricted to 0.75 T, Bi had the higher value above this temperature. The highest
value of ZNET equal to about 0.5 was reached at a temperature of 150 K.

Perhaps the reduction in the mobility for the alloys can be avoided by careful
preparation of the crystals so as to prevent imperfections resulting from impurities
and constitutional supercooling. The growth of homogeneous single crystals of
Bi–Sb is made difficult because of the wide separation of the liquidus and solidus in
the phase diagram. Nevertheless, Horst and Williams [11] claimed to have obtained
a value close to unity for ZNET at 150 K for Bi0.97Sb0.03 in a field of 1 T.
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Chapter 9

Thermoelectric refrigerators and generators

9.1 Thermoelectric modules
In principle we can adapt a given thermocouple to provide a particular cooling
power by adjusting the ratio of length to the cross-sectional area of the branches.
However, in practice, this is not a reasonable approach unless the required cooling
power is very small.

Consider equation (2.1) in which the rate of cooling of a single couple is expressed
in terms of the electric current. The cooling power has its maximum value when

α α= −IR T( ) . (9.1)p n 1

Now (αp − αn) will be of the order of 400 μV K−1 for an optimised thermocouple,
while T1 will be about 250 K. Thus, IR must be about 0.1 V. Ignoring the thermal
conduction through the thermocouple, the cooling power per couple is then
approximately 0.05I W, where I is expressed in amps. Then, if a cooling power
of, say, 10 W is needed, the current will have to exceed 200 A. It is generally
preferable to reduce the current to a few amps and to obtain the required cooling
power by using several thermocouples in the form of a module. A thermoelectric
module consists of a number of thermocouples connected in series electrically but
with the heat flow in parallel.

A commercial module is shown in figure 9.1(a) and the components are shown
schematically in figure 9.1(b). The thermoelements are linked to one another by
copper connectors, which are in thermal contact with heat transfer plates that
provide electrical insulation with a minimum of thermal resistance. The heat
transfer plates may be metallised on the faces remote from the copper connectors.
Aluminium oxide is an inexpensive material that is often used for these plates.
Aluminium nitride and beryllia are better conductors of heat but the latter presents
some health hazards. Diamond is equally good as an electrical insulator and has an
even higher thermal conductivity and might be used in special applications.
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The required cooling power and operating current will determine the ratio of
length to cross-sectional area of each thermoelement. It might be thought that one
should use the smallest possible volume of thermoelectric material but, as the length
of each element is reduced, electrical and thermal transfer problems have to be faced.

One of these problems is the need to minimise the electrical resistance between the
thermoelements and the copper links. This resistance can no longer be neglected
when very short thermoelements are used. The design of very small modules has
been studied by Semenyuk [1] who estimated the electrical contact resistance to be
0.84 × 10−10 Ω m2. This suggests that the resistance at each contact would be about
1% of that of a 1 mm long thermoelement.

Parrott and Penn [2] have discussed the problem of contact resistance from the
point of view of economy of material. As the length of the thermoelements is
decreased, the relative effect of the contact resistance becomes greater. This means
that ΔTmax becomes smaller. Parrott and Penn derived expressions for the ratio of
cooling power to volume of thermoelectric material, with ΔT less than ΔTmax, under
the conditions of either maximum cooling power or maximum coefficient of
performance. There are generally two different thermoelement lengths from which
to choose and one would usually opt for the greater of these as it would give the
higher coefficient of performance.

thermoelementsheat transfer

(b)

plates

copper
connectors

(a)

Figure 9.1. (a) Commercial thermoelectric module (courtesy of II-VI Marlow). (b) Schematic representation of
section through a module.
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Semenyuk was particularly interested in thermoelectric modules for cooling
semiconductor laser diodes and other devices that involve a very high power density.
He has shown that thermoelements of less than 1 mm in length can be used in
specific applications. He found that there was little difference in performance
between modules made from thermoelements of 200 and 150 μm in length. It was
still possible to obtain a value of over 64° for ΔTmax with a thermoelement length of
130 μm. It may be noted that the heat transfer plates in the smallest modules
were made from aluminium nitride rather than alumina so as to minimise the
deterioration in performance due to poor heat transfer.

