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Preface

Fourier ptychography is a new imaging technique that bypasses the resolution limit
of the employed optics. In particular, it transforms the general challenge of high-
throughput, high-resolution imaging from one that is coupled to the physical
limitations of the optics to one that is solvable through computation. This book
began as a collection of lecture notes and MATLAB® simulation examples on the
Fourier ptychography technique. In teaching this technique in a graduate course, I
found that the students were able to develop a better conceptual understanding using
simulation examples. Following the same line of reasoning, this book demonstrates
the concept of Fourier ptychography in a tutorial form and provides many
MATLAB simulation examples for the reader. It also discusses the experimental
implementation and recent developments of the technique. This book will be of
interest to researchers and engineers learning simulation techniques for Fourier
optics and the Fourier ptychography concept.

The book begins in chapter 1 with a short review of imaging concepts in Fourier
optics. It provides simulation examples on coherent and incoherent imaging systems.
It also covers the modeling of Zernike aberrations in imaging systems.

Chapter 2 covers the imaging procedures of the Fourier ptychography technique.
In particular, it provides simulation examples on the forward imaging model, the
iterative recovery process, and the aberration-correction scheme. It also discusses the
sampling requirement, the optimal updating order, and the decomposition of state-
mixture in Fourier ptychography.

Chapter 3 covers different experimental implementations of the Fourier ptychog-
raphy technique, including the LED-array approach, the liquid-crystal-display
approach, and the aperture-scanning implementation. It also discusses different
coherent imaging modalities using Fourier ptychography, including bright-field,
dark-field, phase, phase-gradient, reflective, and multi-slice imaging.

Chapter 4 extends the Fourier ptychography framework to incoherent imaging
settings. It provides simulation examples on the pattern-illuminated Fourier
ptychography scheme. It also covers the 4-frame resolution-doubling scheme and
the multiplexed structured illumination approach.

Chapter 5 summarizes the book and provides the directions for future
developments.

For more information on the Fourier ptychography technology, please refer to
Smart Imaging Lab @ UConn: https://sites.google.com/site/gazheng/.

Guoan Zheng
December 2015
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Chapter 1

Basic concepts in Fourier optics

In this chapter, we will briefly review the basic concepts in Fourier optics. The
operation of conventional imaging systems can be modeled by two steps, as shown
in figure 1.1: 1) the low-pass filtering process of the imaging system, and 2) the
discrete sampling process of the image sensor.

In step 1, the employed optical system acts like a low-pass filter, with a cutoff
frequency determined by the numerical aperture (NA) of the lens. Only the spatial-
frequency components within the passband can be collected by the optical system
and form an image at the detector plane. Such a low-pass filtering process imposes a
resolution limit on the imaging platform. For coherent imaging, the resolution limit
for the complex light field is λ/NA, where λ is the wavelength of the incident light.
For incoherent imaging, the resolution limit for the intensity signal is λ/(2NA).

In step 2, the light signal is sampled by the image sensor. The pixel size of the image
sensor needs to satisfy the Nyquist limit, i.e., at least two samples are made for the
smallest feature of the signal. If the pixel size of the image sensor is too large, it would
introduce the aliasing problem to the final captured image, as shown in figure 1.1
(bottom right). A smaller pixel size of the image sensor helps to address the aliasing
problem; however, it may also impose limitations on the dynamic range and the
signal-to-noise ratio of the sensor chip.

In the following, we will discuss the coherent and incoherent imaging systems
from the transfer-function point of view. We will also discuss how to model optical
aberrations in imaging systems. Materials in this chapter are useful for under-
standing the concept of Fourier ptychography (FP). The interested reader can also
refer to [1–3] for more details on Fourier optics.

1.1 Coherent imaging system
We first consider a coherent imaging system where a spatially coherent light source is
used for sample illumination (we will refer to it as coherent illumination in the
future). Under coherent illumination condition, the phasor amplitudes of the light
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field vary in unison at all spatial points. Therefore, a coherent imaging system is
linear in complex amplitude:

= ⊗A x y h x y A x y( , ) ( , ) ( , ) (1.1)output input

In equation (1.1), Ainput and Aoutput represent the input and output complex
amplitudes of the light field, h x y( , ) represents the coherent point spread function in
the spatial domain, and ‘⊗’ represents 2D convolution. We can transform equation
(1.1) to the spatial-frequency (Fourier) domain and obtain:

=_ _( ) ( ) ( )G k k H k k G k k, , , (1.2)x y x y x ycoh output coh coh input

In equation (1.2), _Gcoh input and _Gcoh output represent the input and output Fourier
spectrums of the complex amplitudes. H k k( , )x ycoh is the Fourier transform of h x y( , )
and it is commonly referred to as coherent transfer function.

