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Preface

In recent decades, innovative breakthroughs have emerged in the broad and
flourishing field of nanobiotechnology. This arena of technology and its particular
branch, nanomedicine, have made a significant impact on numerous fields of science
and technology including materials science, biotechnology, and biomedicine. On the
other hand, design of smart systems possessing controllable behavior with accurate
feedbacks to different stimulations has focused the concentration of various
researches in nanbiotechnology, nanomedicine, and the associated field of drug
delivery systems (DDSs). Hence, innovative smart stimulus-responsive drug delivery
systems have recently attracted the interest of multifarious research and studies.

This matching pair of E-books weaves together many of the strands that make up
the emerging field of modern nanomedicine. Drug-delivery, controlled-release, gene
therapy, nanocarriers and smart intelligent nanosystems are highly relevant to the
design of stimulus-responsive drug and gene delivery systems.

Much of the motivation for the development of this field has come from an
appreciation of the drawbacks of traditional cancer chemotherapy. Many of the
approved drugs, which are actually quite good at killing cancer cells, are also
highly toxic to normal cells. This unfortunate truth explains the high (almost
universal) incidence of side-effects in cancer chemotherapy, which can rapidly
become intolerable to patients and even life-threatening. Moreover, many of the
drugs used in cancer chemotherapy are highly insoluble in biological media and
have sub-optimal pharmacokinetics and biodistribution. A range of nanocarriers
and nanovehicles has been designed to solubilize these drugs, and allow them to be
transported intact in the bloodstream (after intravenous injection) until they reach
their intended tumor target. But how are these nanocarriers meant to know when
their target has been reached? The pressing need to find an answer to this question
has been the driving force for the creation of an impressive range of smart or
stimulus-responsive nanocarriers, which have been engineered at the molecular level
to respond to a physical, chemical, or biological stimulus that is present at, is
overexpressed at, or can be externally applied at the tumor site. It is noteworthy that
considering the high potential of smart stimulus-responsive drug/gene delivery
systems, they are increasingly being applied in diagnosis and therapy of other
formidable disorders, infections, inflammations and diseases such as Alzheimer’s,
cardiovascular diseases, diabetes, etc, and are prompting newfound and efficient
concepts.

As the reader may well imagine, this effort started out as a single E-book covering
the field of smart drug-delivery nanovehicles. However, as the work progressed, it
became clear that this was a highly active field with new publications coming out in
the scientific literature almost every day. Faced with the E-book becoming greatly
extended in length, we decided to prepare the subject in two distinct parts.
Fortunately, this was not too difficult as there is a natural divide between those
stimuli, which can be classified as ‘internal’ in nature (E-book 1), and those which
would be considered ‘external’ in nature (E-book 2). The internal stimuli comprise
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those factors which are naturally characteristic of tumors, other disease states, or
particular organs or tissues. These stimuli include pH, specific enzymes, redox
potential (oxidizing or reducing), and specific biomolecules such as glucose or ATP
etc. The external stimuli include those physical energies and forces, which can be
applied from outside the body either to guide a nanovehicle to its destination, or to
activate it at a specific location once it has arrived. These stimuli include light,
temperature (which can be either internal or external), magnetic fields, ultrasound,
and electrical and mechanical forces. Dual stimulus and multi-stimuli-responsive
systems, and the global market for DDSs are covered in E-book 1, while the
important subject of nanotoxicology is covered in E-book 2; subsequently, compre-
hensive discussions are provided under scrutiny in both E-books.
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Chapter 1

Introduction

In recent decades, nanotechnology has emerged as a highly innovative field showing
great potential in various areas of science and technology. Nanotechnology is
influential in pure science (e.g. chemistry, physics, etc), materials science, energy
science, biotechnology, biomedicine and pharmaceutics. Due to the widespread and
increasing burden of perilous diseases, such as drug-resistant infections, malignan-
cies like cancer, Alzheimer’s disease, diabetes, hepatitis, cardiovascular disease,
systemic inflammatory disorders and so on, more efficacious therapies are urgently
required with a focus on the targeted and individualized treatment of the diseased
site. Furthermore, the diagnostic and imaging aspects of therapy have become of
interest, especially in the diagnosis and treatment of various cancers. In this respect,
important breakthroughs have been accomplished in diagnosis and therapy,
particularly in the combination form called theranostics. There is an increasing
requirement for clinical trials in nanomedicine, which has resulted in many
successes, and more nanoparticles (NP) are receiving approval from the US Food
and Drug Administration (FDA) [1–6].