Let us now discuss the problem of heat transfer in parallel with the thermocouples
using the simple model shown in figure 9.2 [3]. We suppose that the thermoelements
are separated by some heat insulating material, which may well be air. As the
separation between the elements is widened, so the area of the heat transfer plates
becomes greater and this reduces the thermal resistance to the source and sink.
However, the heat loss through the space between the elements is increased. We
suppose that this space occupies g times the cross-sectional area of the thermoele-
ments and that it has a thermal conductivity λI. The effective figure of merit is
reduced to Z/(1 + λIg/λ), where λ is the mean thermal conductivity of the thermo-
electric materials. On the other hand, the thermal conductance of each of the end
plates is increased from KcA to KcA(1 + g), where Kc is the thermal conductance per
unit area of these plates.

The optimum value of g will depend on the specific requirements of the system.
We suppose, for example, that the aim is to achieve the maximum temperature
difference, ΔT*max, between the source and sink at zero load. ΔT*max will be less than
the ideal value, ΔTmax, because of the thermal resistance of the end plates and the
heat losses through the insulation between the thermoelements. When both these
factors are taken into account we find that

Figure 9.2. Simple model for the treatment of the heat transfer problem in a thermoelectric module.
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In figure 9.3 we show howΔT*max/ΔTmax varies with g in a typical case. The insulating
medium has been assigned a thermal conductivity λI equal to 0.024 W (m K)−1,
which is the value for air. The heat transfer plates have been given a thermal
conductance of 3 × 104 W (m2 K)−1, as expected for alumina of about 1 mm
thickness. ZT has been assigned a value of unity. For this set of parameters it is
apparent that the maximum temperature difference is achieved when the thermal
insulation occupies about twice the space of the thermoelements. This maximum,
however, is only about 92% of the value that it would have if there were no heat
losses or end-plate thermal resistance. It is doubtful that there could be much
improvement in the thermal insulation but the thermal resistance of the heat
transfer plates could certainly be reduced.

9.2 Transient operation
It is usual to discuss the performance of thermoelectric coolers under steady-state
conditions. It is also useful to know how rapidly a Peltier cooler will respond to
changes in the load or the electrical power. Here we discuss the possibility of
increasing the temperature depression by operating a thermocouple in a transient
mode.

Babin and Iordanishvili [4] have determined the transient response of a couple
consisting of two infinitely long legs. The junction is at x = 0 and the thermal load at
this point is supposed to be negligible. Then the distribution of temperature along
either leg must satisfy the equation

ρ
λ κ

+ =T
x

i T
T

d
d

1 d
d

, (9.3)
2

2

2

Figure 9.3. ΔT*max/ΔTmax plotted against the filling factor g for typical values of the thermal conductivity of
the insulating medium and the thermal conductance of the heat transfer plates.
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where ρ, λ and κ are respectively the electrical resistivity, the thermal conductivity
and the thermal diffusivity. We set the temperature as T0 at all points when the time t
is zero. Also dT/dx is equal to zero when x =∞, while at x = 0, λdT/dx = αIT, where
it is assumed that the Seebeck coefficient of each branch is ±α. Applying these
conditions, the junction temperature T at time t is found from the equation

π
− = − + −

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭T T T A A
zT

zT
A

zT
(1 exp( )erfc( ))

1 2
, (9.4)0 0

2 0

0
1/2

0

where A = ακ1/2it1/2/λ. This equation shows that the temperature depression, ΔT,
rises to a maximum value and then slowly decreases. If zT0 = 1, the maximum
depression is about 0.21T0 which may be compared with a value of 0.265T0 that
would be achieved in the steady state with a heat sink. The electric current does not
affect the maximum temperature depression but it does control the time scale.