Coherent illumination condition can be obtained when the light waves come from
a single point source. The common light sources for coherent illumination are laser
diodes and spatially-confined LEDs. We can also add a small pinhole in front of an
extended light source to obtain the coherent illumination condition (the pinhole can
be treated as a single point source in this case). In this case, however, the achievable
brightness would be much weaker than the case of laser diode. Strictly speaking,
there is no real point source for coherent illumination; even for laser diode, the light
emitting area has a certain size. Rigorous treatment of the coherent illumination
condition is beyond the scope of this book. The interested reader can refer to the
theory of partial coherence in [2].

To simulate the imaging process of a coherent imaging system, we consider a
microscope example with a 1× magnification, 0.2 NA objective lens. The incident
wavelength is 0.5 μm and the final image is sampled by an image sensor with a
0.5 μm pixel size. In the following, we will first create a high-resolution input object

Figure 1.1. The operation of conventional imaging systems. The light field from the object (bottom left) is low-
pass filtered by the imaging system (bottom middle) and discretely sampled by the image sensor (bottom right).
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(lines 1–4) and set up the coherent imaging system (lines 5–9). We will then simulate
the low-pass filtering process of the imaging system (lines 10–21). Finally, we will
obtain the output complex amplitude and intensity images of the simulated object
(lines 22–26).

In line 2, we simulate a high-resolution intensity object. We assume the phase of
the object is a constant and we convert the intensity to complex amplitude in line 3.
In lines 5–9, we set up the parameters for the coherent imaging system. In particular,
we define the wave number in line 7 and the cutoff frequency in line 9. In lines 11–17,
we set up the low-pass filter (i.e. the coherent transfer function) in the spatial-
frequency domain. The low-pass filtering process is performed in line 19, where we
transform the object’s complex amplitude to the spatial-frequency domain using fast
Fourier transform and multiply it with the coherent transfer function. The filtered
spectrum is then transformed back to the spatial domain using the inverse fast
Fourier transform in line 23. The final output amplitude and intensity can be
obtained in lines 23 and 24.

The results of this simulation study are shown in figure 1.2, where we compare the
input and output amplitude in both the spatial and spatial-frequency domains
(spatial-frequency domain will be referred to as Fourier domain in the future). We
note that, a coherent imaging system is linear in complex amplitude, and thus, the
filtering process in line 19 is for the complex amplitude of the light field, not the
intensity. Once we obtain the output complex amplitude, we can convert it back to
intensity, as shown in line 24. We also note that, conventional image sensors can
only detect light intensity; the complex phase information is lost in the measuring
process. In order to detect the complex amplitude information, we can use phase
retrieval [4–12] or holographic approaches [13–15] to recover the lost phase
information from intensity measurements. In particular, Fourier ptychography is
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a coherent phase-retrieval approach. In the recovery process of FP, the acquired
intensity images under different incident angles are used to recover the complex
amplitude of the object and improve the resolution beyond the cutoff frequency of
the employed optics [16].

1.2 Incoherent imaging system
In a coherent imaging system, the illumination light waves come from a point source
and the phasor amplitudes of the light waves vary in unison at all spatial points.
Here, we consider another illumination condition with the opposite property such
that the phasor amplitudes at different points vary in a totally uncorrelated manner.
Such an illumination condition is called spatially incoherent (we will simply refer to
it as incoherent in the future). The most common example for incoherent imaging is
the Köhler illumination in microscope settings, where samples are illuminated by
uncorrelated plane waves from different incident angles.

For an incoherent imaging system, the impulse responses at different spatial
points vary in an uncorrelated manner. As such, they must be added on an intensity
basis instead of the complex amplitude basis. It follows that an incoherent imaging
system is linear in intensity and the point spread function is the squared magnitude
of the coherent point spread function:

= ⊗I x y h x y I x y( , ) ( , ) ( , ) (1.3)output
2

input

In equation (1.3), Iinput and Ioutput represent the input and output intensity images,
and h x y( , ) is the coherent point spread function in the spatial domain. The impulse

Figure 1.2. The low-pass filtering process of a coherent imaging system.
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response ∣ ∣h k k( , )x y
2 is commonly known as incoherent point spread function. We

can also transform equation (1.3) to the Fourier domain and obtain:

=_ _( ( ) ( )G k k H k k G k k, ) , , (1.4)x y x y x yincoh output incoh incoh input

In equation (1.4), _Gincoh input and _Gincoh output represent the input and output
Fourier spectrums of the intensity images, and H k k( , )x y is the Fourier transform of
∣ ∣h x y( , ) 2 and known as incoherent transfer function.

In the following, we will use the same microscope imaging example (1×
magnification, 0.1 NA objective lens, 0.5 μm wavelength, and 0.5 μm pixel size)
to demonstrate the incoherent imaging process. The key idea of this simulation is to
generate the incoherent transfer function and perform the low-pass filtering process
in the Fourier domain.