Micro/nanosystems have been applied for drug delivery using various materials and
approaches, such as nanostructured particles and surfaces and diffusion-controlled
delivery systems, and these are enabling novel therapies. Other new applications in
biosensing and implantable devices, such as drug-eluting/bioresorbable stents, can
be improved by nanotechnology [7–11]. The administration of different nano/
microparticle-based drug/gene delivery systems (DGDS) has been proposed as a
way to effect targeted delivery of therapeutic agents towards specific disease
locations inside the body, with substantial advantages such as reduced toxicity
and lessened damage to normal tissues and cells, enhanced solubility, effective
treatment of diseases, minimal/controllable side-effects for drugs or the therapeutic
method, etc [12–14]. In this respect, significant improvements in therapeutics and
pharmaceutics can be achieved. Furthermore, macromolecules are increasingly used
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as therapeutic agents and their targeted delivery is an important challenge [15]. The
delivery of such macromolecules should be both time-controlled and site-specific
[16]. For DGDS, smart targeting/delivery approaches are highly desirable and in this
area stimuli-responsive systems are important. Therefore, the design of intelligent
systems with controllable and accurate feedback to multifarious stimulation has
been considered extensively. Newly developed smart nano/microparticles have
shown great potential in various fields, particularly for the targeted delivery of
drugs/genes [17]. In such smart systems, triggered delivery and the release of
therapeutic agents in a targeted and controlled way can be achieved through the
application of a wide variety of external or internal stimulations [18]. This is due to
the high sensitivity of specific NP to triggering by various stimuli and the resulting
far-reaching physicochemical alterations [19, 20].

Different external physical stimuli can take the form of changes in magnetic and
electric fields, light irradiation, the application of ultrasound and heating sources,
and the use of mechanical force. Figure 1.1 shows a schematic depiction of various
external stimulations that can be applied in smart DGDS.

In some cases, using smart DGDS can eliminate the risks and drawbacks of
other carrier systems, such as viral vectors in clinical gene therapy [21]. Although
NP-based nanocarriers generally show only low cytotoxicity towards normal cells

Figure 1.1. Schematic of different classes of stimuli, including the external (e.g. electric and magnetic field,
light irradiation and ultrasound), that can act as triggers for the design of smart stimuli-responsive targeted
DGDS.
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and in biological environments [22], the various effects NP can have on biological
environments have led to the establishment of a new field, ‘nanotoxicology’, and
these must be considered in the design of new nanocarriers. These toxicity issues
have been one of the main concerns in the recent literature [23] and have worried the
general public; efforts have been made to define and, if necessary, reduce this toxicity
[24, 25]. In addition, the interactions of NP with biological molecules and materials,
and the occurrence of phenomena such as the coating with proteins known as a
‘corona’ and the cell-type specific effect known as ‘cell vision’, can significantly affect
the biological fate of NP, their targeting ability [26–28] and their cytotoxicity [29].
Smart NP have demonstrated notable therapeutic potential, particularly in cancer
therapy where they have been designed to be triggered in tumor sites [30]. Smart NP
can respond to a variety of tumor-specific stimuli [31] and dramatically improve the
cytotoxicity of anticancer drugs in respect of malignant cells while reducing their
toxicity towards normal cells [32]; large-scale molecular simulations and systems
biology approaches can be used to model these effects [33].

In smart DGDS, various mechanisms can be designed to effect the targeted
delivery and release of cargos from nanocarriers, which are strongly dependent on
the type of stimulus applied. Detailed understanding of these mechanisms is required
for the design and development of smart DGDS in order to study their interactions
with biological environments, analyze probable side-effects and obtain the desired
delivery and release characteristics, such as drug release rate, controlled delivery and
release, sensitivity level of nanocarriers to stimuli, etc.

Various NP and nanotechnology methods have been investigated, not only to
provide more reliable micro/nanocarriers triggered by one or more stimuli, but also
to deliver facile and economical preparation methods for drug-carrier NP with
higher loading efficiency and prolonged and sustained release times [34]. In smart
DGDS, much effort has been put into the exploration of novel stimuli-responsive
nanocarriers [18]. The most studied classes of nanocarriers are: various types of
polymer NP (e.g. hydrogels/nanogels, micelles, etc); liposomes; carbon-based nano-
materials (e.g. graphene, carbon nanotubes (CNT), fullerene); ceramic-based NP
(magnetic NP, mesoporous silica NP (MSN), etc); metal NP (gold NP, silver NP,
etc); and solid lipid NP (SLN). Several different types of micro/nanoparticles (MNP)
employed in the design of smart micro/nanocarriers for DGDS are illustrated in
figure 1.2.

In this book and its companion (Smart Internal Stimulus-Responsive Nanocarriers
for Drug and Gene Delivery), different smart DGDS are discussed according to their
stimulus type and have been categorized according to their external or internal
stimulation route. The principles and mechanisms of each stimulus type are taken
into consideration, and recent progress and the latest achievements in biomedicine
and pharmaceutics applications are discussed. The focus is on the use of smart nano/
microcarriers to carry out targeted delivery of therapeutic agents to particular cells,
tissues or disease states.

In this book, we discuss DGDS triggered via external stimuli (including light
irradiation, temperature change, ultrasound irradiation, magnetic and electrical
fields, and mechanical stress) in detail. Finally, a conclusion and future perspectives
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section discusses nanotoxicology briefly and addresses innovative future concepts
and new challenges in the smart DGDS field.
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