The temperature depression can exceed the maximum steady state value if the
current is increased after equilibrium is established. One may still use equation (9.3)
but the temperature at t = 0, x = 0 is now given by ΔTmax. Equation (9.4) still holds
if T0 is replaced by T0 − ΔTmax. Babin and Iordanishvili showed that the temper-
ature difference for a couple with z equal to 2.5 × 10−3 K−1 could be raised from 70°
to 105° by this method.

Hoyos et al [5] imposed short current pulses on a bismuth telluride thermocouple
through which a steady current was first applied. Their couples were tapered near the
cold junction. The minimum temperature in the steady state was 220 K with the heat
sink temperature equal to 290 K. A cold junction temperature of 175 K was
achieved by applying pulsed currents equal to eight times the steady state value. For
pulses of 50 ms duration, the recovery time was less than 2 s largely because of the
tapering of the branches.

Woodbridge and Ertl [6] were able to enhance the temperature depression by
using shaped current pulses. This technique was used by Landecker and Findlay [7]
who increased the current continuously so that the Peltier effect could compensate
the Joule heat as it reached the junction. Suppose that the current is proportional to
(t − t0)

−1/2 where t0 is the time for which the pulse is applied and t is the time of
observation. Then the temperature at time t is

π
= −⎜ ⎟⎛

⎝
⎞
⎠T

ZT t t
t

ln . (9.5)0
2

0

Landecker and Findlay were able to observe temperatures as low as that of liquid
nitrogen using a pulsed current of up to 100 A superimposed on a steady current of
5 A through a bismuth telluride couple.

It is noteworthy that pulsed cooling using either the transverse thermoelectric or
thermomagnetic effects has the advantage that there is no thermal mass at a junction
to slow down the response. Woodbridge and Ertl [8] used the Ettingshausen effect in
bismuth to obtain 4° cooling below 80 K with a pulsed current as compared with
only 1.2° for a steady current.
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Pulsed cooling has been put to practical use by Yamamoto [9] who passed the
same current through a bismuth telluride thermocouple and a GaAs electro-
luminescent diode using the arrangement shown in figure 9.4. The doubling of the
emitted radiation for pulsed operation indicated that the temperature had been
lowered by an additional 50°.

9.3 Thermoelectric generators
The commercial exploitation of the thermoelectric effects has largely been devoted
to refrigeration using the Peltier effect. However, the use of the Seebeck effect in the
generation of electricity could eventually become much more important, particularly
if materials with values of zT substantially greater than unity become available.

The efficiency of conversion of heat to electricity generally rises with the
temperature difference between the source and the sink. When the temperature
difference is large it is unfavourable to use a single material in each branch of a
thermocouple. One way of solving this problem is by using multiple stages but a
simpler approach lies in the use of segmented branches. One might expect to use two
or more segments in each branch, with each segment having its optimised figure of
merit. Sometimes this presents a compatibility problem.

For a thermoelectric generator made from single materials, the greatest efficiency
is reached when the load is optimised. This means that the ratio, u, of electric current
density to heat flux density has an optimum value, s, which is known as the
compatibility factor. It is given by the relation

α
= + −

s
zT
T

1 1
. (9.6)

It is not surprising that most thermoelectric materials have similar values of s
since zT is usually close to unity and the optimum Seebeck coefficient is about
±200 μV K−1 but s is somewhat smaller for typical Si–Ge alloys. It is, therefore,
difficult to match Si–Ge with the tellurides in segmented thermoelements.

This problem has been studied in some detail by Snyder and his colleagues
[10, 11]. They have been able to explain the observation that the addition of a TAGS
segment to a PbTe-based generator produced little extra power. Snyder has
suggested that the compatibility factors for the materials in a segmented generator
should not differ by a factor greater than two.