Similar to the coherent imaging case, we generate the coherent transfer function in
line 16. We then transform the coherent transfer function to the spatial domain and
obtain the coherent point spread function in line 19. Next, we take the squared
magnitude of the coherent point spread function to obtain the incoherent point spread
function in line 20. Finally, we transform the incoherent point spread function back to
the Fourier domain to obtain the incoherent transfer function in line 21. The low-pass
filtering process is performed in line 26, similar to the case of coherent imaging. The
final low-passfiltered intensity output is obtained in line 29 and it is shown infigure 1.3.

Figure 1.4 shows the comparison between the coherent and incoherent transfer
functions. We can see that the cutoff frequency of the incoherent transfer function is
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twice the cutoff frequency of the coherent transfer function. However, it does not
follow that incoherent illumination yields a better resolution than coherent illumi-
nation, as we are comparing image intensity to complex amplitude. In fact, which
type of illumination is better strongly depends on the sample property, and in
particular on the phase distribution of the object. The interested reader can refer to
chapter 6 in [1] for more details.

1.3 Modeling aberrations
In previous sections, we assume the imaging system does not contain any optical
aberration. Such a system is called a diffraction-limited system, where the achievable
resolution is only determined by the NA. We now consider the effect of optical
aberration, which imposes practical limits on resolution performance. In partic-
ular, we will model the aberrations using the transfer-function approach. We note
that, a treatment of various types of aberrations and their effects on frequency
response is beyond the scope of this chapter. The interested reader can refer to, for
example, [17].

To model aberrations in the imaging process, we can simply introduce a phase
term in the coherent transfer function (CTF) as follows:

Figure 1.4. The comparison between the coherent and incoherent transfer functions.

Figure 1.3. The simulated output intensity and Fourier spectrum in an incoherent imaging setting.
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= · · ·( )k k NA kCTF , circ( ) e , (1.5)( )
x y

W k k
0

i ,x y

where the circle function ‘circ’ generates a circular mask with a radius of · kNA 0,
and k kW( , )x y represents the wavefront aberration of the system. We can further
decompose the wavefront aberration into a summation of different Zernike modes

m nZ( , ) as follows:

= ∑( )k k a m nW , Z( , ), (1.6)x y m n( , )

where a m n( , ) represents the coefficient for the Zernike mode m nZ( , ). As an example,
we have the second-order defocus aberration =k k aW( , ) Z(2, 0)x y (2,0) , where a(2,0)

represents the amount of defocus aberration. Similarly, a(2,2) and −a(2, 2) represent the
amounts of second-order astigmatism aberrations along two directions; a(3,1) and

−a(3, 1) represent the amounts of third-order coma aberrations along two directions;
a(4,0) represents the amount of fourth-order spherical aberration. In short, equations
(1.5) and (1.6) provide a means to model different aberrations in the imaging
process. In the simulation code, we only need to add the following lines to model
them in the coherent transfer function:

In line 1, we model the wavefront aberration k kW( , )x y as the summation of the
second-order defocus and the fourth-order spherical aberrations. We use the ‘gzn’
function to generate different Zernike modes (similar Zernike functions can be found
on the MATLAB File Exchange site). This function takes four parameters from left
to right: the width of the input image, the diameter of the pupil aperture, and the two
indexes of the Zernike mode. In particular, we have a(2,0) = 2 and a(4,0) = 4 in the
simulation code. In line 2, we model the coherent transfer function using equation
(1.5). Once we get the coherent transfer function with aberrations, we can use the
coherent imaging procedures in section 1.1 to obtain the output complex amplitude.

To model aberrations in an incoherent imaging system, we need to convert the
coherent transfer function (with aberrations) to the incoherent transfer function
using the procedures in section 1.2. We can then apply the incoherent transfer
function in the filtering process to generate the output intensity image. In figure 1.5,
we show two different aberrations in the Fourier domain and their corresponding
coherent and incoherent outputs. We can see that the achievable resolution degrades
when wavefront aberrations are presented in the imaging system.

Aberration plays a critical role in the design of an imaging platform. As an
example, a conventional microscope has a tradeoff between resolution and field of
view. A better resolution usually implies a smaller field of view, limiting the imaging
throughput of the microscope platform. The tradeoff between resolution and field of
view, in fact, comes from aberrations of the objective lens. The common strategy
to expand the field of view is to scale up the lens’s size [18]. However, simple
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size-scaling would introduce aberrations to the system. To compensate for these
aberrations, we need to introduce more optical surfaces to increase the degrees of
freedom in lens optimization. With the optomechanical constraints of a conven-
tional microscope platform, expanding field of view without compromising the
achievable resolution is considered very challenging in the design of high-resolution
objective lenses.
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