Figure 9.4. GaAs diode cooled by a pulsed bismuth telluride thermocouple. Schematic representation of
Yamamoto’s system [9].
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Efficiency is not usually thought to be an important factor when thermocouples
are used for the measurement of temperature. However, it is of significance in
radiation thermopiles, although it is not the only quantity of importance. The
responsivity, R, is the ratio of the output voltage to the power of the incident
radiation but, of greater relevance, is the specific detectivity, D*. The detectivity is
the reciprocal of the noise equivalent power, or the smallest detectable radiative
input. The specific detectivity applies to unit surface area and band width and D*
allows us to compare different sensors.

Radiation thermopiles have been reviewed by Graf et al [12] who found the
highest responsivity for a device made from bismuth–antimony telluride and a
bismuth–antimony alloy. A larger specific detectivity equal to 88 × 105 m Hz−1/2 was
found for a Bi–Sb couple. The figure of merit is of some help in selecting
thermocouples for radiation detection but geometric factors are of importance
too. It is in this context that transverse devices have an advantage over normal
thermocouples.

Turning to power generation, thermocouples possess the advantage of flexibility
since they can operate over a wide range of temperatures if suitable materials are
selected. Thermoelectric generators, drawing their heat input from radioactive
sources, have been used in space vehicles for many years. Some of the early
generators used thermocouples based on PbTe and its alloys but later generators
working at higher temperatures made use of Si–Ge alloys, with efficiencies of up to
7%. In the context of space applications [13], efficiency is important since weight is
significant and a higher efficiency means a smaller generator.

There are a number of heat sources that might be used with thermoelectric
generators. Waste heat is available at many different temperatures and might need a
range of segmented or staged thermocouples. Some possible sources have relatively
low temperatures and can be exploited using thermoelectric generators made from
the bismuth telluride alloys. The materials are little different from those used in
Peltier cooling though the carrier concentrations have to be higher and the jointing
techniques have to withstand higher temperatures. Thermoelectric modules suitable
for operation in generators are available from the manufacturers of refrigeration
devices. Low temperature sources include solar ponds and ocean thermal gradients.
The low temperatures involved would make these sources difficult to utilise with
other types of electrical generator.

9.4 Future prospects
The key to the advance of thermoelectricity lies in the development of materials
with ZT values that are much greater than unity. In the field of refrigeration, the
coefficient of performance at present is far short of what can be achieved with
compression systems and, consequently, thermoelectricity is, for the most part,
restricted to situations where the cooling power is low, say, of the order of less than
10 W. As ZT becomes greater, so Peltier cooling will come to be used in applications
requiring larger cooling power. Our experience of thermoelectric systems has shown
them to be unexcelled for reliability. For example, the behaviour of a thermoelectric
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air conditioning system installed on the French railways, with faultless operation
over more than a decade, has shown what can be done [14]. Likewise, the improved
efficiency that will result from higher values of ZT will make thermoelectric
generators operating from low grade heat sources more economically viable.

From time to time predictions have been made of the maximum figure of merit
that will ever be reached. Thus, many years ago [15] it was suggested that the
best material in the future might combine the highest known value of μ(m*/m)3/2,
that is the value for electrons in bismuth, with a lattice conductivity of about
0.2 W (mK)−1, that is typical of a glass. Then, if the energy gap were large enough to
prevent any contribution from minority carriers, zT could become as large as 4.

The arguments that led to this conclusion are probably still valid today if we
restrict ourselves to bulk materials. It is difficult to see any way of decreasing the
lattice conductivity below a glass-like value but there remains the possibility of
increasing μ(m*/m)3/2, for example by adopting a nanostructure. In this context, it is
interesting to note the theoretical calculations of Tan and his colleagues [16] on the
thermoelectric properties of allotropes of carbon called graphyne and graphdiyne.
Unlike the closely related allotrope, graphene, these layered structures are semi-
conductors with an energy gap of about 0.5 eV. The predicted value of zT is 5.3 at
580 K. Thus, there are now good reasons for hoping that thermoelectric materials
with zT exceeding 4 will eventually be found.
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